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We study the problem of constructing solutions [3, 4, 7]

z( · , ε) ∈ C1
{
[0, T ] \ {τ(ε)}I

}
∩ C[0, T ], z(t, · ) ∈ C[0, ε0]

of the autonomous boundary value problem for the equation

z′(t, ε) = Az(t, ε) + εZ(z(t, ε), ε), ℓz( · , ε) = 0, (1)

which are continuous at t = τ(ε). At the point t = τ(ε): 0 < τ(ε) < T , its τ(0) := τ0 the solution
of the boundary value problem (1) might have a limited discontinuity of first derivative [3,7]. The
solution of the boundary value problem (1) is found in a small neighbourhood of the solution

z0(t) ∈ C
{
[0, T ] \ {τ0}I

}
∩ C[0, T ]

of the generating boundary value problem

z′0(t) = Az0(t), ℓz0( · ) = 0. (2)

At the point t = τ0, the solution of the boundary value problem (2) might have a limited disconti-
nuity of the derivative. Here, A ∈ Rn×n is a constant matrix, Z(z, ε) is a nonlinear vector function,
piecewise analytic in the unknown z in a small neighbourhood of the solution of the generating
problem (2) and piecewise analytic in a small parameter ε on the interval [0, ε0]. In addition,

ℓz( · , ε) :=

(
z(0, ε)− z(T, ε)

z(τ(ε) + 0, ε)− z(τ(ε)− 0, ε)

)
= 0, ℓz0( · ) :=

(
z0(0)− z0(T )

Z0(τ0 + 0)− z0(τ0 − 0)

)
= 0

are linear bounded vector functionals. The condition for the solvability of the autonomous nonlinear
boundary value problem (1) with switchings leads to the equation

F0(c0, τ0) := PQ∗
r
ℓK
[
Z(z0(s, c0), 0); τ0

]
( · ) = 0. (3)

The necessary conditions for the existence of a solution to the autonomous nonlinear boundary
value problem (1) with switchings in the critical case are given by the following lemma.
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Lemma. Suppose that there is the critical case (2) for the generating boundary value problem. In
this case, the generating problem (2) has a one-parameter family of solutions z0(t, c0). Suppose
that an autonomous nonlinear boundary value problem (1) with switchings at non-fixed times in the
neighbourhood of the generating solution z0(t, c0) has the solution

z( · , ε) ∈ C
{
[0, T ] \ {τ(ε)

}
I
} ∩ C[0, T ], z(t, · ) ∈ C[0, ε0].

Under these conditions, the equality (3) holds.

The equation (3), will be further called the equation for the generating constants of the boundary
value problem (1) with switchings in the critical case. Let us assume that the equation for the
generating constants (3) of the boundary value problem (1) with switchings has real roots. Fixing
one of the real solutions

c∗0 ∈ Rr, τ∗0 ∈ R

of the equation (3) we get the problem of constructing a solution of the nonlinear boundary value
problem (1) in a small neighbourhood of the solution z0(t, c

∗
0) = Xr(t) c

∗
0, c∗0 ∈ Rr, of the generating

boundary value problem (2). The traditional condition for the solvability of a boundary value
problem (1) with switchings in a small neighbourhood of the solution of the generating problem is
the requirement [3]

PB∗
0
PQ∗

r
̸= 0, B0 := F ′

č0(c
∗
0, τ

∗
0 ) ∈ Rr×(r+1), č0 :=

(
c0 τ0

)∗
, (4)

where PB∗
0
: Rr → N(B∗

0) is an orthoprojector matrix [3]. The solution of the boundary value
problem (1) with switchings is given by

z(t, ε) := z0(t, c
∗
0) + u1(t, ε) + · · ·+ uk(t, ε) + · · · , τ(ε) = τ∗0 + ξ1(ε) + ξ2(ε) + · · ·+ ξk(ε) + · · · .

The nonlinear vector function Z(z(t, ε), ε) is analytical with respect to the unknown z(t, ε) in a
small neighbourhood of the solution of the generating boundary value problem (2) and the constant
τ∗0 , therefore in the given neighbourhood there exist an expansion

Z(z(t, ε), ε) = Z0(z0(t, c
∗
0), ε) + Z1

(
z0(t, c

∗
0), u1(s, ε), ε

)
+ Z2

(
z0(t, c

∗
0), u1(s, ε), u2(s, ε), ε

)
+ · · · .

The first approximation to the solution of the nonlinear periodic boundary value problem (1) in
the critical case

z1(t, ε) = z0(t, c
∗
0) + u1(t, ε), τ1(ε) = τ∗0 + ξ1(ε),

u1(t, ε) = Xr(t)c1(ε) + εG
[
Z0(z0(s, c

∗
0), z

′
0(s, c

∗
0), ε); τ

∗
0

]
(t)

determines the solution of the nonlinear periodic boundary value problem of the first approximation

u′1(t, ε) = Au1(t, ε) + εZ0(z0(t, c
∗
0), ε), ℓu1( · , ε) = 0.

The matrix B0, which is the key matrix in the study of the boundary value problem (1), takes the
form

B0 = PQ∗
r
ℓK
[
A0(s)Xr(s); 1

]
( · ); A0(t) =

∂Z(z(t, ε), ε)

∂z(t, ε)

∣∣∣∣z(t,ε)=z0(t,c∗0)
ε=0

.

The second approximation to the solution of the nonlinear periodic boundary value problem (1),
in the critical case

z2(t, ε) := z0(t, c
∗
0) + u1(t, ε) + u2(t, ε), τ2(ε) = τ∗0 + ξ1(ε) + ξ2(ε),



22 P. Benner, S. Chuiko, O. Nesmelova

determines the solution of the nonlinear periodic boundary value problem of the second approxi-
mation

u′2(t, ε) = Au2(t, ε) + εZ1(z0(t, c
∗
0), u1(t, ε), ε), ℓu2( · , ε) = 0.

