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For the nonlinear boundary-value problem for an ordinary differential equation in the critical
and noncritical cases, we obtain constructive conditions of its solvability and the scheme for finding
solutions by using Adomian decomposition method.

We investigate the problem of construction of solution [3, 6, 7]

z( · , ε) ∈ C1[0, T ], z(t, · ) ∈ C[0, ε0]

of the nonlinear periodic boundary-value problem

dz

dt
= Az + f(t) + Z(z, t), ℓz( · ) := z(0)− z(T ) = 0 (1)

in a small neighborhood of the solution of the generating problem

dz0
dt

= Az0, ℓz0( · ) := z0(0)− z0(T ) = 0, (2)

where A is a constant (n×n)-dimensional matrix, Z(z, t) is a nonlinear vector function analytic in
the unknown z in a small neighborhood of the solution of the generating problem (2). In addition,
the vector function Z(z, t) and the function f(t) are continuous in the independent variable t on
the segment [a, b].

The urgency of investigation of the boundary-value problem (1) is explained by extensive ap-
plications of similar problems in the study of nonisothermal chemical reactions. An example of
simulation of these reactions can be found in [2].

At the end of the present paper, we give an example of determination of approximations to a
periodic solution of problem (1) obtained by using our iterative scheme. In [4, 5], approximations
to the solutions of nonlinear boundary-value problems and, in particular, periodic boundary-value
problems, were found by using the effective Newton–Kantorovich method [9].

In constructing solutions of nonlinear boundary-value problems, we encounter the problem of
impossibility of representation of these solutions in terms of elementary functions, which, in turn,
leads to the appearance of significant errors in the solutions of the analyzed problems. A similar
situation was demonstrated for a periodic problem posed for the equation used to describe the
motion of a satellite on the elliptic orbit [11].

In addition, the procedure of construction of the solutions of nonlinear boundary-value problems
by the method of simple iterations is significantly complicated by the necessity of evaluation of the
derivatives of nonlinearities [6]. In [4, 5], the rate of convergence of iterations was improved as a
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result of evaluation of the derivatives of nonlinearities in each step. In view of these difficulties, we
can expect that the procedure of evaluation of the derivatives of nonlinearities can be simplified and
the solutions of nonlinear boundary-value problems (and, in particular, of periodic boundary-value
problems) can be found in terms of elementary functions by using the Adomian decomposition
method [1]. An example of this simplification is presented in [8].

By X(t) we denote a normal (X(a) = In) fundamental matrix of the generating problem (2).
In the critical case, we have

detQ = 0

and the generating problem (2) under the condition [6]

PQ∗
r
ℓK[f(s)]( · ) = 0 (3)

has an r-parameter family of solutions

z0(t, cr) = Xr(t)cr +G[f(s)](t), cr ∈ Rr.

Here, the matrix Xr(t) consists of r-linearly independent columns of the normal fundamental matrix
X(t). The matrix PQ∗

r
is formed by r linearly independent rows of the matrix orthoprojector.

Furthermore,
G[g(s)](t) := K[g(s)](t)−X(t)Q+ℓK[g(s)]( · )

is the generalized Green operator of the periodic boundary-value problem [6]

dy

dt
= Ay + g(t), y(0)− y(T ) = 0

in the critical case and Q+ is the pseudoinverse Moore-–Penrose matrix. It is known that the critical
case occurs if and only if the matrix A has eigenvalues on the imaginary axis, namely, imaginary
numbers of the form

λ =
2πik

T
, k = 0, 1, 2, . . . , i =

√
−1 .

The necessary and sufficient condition for the solvability of problem (1)

PQ∗
r
ℓK

[
Z(z(s), s)

]
( · ) = 0

leads to a necessary condition for the solvability of problem (2) in a small neighborhood of the
solution of the generating T -periodic problem

F0(cr) := PQ∗
r
ℓK

[
A0(z0(s, cr), s)

]
( · ) = 0. (4)

In what follows, equation (4) is called the equation for generating amplitudes of the T−periodic
problem (1). Assume that the equation for generating amplitudes (4) has real roots. Fixing one of
real solutions c∗r ∈ Rr of equation (4), we arrive at the problem of construction of a solution to the
nonlinear T−periodic problem (1) in a small neighborhood of the solution

z0(t, c
∗
r) = Xr(t)c

∗
r +G[f(s)](t), c∗r ∈ Rr

of the generating T−periodic problem (2). The conventional condition of solvability of problem (1)
in a small neighborhood of the generating T -periodic problem (2) is the requirement of simplicity
of the roots [6]

detB0 ̸= 0, B0 := F ′
0(c0) ∈ Rr×r
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of the equation for generating amplitudes (4) of the T -periodic problem (1). The form of the matrix
B0 which plays the key role in the investigation of the T -periodic problem (1) with the use of the
Adomian decomposition [1, c. 502], coincides with the conventional form [6]

B0 = PQ∗
r
ℓK[A1(s)Xr(s)]( · ), A1(t) =

∂Z(z, t)

∂z

∣∣∣∣
z=z0(t,c∗r)

is an (n×n)-dimensional matrix. We seek the solution of the periodic boundary-value problem (1)
in the form

z(t) := z0(t, c
∗
r) + u1(t) + · · ·+ uk(t) + · · · .

