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Consider a second-order differential equation of neutral type with constant delays

(Z/ - pyT>” + Q(t)f(ya) = 07 yﬂ(t) = y<t - p)? te [to, +OO>7 (1)

where 0 <p <1, 7,0 >0, g € C[ty,+0), ¢ = 0.

Denote p = max{r,c}.

Definition 1. The solution to equation (1) is the function y € C[ty — p,+00), satisfying this
equation, such that y — py, € C2[tg, +00).

Definition 2. The solution y of equation (1) is called oscillatory if for any t; > ¢y there exists
to > t1 such that y(t2) = 0.

Definition 3. We will say that a function f such that f'(y) > 0, y € R, and yf(y) > 0, y # 0,
satisfies:

- the superlinear condition, if for any € > 0 the inequalities hold:

+oo -
dy_ _ [y
0<E/f(y)<+oo7 0< _4 f(y)<+oo

- the sublinear condition, if for any € > 0 the inequalities hold:

d
0< —y < 400, 0<— /<+oo
f(y

In the case p =7 =0 = 0 and f(y) = |y|” sgny, equation (1) is an Emden—Fowler type equation
y" +q(t)]y|"sgny = 0. (2)
The following criteria for the oscillation of all its solutions are known.

Theorem A (Atkinson [2]). If ¢ € C[0,400), ¢ =2 0 and v =2n—1, n € N, n > 1, then all
solutions to equation (2) are oscillatory iff

—+00

/ tq(t) dt =

0
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Theorem B (Belohorec [3]). If ¢; € C[0,+00), ¢; > 0 and v; = p;/r; € (0,1), where pj, r; -
natural, odd and j € N, then all solutions of the equation y" + Y q;(t)y" =0 are oscillatory iff
j=1

+oo

/ > #ig;(t) dt = +oo.
o J=1

A strengthening of Atkinson’s theorem for all real v > 1 was proven in [4], the oscillation of
solutions of high-order Emden—Fowler type equations was studied in [5]. A more general case of
equation (2) was considered in [1].

In [6] criteria for the oscillation of all solutions of equation (1) in the cases of superlinearity
and sublinearity of the function f are proved. The following results complement and clarify these
criteria.

Lemma 1. Lety be the solution of equation (1) such thaty > 0 for everyt > to > 0 and z = y—py-.
Then for every t > t1, where t1 > to + p is sufficiently large, one of the conditions holds:

1) 27 <0,2 >0, 2<0;
2) 2/ <0,2/>0,2>0.

Moreover, the first condition is satisfied when tligl y(t) = 0. Otherwise, the second condition is
—~+o0

true.

Lemma 2. For every continuous function o, defined on the segment [to — p,to], equation (1) has a
solution y, extendable to the interval [ty, +00) and satisfying the initial conditions y(t) = ¢(t) for

t € [to — p,to].

Theorem 1. Let the function f € C1(R) be superlinear. Then:
+oo
1) if [ tq(t)dt = +oo, then all not vanishing at infinity solutions to equation (1) are oscillatory;
to

“+o0o
2) if all solutions to equation (1) are oscillatory, then [ tq(t)dt = +oo.
to

Proof. 1) Let y be a non-vanishing non-oscillatory solution to equation (1). Then, due to yf(y) >
0, without loss of generality we can assume that y > 0 for all ¢ > t5 > 0. By Lemma 1 for
2=y —pyr >y we have 2’/ <0, 2" >0,z >0 forall t > .

Then
0=2"(t) +q(t) f(ys () = 2"(t) + q(t) f (25 (1))
Let
(1)
Y= 5w 20
We obtain
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Let’s integrate the inequality

t t t
2(s) 2(s)
w(t) — w(ty) +/sq(s) ds < / 7o (5) ds < / oo () ds,
t Zo (1)
wit) — w(ty) + / sq(s)ds < / f‘f)

Zo (tl)
t

t1
/sq(s) ds < w(ty) + / fcéz) = const < +00.
)

t1 Zo (tl

Tending ¢ to infinity, we arrive at a contradiction.

