
14 V. Bashurov

On Oscillation of Solutions
to One Neutral Type Differential Equation

V. Bashurov
Lomonosov Moscow State University, Moscow, Russia

E-mail: woonniethepih@yahoo.com

Consider a second-order differential equation of neutral type with constant delays

(y − pyτ )
′′ + q(t)f(yσ) = 0, yρ(t) ≡ y(t− ρ), t ∈ [t0,+∞), (1)

where 0 < p < 1, τ, σ > 0, q ∈ C[t0,+∞), q > 0.

Denote ρ ≡ max{τ, σ}.

Definition 1. The solution to equation (1) is the function y ∈ C[t0 − ρ,+∞), satisfying this
equation, such that y − pyτ ∈ C2[t0,+∞).

Definition 2. The solution y of equation (1) is called oscillatory if for any t1 > t0 there exists
t2 > t1 such that y(t2) = 0.

Definition 3. We will say that a function f such that f ′(y) > 0, y ∈ R, and yf(y) > 0, y ̸= 0,
satisfies:

- the superlinear condition, if for any ε > 0 the inequalities hold:

0 <

+∞∫
ε

dy

f(y)
< +∞, 0 < −

−ε∫
−∞

dy

f(y)
< +∞;

- the sublinear condition, if for any ε > 0 the inequalities hold:

0 <

ε∫
0

dy

f(y)
< +∞, 0 < −

0∫
−ε

dy

f(y)
< +∞.

In the case p = τ = σ = 0 and f(y) = |y|γ sgn y, equation (1) is an Emden–Fowler type equation

y′′ + q(t)|y|γ sgn y = 0. (2)

The following criteria for the oscillation of all its solutions are known.

Theorem A (Atkinson [2]). If q ∈ C[0,+∞), q > 0 and γ = 2n − 1, n ∈ N, n > 1, then all
solutions to equation (2) are oscillatory iff

+∞∫
0

tq(t) dt = +∞.
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Theorem B (Belohorec [3]). If qj ∈ C[0,+∞), qj > 0 and γj = pj/rj ∈ (0, 1), where pj, rj –
natural, odd and j ∈ N, then all solutions of the equation y′′ +

n∑
j=1

qj(t)y
γj = 0 are oscillatory iff

+∞∫
0

n∑
j=1

tγjqj(t) dt = +∞.

A strengthening of Atkinson’s theorem for all real γ > 1 was proven in [4], the oscillation of
solutions of high-order Emden–Fowler type equations was studied in [5]. A more general case of
equation (2) was considered in [1].

In [6] criteria for the oscillation of all solutions of equation (1) in the cases of superlinearity
and sublinearity of the function f are proved. The following results complement and clarify these
criteria.

Lemma 1. Let y be the solution of equation (1) such that y > 0 for every t ≥ t0 ≥ 0 and z = y−pyτ .
Then for every t ≥ t1, where t1 ≥ t0 + ρ is sufficiently large, one of the conditions holds:

1) z′′ ≤ 0, z′ > 0, z < 0;

2) z′′ ≤ 0, z′ > 0, z > 0.

Moreover, the first condition is satisfied when lim
t→+∞

y(t) = 0. Otherwise, the second condition is
true.

Lemma 2. For every continuous function φ, defined on the segment [t0− ρ, t0], equation (1) has a
solution y, extendable to the interval [t0,+∞) and satisfying the initial conditions y(t) = φ(t) for
t ∈ [t0 − ρ, t0].

Theorem 1. Let the function f ∈ C1(R) be superlinear. Then:

1) if
+∞∫
t0

tq(t) dt = +∞, then all not vanishing at infinity solutions to equation (1) are oscillatory;

2) if all solutions to equation (1) are oscillatory, then
+∞∫
t0

tq(t) dt = +∞.

Proof. 1) Let y be a non-vanishing non-oscillatory solution to equation (1). Then, due to yf(y) >
0, without loss of generality we can assume that y > 0 for all t ≥ t0 ≥ 0. By Lemma 1 for
z = y − pyτ ≥ y we have z′′ ≤ 0, z′ > 0, z > 0 for all t ≥ t1.

Then
0 = z′′(t) + q(t)f(yσ(t)) ≥ z′′(t) + q(t)f(zσ(t)).

Let
w(t) =

tz′(t)

f(zσ(t))
≥ 0.

We obtain

w′(t) + tq(t) ≤ z′(t)

f(zσ(t))
− tf ′(zσ(t))z

′(t)

[f(zσ(t))]2
z′σ(t) ≤

z′(t)

f(zσ(t))
.
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Let’s integrate the inequality

w(t)− w(t1) +

t∫
t1

sq(s) ds ≤
t∫

t1

z′(s)

f(zσ(s)
ds ≤

t∫
t1

z′σ(s)

f(zσ(s)
ds,

w(t)− w(t1) +

t∫
t1

sq(s) ds ≤
zσ(t)∫

zσ(t1)

dv

f(v)
,

t∫
t1

sq(s) ds ≤ w(t1) +

∞∫
zσ(t1)

dv

f(v)
= const < +∞.

Tending t to infinity, we arrive at a contradiction.

2) See [6].