Since the nonlinear vector function Z(z, t) is analytic in the unknown z in a neighborhood of
the solution z0(t, c

∗
r) of the generating problem (2), the following decomposition is true in this

neighborhood [1, p. 502]

Z(z(t), t) = A0(z0(t, c
∗
r), t)+A1

(
z0(t, c

∗
r), u1(t), t

)
+ · · ·+An

(
z0(t, c

∗
r), u1(t), . . . , un(t), t

)
+ · · · . (5)

The first approximation to the solution of the nonlinear periodic boundary-value problem (1) in
the critical case

z1(t, c
∗
r) := z0(t, c

∗
r) + u1(t), u1(t) = Xr(t)c1 +G

[
A0(z0(s, c

∗
r))

]
(t), c1 ∈ Rr

is given by the solution of the nonlinear periodic boundary-value problem of the first approximation

u′1(t) = Au1(t) +A0(z0(t, c
∗
r)), u1(0)− u1(T ) = 0.

The periodicity of solution to the boundary-value problem of the first approximation is guaranteed
by the choice of the solution c∗r ∈ Rr of equation (4). The second approximation to the solution of
the nonlinear periodic boundary-value problem (1) in the critical case

z2(t, c
∗
r) := z0(t, c

∗
r) + u1(t, c1) + u2(t, c2)

is given by the solution of the nonlinear periodic boundary-value problem of the second approxi-
mation

u′2(t) = Au2(t) +A1

(
z0(t, c

∗
r), u1(t, c1)

)
, u2(0)− u2(T ) = 0,

where
u2(t) = Xr(t)c2 +G

[
A1

(
z0(s, c

∗
r), u1(s, c1)

)]
(t), c2 ∈ Rr.

The condition of solvability of the boundary-value problem of the second approximation

F1(c1) := PQ∗
r
ℓK

[
A1

(
z0(s, c

∗
r), u1(s, c1)

)]
( · ) = 0

is a linear equation
F1(c1) = B0 c1 + d1 = 0, (6)

which is uniquely solvable in the case where the matrix B0 is nondegenerate; here,

B0 = F ′
1(c1) ∈ Rr×r, d1 := F1(c1)−B0 c1.

Indeed, consider a vector function [10]

v(t, ε) := z0(t, c
∗
r) + ε u1(t, c1) + · · ·+ εk uk(t, ck) + · · · .
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In this case,

F1(c1) := PQ∗
r
ℓK

[
A1

(
z0(s, c

∗
r), u1(s, c1)

)]
( · )

= PQ∗
r
ℓK

[
Z ′
ε(v(s, ε), s))

]
( · )

∣∣∣
ε=0

= PQ∗
r
ℓK

[
A1(s)u1(s, c1)

]
( · ).

Thus,
B0 = F ′

1(c1).

Therefore, under the condition of simplicity of roots of the equation for generating amplitudes (4)
of the periodic problem (1), we obtain the following solution of the boundary-value problem of the
first approximation:

u1(t) = Xr(t)c1 +G
[
A0(z0(s, c

∗
r))

]
(t), c1 = −B−1

0 d1.

The conditions of solvability of the boundary-value problems in the next approximations have the
form of linear equations. A sequence of approximations to the solution on the nonlinear periodic
boundary-value problem (1) in the critical case is given by the following iterative scheme:

z1(t, c
∗
r) := z0(t, c

∗
r) + u1(t), u1(t) = Xr(t)c1 +G

[
A0(z0(s, c

∗
r))

]
(t), c1 = −B−1

0 d1, . . . ,

zk+1(t, c
∗
r) := z0(t, c

∗
r) + u1(t, c1) + · · ·+ uk+1(t, ck), k = 0, 1, 2, . . . ,

uk+1(t) = Xr(t)ck+1 +G
[
Ak(z0(s, c

∗
r), u1(s, c1), . . . , uk(s, ck))

]
(t), ck = −B−1

0 dk.

(7)

Theorem. In the critical case the generating periodic boundary-value problem (2) with condition
(3) has an r-parameter family of solutions

z0(t, cr) = Xr(t)cr +G[f(s)](t), cr ∈ Rr.

Moreover, if the problem of construction of a solution to the nonlinear periodic boundary-value
problem (1) in a small neighborhood of the solution of the generating problem (2) is solvable in the
critical case, then the equation for generating amplitudes (4) of the T -periodic problem (1) has real
roots. In the case, where the matrix B0 is nondegenerate, the iterative scheme (7) gives a sequence
of approximations to the solution of the T -periodic boundary-value problem (1) in the critical case.
If there exists a constant 0 < γ < 1, for which the inequality

∥u1(t, c1)∥∞ ≤ γ∥z0(t)∥∞, ∥uk+1(t, ck+1)∥∞ ≤ γ∥uk(t, ck)∥∞, k = 1, 2, . . . , (8)

is true, then the iterative scheme (7) converges to the solution of the nonlinear periodic boundary-
value problem (1).
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