The condition of solvability of the boundary value problem of the second approximation

F1(c1(ε), ξ1(ε)) := PQ∗
d
ℓK
[
Z1

(
z0(s, c

∗
0), u1(s, ε), z

′
0(s, c

∗
0), u1(s, ε), ε

)
; ξ1(ε)

]
( · ) = 0

is the linear equation

F1(c1(ε), ξ1(ε)) = B0 č1(ε) + γ1(ε) = 0, č1(ε) :=
(
c1(ε) ξ1(ε)

)∗
,

which has solutions in case (4), where

γ1(ε) := F1(č1(ε))−B0 č1(ε).

Indeed, let us denote the vector-functions

v(t, ε, µ) := z0(t, c
∗
0) + µu1(t, ε) + · · ·+ µk uk(t, ε) + · · · ,

g(ε, µ) := τ∗0 + µ ξ1(ε) + µ2 ξ2(ε) + · · ·+ µk ξk(ε) + · · · ,

while

F1(c1(ε), ξ1(ε)) = PQ∗
d
ℓK
[
Z1(z0(s, c

∗
0), u1(s, ε), ε); ξ1(ε)

]
( · )

= PQ∗
d
ℓK
[
Z ′
µ(v(t, ε, µ), ε); g

′
µ(ε, µ)

]
( · )
∣∣∣
µ=0

= PQ∗
d
ℓK
[
A0(s)u1(s, ε); ξ1(ε)

]
( · ),

therefore
B0 := F ′

č1(ε)
(č1(ε)) ∈ Rr×(r+1).

Thus, under the condition (4), we obtain at least one solution to the first approximation boundary
value problem

z1(t, ε) := z0(t, c
∗
0) + u1(t, ε), τ1(ε) = τ∗0 + ξ1(ε), č1(ε) = −B+

0 γ1(ε),

u1(t, ε) = Xr(t)c1(ε) + εG
[
Z1(z0(s, c

∗
0), u

′
1(s, ε), ε); ξ1(ε)

]
(t).

The conditions for solvability of boundary value problems of the following approximations

Fj(čj(ε)) := PQ∗
d
ℓK
[
Zj(z0(s, c

∗
0), u1(t, ε), . . . , uj(s, ε), ξj(ε), ε)

]
( · ) = 0

are linear equations
Fj(čj(ε)) = B0 čj(ε) + γj(ε) = 0, j = 1, 2, . . . , k,

where
B0 = F ′(čj(ε)), γj(ε) := F (čj(ε))−B0 čj(ε), j = 1, 2, . . . , k.

In the case (4), the last equation has solutions. The sequence of approximations to the solution of
the nonlinear periodic boundary value problem (1) in the critical case is determined by the iterative
scheme

z1(t, ε) = z0(t, c
∗
0) + u1(t, ε), τ1(ε) = τ∗0 + ξ1(ε), č1(ε) = −B+

0 γ1(ε),

u1(t, ε) = Xr(t)c1(ε) + εG
[
Z1(z0(s, c

∗
0), u

′
1(s, ε), ε); ξ1(ε)

]
(t);

z2(t, ε) = z0(t, c
∗
0) + u1(t, ε) + u2(t, ε), τ2(ε) = τ∗0 + ξ1(ε) + ξ2(ε),

u2(t, ε) = Xr(t)c2(ε) + εG
[
Z2(z0(s, c

∗
0), u1(s, ε), u2(s, ε), ε); ξ2(ε)

]
(t);

zk+1(t, ε) = z0(t, c
∗
0) + u1(t, ε) + · · ·+ uk+1(t, ε),

τk+1(ε) = τ∗0 + ξ1(ε) + · · ·+ ξk+1(ε),

uk+1(t, ε) = Xr(t) ck+1(ε) + εG
[
Zk(z0(s, c

∗
0), u1(s, ε), . . . , uk(s, ε), ε); ξk(ε)

]
(t),

k = 0, 1, 2, . . . .

(5)
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Theorem. Suppose that there is the critical case of the generating boundary value problem (2). In
this case, the generating problem (2) has a family of solutions

z0(t, c0) = Xr(t) c0, c0 ∈ Rr.

In the case of (4) in the small neighbourhood of the generating solution z0(t, c
∗
0) and the constant

τ∗0 the problem (1) with switchings has at least one solution. The sequence of approximations to the
solution

z( · , ε) ∈ C
{
[0, T ] \ {τ(ε)}I

}
∩ C[0, T ], z(t, · ) ∈ C[0, ε0]

of the autonomous boundary value problem (1) with switchings is determined by an iterative scheme
(5). If there exist constants 0 < γ < 1, and 0 < δ < 1 such that inequalities hold

∥u1(t, ε)∥ ≤ γ∥z0(t, c∗0)∥, ∥uk+1(t, ε)∥ ≤ γ∥uk(t, ε)∥,
|ξ1(ε)| ≤ δ |τ∗0 |, |ξk+1(ε)| ≤ δ |xik(ε)|, k = 1, 2, . . . ,

(6)

then the iterative scheme (5) converges to the solution of the autonomous boundary value problem
(1) with switchings.

The obtained iterative scheme is applied to find approximations to the periodic solution of the
equation with switchings at non-fixed moments of time, which models a nonisothermal chemical
reaction [1, 2].

The obtained convergence condition (6) of the iterative scheme (5) allows us to estimate the
interval of values of the small parameter ε ∈ [0, ε0], 0 ≤ ε∗ ≤ ε0, for which the convergence of the
iterative scheme (5) is preserved, different from similar estimates [5, 6].
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