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Consider the equation
y(n) = p(x, y, y′, . . . , y(n−1))|y|k sign y, (1)

where n ≥ 2, k > 1, and p is a positive continuous function that is Lipschitz-continuous in its last
n variables. Also consider a special case of (1), namely,

y(n) = p0|y|k sign y (2)

with p0 > 0.
Immediate calculations show that equation (2) has positive solutions with exact power-law

behavior, namely,
y(x) = C(x∗ − x)−α (3)

defined on (−∞, x∗) with

α =
n

k − 1
, C =

(α(α+ 1) · · · (α+ n− 1)

p0

) 1
k−1

, (4)

and arbitrary x∗ ∈ R.
We discuss the problem posed by I. Kiguradze (see [9, Problem 16.4]) on asymptotic behavior

of all positive non-extensible (so-called “blow-up”) solutions to equations (2) and (1).
For n = 2 (see [9]), n = 3, 4 (see [1,2], [3, 5.1]), it appears that if p(x, y1, y2, . . . , yn−1) tends to

p0 as x → x∗ − 0, y0 → ∞, . . . , yn−1 → ∞, then all such solutions to equation (1) (and equation
(2)) have the following power-law asymptotic behavior:

y(x) = C(x∗ − x)−α(1 + o(1)), x → x∗ − 0, (5)

with α and C defined by (4).
For equation (1) with any n and some additional assumptions on the function p, the existence

of solutions with power-law asymptotic behavior is proved, for 5 ≤ n ≤ 11, the existence of an
(n− 1)-parametric family of such solutions is obtained (see [3, 5.1]).

It is also proved that for weakly super-linear equations (2) (see [5]) and (1) (see [6]) Kiguradze’s
conjecture on the power-law asymptotic behavior of all blow-up solutions is true.

Theorem 1 ( [6]). Suppose that p ∈ C(Rn+1) ∩ Lipy0,...,yn−1(Rn) and p → p0 > 0 as x → x∗,
y0 → ∞, . . . , yn−1 → ∞. Then for any integer n > 4 there exists Kn > 1 such that for any real
k ∈ (1,Kn), any solution to equation (1) tending to +∞ as x → x∗−0 has the power-law asymptotic
behavior (5).
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In the case n ≥ 12, even if we deal with equation (2), another type of asymptotic behavior of
singular solutions appears (see [4, 6, 8, 10]).

Theorem 2 ([8]). For any n ≥ 12, there exists kn > 1 such that equation (2) has a solution y(x)
with

y(j)(x) = p
− 1

k−1

0 (x∗ − x)−α−jhj(log(x
∗ − x)), j = 0, 1, . . . , n− 1, (6)

where all hj are periodic positive non-constant functions on R.

If we have stronger nonlinearity, then the power-law asymptotic behavior becomes atypical.
The following theorem generalizes the results of [7].

Theorem 3. If 12 ≤ n ≤ 100000, then there exists kn > 1 such that at any point x0 ∈ R the
set of initial data of asymptotically power-law solutions to equation (2) has zero Lebesgue measure
whenever k > kn.

In order to study the blow-up solutions to equation (2) having the vertical asymptote x = x∗,
we use the substitutions

x∗ − x = e−t, y = (C + v)eαt (7)

with C defined by (4) to transform equation (2) with p0 = 1 to another one, which can be reduced
to the first-order system

dV

dt
= AαV + Fα(V ), (8)

where Aα is a constant n× n matrix with eigenvalues satisfying the equation

n−1∏
j=0

(λ+ α+ j) =
n−1∏
j=0

(1 + α+ j), (9)

and Fα is a mapping from Rn to Rn satisfying

∥Fα(V )∥ = O(∥V ∥2) and ∥F ′
α,V (V )∥ = O(∥V ∥) as V → 0.

In order to study equation (1), the same substitution as (7) of variables is used, and a more
complicated system than (8) with an additional term G(t, V ) appears (see [3]).

The proof of Theorem 3 is based on the following statement.

Lemma. If there is no purely imaginary root to equation (9), but there exists at least one root not
equal to 1 and having positive real part, then for any x0 ∈ R, the set of initial data of asymptotically
power-law solutions to equation (2) has zero Lebesgue measure whenever k > kn.

Remark. The occurrence of the order 12 for equation (2) in Theorems 2 and 3 is explained by
the fact that all roots but one (λ = 1) to equation (9) with n < 12 have negative real parts,
which implies the existence of an (n− 1)-parametric family of solutions with power-law asymptotic
behavior (5) of solutions to equation (1). Equation (9) with n = 12 and some α has a pair of
complex-conjugate purely imaginary roots, which implies the appearance of a solution of the form
(6) to equation (2). The order 100000 appearing in Theorem 3 is not final. It is possible to continue
the calculations and obtain the same result for equations of order higher than 100000. The previous
result (see [7]) was obtained for 12 ≤ n ≤ 203.



8 I. V. Astashova

Open problems
• Is there any blow-up solution to equation (2) with asymptotic behavior other than (5) and (6) ?

• Is there any blow-up solution with non-power-law asymptotic behavior to equation (2) with
strong power-law nonlinearity when 5 ≤ n ≤ 11 ?

• Is it possible to find exactly a constant K∗
n > 1 such that for any k ∈ (1,K∗

n) all blow-up
solutions to (2) have power-law asymptotic behavior (5), while other blow-up solutions appear
whenever k > K∗

n ?
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