Remark. The divergence of the integral
+∞∫
0

tq(t) dt does not guarantee (contrary to the statement

from [6]) the oscillation of all solutions to equation (1). For example, the function y(t) = e−t is a
particular solution to the equation(

y − 1

2
y1

)′′
+
(e
2
− 1

)
e2t−3y31 = 0,

and lim
t→+∞

y(t) = 0 and
+∞∫
0

tq(t) dt = +∞, where q(t) ≡ t(e/2− 1)e2t−3.

Theorem 2. Let the function f ∈ C(R) be sublinear and f(uv) > f(u)f(v) for uv > 0. Then:

1) if
+∞∫
t0

f(t)q(t) dt = +∞, then all not vanishing at infinity solutions to equation (1) are

oscillatory;

2) if all solutions to equation (1) are oscillatory, then
+∞∫
t0

f(t)q(t) dt = +∞.

Proof. 1) Let y be a non-vanishing non-oscillatory solution to equation (1). Then, due to yf(y) >
0, without loss of generality we can assume that y > 0 for all t ≥ t0 ≥ 0. By Lemma 1 for
z = y − pyτ ≥ y we have z′′ ≤ 0, z′ > 0, z > 0 for all t ≥ t1.

We have
0 = z′′(t) + q(t)f(yσ(t)) ≥ z′′(t) + q(t)f(zσ(t)).

Since

z(t) = z(t1) +

t∫
t1

z′(s) ds ≥ z′(t)(t− t1),

then
f(zσ(t)) ≥ f(z′σ(t)(t− σ − t1)).

For any λ ∈ (0; 1), if t2 ≥ t1 is sufficiently large, t− σ − t2 ≥ λt for all t ≥ t2. Therefore,

f
(
z′σ(t)(t− σ − t1)

)
≥ f(λz′σ(t)t) ≥ f(λz′σ(t))f(t)
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and
z′′(t)

f(λz′σ(t))
+ q(t)f(t) ≤ 0.

Integrating the resulting inequality, we obtain

t∫
t2

z′′(s)

f(λz′σ(s))
ds+

t∫
t2

q(s)f(s) ds ≤ 0,

t∫
t1

q(s)f(s) ds ≤ −
t∫

t2

z′′(s)

f(λz′σ(s))
ds ≤ −

t∫
t2

z′′(s)

f(λz′(s))
ds,

t∫
t2

q(s)f(s) ds ≤
λz′(t2)∫
λz′(t)

dv

λf(v)
=

λz′(t2)∫
0

dv

λf(v)
−

λz′(t)∫
0

dv

λf(v)
.

Then, by the property of sublinearity of the function f we have

t∫
t2

q(s)f(s) ds ≤ const < +∞.

Tending t to infinity, we arrive at a contradiction.

2) See [6].

Theorem 3. If the function f ∈ C(R) is sublinear, σ > τ and
+∞∫
t0

q(t) dt = +∞, then all solutions

to equation (1) are oscillatory.

Proof. Let y be a non-oscillating solution to (1). Then, due to yf(y) > 0, without loss of generality
we can assume that y > 0 for all t ≥ t0 ≥ 0.

Let us show that both cases described in Lemma 1 are impossible.

1) If z > 0 for all t ≥ t1, where t1 ≥ t0 + ρ, we have

z = y − pyτ ≥ y.

Due to f ′ ≥ 0 and equation (1), we obtain

z′′(t) + q(t)f(zσ(t)) ≤ 0.

Integrating this inequality on the interval [t1, t], we get

t∫
t1

q(s)f(zσ(s)) ds ≤ z′(t1),

t∫
t1

q(s) ds ≤ z′(t1)

f(zσ(t1))
≤ z′(t1)

f(z(t1))
= const < +∞.

Tending t to infinity, we come to a contradiction.
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2) If z < 0 for all t ≥ t1 ≥ t0 + ρ, then

z(t) = y(t)− pyτ (t) < −pyτ (t),

yσ(t) < −zσ−τ (t)

p
.

Then, since f is increasing, from equation (1) we have

z′′(t) + q(t)f
(
− zσ−τ (t)

p

)
≤ 0.

Let us integrate this inequality on the interval [t− σ + τ, t].

z′σ−τ (t)− z′(t) +

t∫
t−σ+τ

q(s)f
(
− zσ−τ (t)

p

)
p ds ≤ 0.

Taking into account the fact that z is positive and increasing, we have

−z′σ−τ (t)
/
f
(
− zσ−τ (t)

p

)
+

t∫
t−σ+τ

q(s) ds ≤ 0.

Let w(t) ≡ −zσ−τ (t)/p. Integrating the inequality on [t2, t3], we obtain

p

w(t3)∫
w(t2)

dw

f(w)
+

t3∫
t2

t∫
t−σ+τ

q(s) ds dt ≤ 0,

t3∫
t2

t∫
t−σ+τ

q(s) ds dt ≤ p

w(t2)∫
0

dt

w(t)
− p

w(t3)∫
0

dt

w(t)
,

t3∫
t2

t∫
t−σ+τ

q(s) ds dt ≤ p

w(t2)∫
0

dt

w(t)
.

Due to the sublinearity of the function f , we get
∞∫

t2

t∫
t−σ+τ

q(s) ds dt < +∞,

which contradicts the condition
∞∫
t0

q(t)dt = +∞.
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