2) See [6]. O

+oo
Remark. The divergence of the integral [ tq(t) dt does not guarantee (contrary to the statement
0

from [6]) the oscillation of all solutions to equation (1). For example, the function y(t) = e~! is a

particular solution to the equation

1 " e _
(1-0)+ (£ 1) =0

2 2
+oo
and t_l}in (t)=0and [ tq(t)dt = +oo, where q(t) = t(e/2 — 1)e* 73,
o 0

Theorem 2. Let the function f € C(R) be sublinear and f(uv) > f(u)f(v) for uv > 0. Then:

+o0
1) if [ f(t)q(t)dt = +oo, then all not vanishing at infinity solutions to equation (1) are
to

oscillatory;
+o0o
2) if all solutions to equation (1) are oscillatory, then [ f(t)q(t)dt = +oc.
to

Proof. 1) Let y be a non-vanishing non-oscillatory solution to equation (1). Then, due to yf(y) >
0, without loss of generality we can assume that y > 0 for all ¢ > ¢t5 > 0. By Lemma 1 for
2=y —pyr >y we have 2’/ <0, 2 >0, 2 >0 for all t > t;.

We have
0="2"(t) +q(t) f(ys(t)) = 2" (t) + q(t) f (25(1)).
Since .
2(t) = z(t1) + /z’(s) ds > 2/ (t)(t — t1),
then

f(zo(t)) = f(25()(t — 0 — t1)).
For any A € (0;1), if to > ¢; is sufficiently large, t — o — to > At for all ¢ > t5. Therefore,

Flzpt)(t — o —t1)) = fAzp(t)t) = fF(Azg (1) f(t)
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and ")
z
Ol (®) +q(t)f(t) <0.
Integrating the resulting inequality, we obtain
¢ //( ) ¢
2" (s
Zf()\zé(s)) ds+t2/q(s)f(s) ds <0,
t t t
/ (s)f(s)ds<—/2”(s)ds<—/2”5)ds
J ! SIS T T ) T
t A2/ (t2) J A2/ (t2) J A2/ (t) J
v v v
/ 17 i/(t ) 0/ M) 0/ M)

Then, by the property of sublinearity of the function f we have

¢
/Q(S)f(s) ds < const < +o0.

t2
Tending t to infinity, we arrive at a contradiction.
2) See [6]. O
+00
Theorem 3. If the function f € C(R) is sublinear, o > 7 and [ q(t)dt = +oo, then all solutions

to
to equation (1) are oscillatory.

Proof. Let y be a non-oscillating solution to (1). Then, due to yf(y) > 0, without loss of generality
we can assume that y > 0 for all ¢ > tg > 0.

Let us show that both cases described in Lemma 1 are impossible.

1) If z > 0 for all ¢ > t1, where t; > tg + p, we have
Z=Y=pyr =Y.
Due to f' > 0 and equation (1), we obtain
Z(t) + q(t) f(20(1) < 0.

Integrating this inequality on the interval [t1,t], we get

/ 0(5) (20 (5)) ds < #/(t),

t1

AGY Z(t) = cons %9
/Q(S) U T S Tl st e

t1

Tending ¢ to infinity, we come to a contradiction.
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2) If z < 0 for all t > t; >ty + p, then
2(t) = y(t) — py-(t) < —py- (1),
Zg—r(t)
yo(t) < =221
(t) )
Then, since f is increasing, from equation (1) we have
_-(t
20+ o f (- =) <o,
p
Let us integrate this inequality on the interval [t — o + 7, t].
t
Zo—r(T
=20+ [ awr(- D pas<o
t—o+1
Taking into account the fact that z is positive and increasing, we have
¢
Zo— T
/(- )+ / a(s) ds < 0.
t—o+T1
Let w(t) = —z,—(t)/p. Integrating the inequality on [t2, 3], we obtain
w(tg
/ / ) dsdt <0,
to t—o+T1
w(tz) J w(ts) J
t t
) dsdt < _— —
// ’ p/w<t> p/wm’
to t—o+T1 0 0
ts t w(t2) J
t
dsdt < —_.
[ | awasass [
to t—o+T1 0
Due to the sublinearity of the function f, we get
/ / ) dsdt < 400,
to t—o+T1
o0
which contradicts the condition [ g¢(t)dt = +oc. O

to
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