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1 Introduction
Consider an extremum problem for the parabolic mixed problem

u = (a(x)ug)y + b(x)uy + h(z)u, (x,t) € Qr=(0,1) x (0,T7), T >0, (1.1)
uw(0,t) = @(t), ugx(1,t) =), 0<t<T,
u(z,0) =0, 0 <z <1,

where the real functions a, b and h are smooth in Qp, 0 < ag < a(x) < a1 < o0, p € W2(0,T),
1 € W2(0,T). Here WZ(0,T) is the Sobolev space of weakly differentiable functions with the norm
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We study the control problem with a pointwise observation: by controlling the temperature ¢
at the left end of the segment (the function v is assumed to be fixed), we try to make at some
point ¢ € (0,1) the temperature u(xg,t) close to the given function z € W (0,T) over the entire
time interval (0,7"). This problem arises in the model of climate control in industrial greenhouses
[4,5]. Note that extremal problems for parabolic equations were considered in [11,13-16] (as usual,
problems with final or distributed observation). But the results and methods of investigation are
not similar to our methods.

Continuing the research in [1-3,6-10], we consider some special quality functional, which is in
demand in applications, providing, among other things, uniform proximity of the solution and the
objective function, implemented by the norm in the space W4(0,7T). Since in applied problems the
control and observation time T is sufficiently large, the influence of the initial function is relatively
small and can be neglected, setting the initial function equal to zero.
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As in [12, p. 6], we denote by ‘/21’0(QT) Banach space of functions u € W21 Y(Qr) (Sobolev space
of functions with the norm |Jul? ,, = [ (u? + u?) dz dt) with the finite norm
VVZ7 (QT) QT

Hu||V21’O(QT) = OiltlET [Ju( - 7t)HL2(0,1) + Hux||L2(QT)
such that t — wu(-,t) is a continuous mapping from [0, 7] to L2(0,1). Let WZI(QT) be the set of all
functions 7 € Wi (Qr), satisfying the conditions n(-,T) = 0, (0, -) = 0.

Definition 1.1. A function u € VQLO(QT), satisfying the condition u(0,t) = ¢(t) and the equality

T
/ (a(z)ugne — b(@)uzn — h(z)un — un) dodt = a(1) /w(t)n(l, t)dt
Qr 0

for all n € W%(QT), is called a weak solution to problem (1.1)—(1.3).

2 Main results

Theorem 2.1. If ¢, € W2(0,T) and p(0) = (0) = 0, then problem (1.1)~(1.3) has a unique
weak solution u € V21’0(QT) with u; € V21’0(QT), and the inequality

HUHV;»O(QT) + HUtHV;vO(QT) < CI(HSDHWZQ(O,T) + Hw“WQZ(O,T)) (2.1)
holds with some constant C1, independent of v and 1.

Denote by ® C W2(0,7T) nonempty set of control functions ¢ satisfying the condition ¢(0) = 0,
and let Z C W4(0,T) be nonempty set of objective functions z satisfying the condition z(0) = 0.
Consider the functional

Tz, ) = ||ug(@o.t) = 2(0)[[s 07y w €D 2 €2, (2:2)

where u,, is the solution to problem (1.1)-(1.3) with the given control function ¢. Considering the
function z to be fixed, we have the following minimization problem

mlz, @] = ;Ielfb Jz, . (2.3)

Theorem 2.2. If the set ® is closed, convexr and bounded in W3(0,T), then for any z € Z there
exists a unique function g € ® such that

m[z, ®] = J|z, ¢o]. (2.4)

Definition 2.1. We will say that problem (1.1)—(1.3), (2.3) is densely controllable from the set ®
to the set Z (see [8,16]), if for all z € Z the equality

m[z,®] =0 (2.5)
holds.

Theorem 2.3. Problem (1.1)—(2.2) is densely controllable from the set ® = {p € W(0,T) :
©(0) =0} to the set Z = {z € W4(0,T) : 2(0) = 0}.
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3 Proofs

Proof of Theorem 2.1. By results of [8], we can prove that under assumptions of ¢ € WZ(0,7),
1 € W2(0,T) there exists a unique solution u € V21’0(QT) of problem (1.1)-(1.3). This solution
satisfies the estimate

HUHV;aO(QT) < C2(H‘P||W21(0,T) + HT/’HW21(0,T))- (3.1)

The function v = u; is a solution to the problem

v = (a(z)vy)e + b(x)vy + h(x)v, (x,t) € Q) (3.2)
v(0,t) = ¢'(t), wv(1,t)=9'(t), 0<x <1, t>0,
v(z,0) =0, 0<z<1.

Using the results of [8], under assumptions of ¢’ € W2(0,T), ¢ € W2(0,T) there exists a solution
NS V21’O(QT) of problem (3.2)—(3.4). This solution satisfies the estimate

IWllvrogm < Colle lwpor + 1w om)-

Therefore,
||UtHv21’0(QT) < C2(”¢HW22(0,T) + Hwng(o,T)) (3.5)

Combining estimates (3.1) and (3.5), we obtain the required inequality (2.1). O

The proof of Theorem 2.2 is based on the following lemma concerning the best approximation
in Hilbert spaces.

Lemma 3.1 ([4]). Let A be a convez closed set in a Hilbert space H. Then for any © € H there
exists a unique element y € A such that

—y|| = inf ||z — z||.
o~ yll = inf |l 2]
Proof of Theorem 2.2. Denote
B={y=uy(zo,"): €@} C W3(0,T).

By the convexity of ® the set B is a convex subset in W (0,T). The set ® is bounded and closed
in W4 (0,7T) and by estimate (2.1) we obtain that B is a bounded and closed set in W (0, 7). Now
we apply Lemma 3.1 to the case H = W} (0,T), A= B, x = 2 € Z C H. By Lemma 3.1 there
exists a unique function y € B such that

_ 2
mlz, @] = ||y — Z||W21(07T)-
So, Y = Uy, (o, -) for some @g € ® such that
mlz, ®] = Jz, o).

Now we can prove that such @9 € ® is unique by the same technique of maximum principle and
unique continuation theorems as in [8]. O

Proof of Theorem 2.3. For u,(x0,0) = 2(0) = 0 we have the representation

t
up(zo,1t) / g, (0, 7) — 2'(7))dr, 0<t<T. (3.6)
0
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It follows from (3.6) that

e (@0, ) = 27,0
t

T 2 T
= [ ([ Gadeory =2 ir) s [ilston )=l
0 0

0
T2
< S llow@o. ) = 2Ol 0m) B7)

So, from (3.6) and (3.7) we have
Tlz, 0] = [lug(@o, ) = 2oy
= [Jug (2o, ) — 2(- )Hig(QT) + |Jugy(zo, -) = 2'(- )HiQ(o,T)
T2
< (14 5) llow@o, ) = Z (7,00 (39

Now, by the results of [8] and [9], problem (3.2)—(3.4) is densely controllable from W4(0,7T) to
L2(0,T). Therefore, for an arbitrary 2z’ € Ly(0,T) we have

. , 2 _
weVlVr;lf(O,T) g (o ) = 2Ol 0m) = 0 (3.9)
Now, by (3.8), (3.9),
T2 2
inf  Jlz,0] < 1+ — inf (g, ) — 2/ (- =0. O
@EVII/?(O,T) [2,¢] < ( 9 )@,6‘}[21(0@ H% (zo, ) — 2( )HLQ(O,T)
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