Parameter-Dependent Periodic Problems for Non-Autonomous Duffing Equations with a Sign-Changing Forcing Term

Jiří Šremr
Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
E-mail: sremr@fme.vutbr.cz

The extended abstract concerns the parameter-dependent periodic problem

$$
\begin{equation*}
u^{\prime \prime}=p(t) u+h(t)|u|^{\lambda} \operatorname{sgn} u+\mu f(t) ; \quad u(0)=u(\omega), \quad u^{\prime}(0)=u^{\prime}(\omega), \tag{1}
\end{equation*}
$$

where $p, h, f \in L([0, \omega]), h \geq 0$ a.e. on $[0, \omega], \lambda>1$, and $\mu \in \mathbb{R}$ is a parameter. By a solution to problem (1), as usual, we understand a function $u:[0, \omega] \rightarrow \mathbb{R}$ which is absolutely continuous together with its first derivative, satisfies the given equation almost everywhere, and meets the periodic conditions. The text is based on the paper [4].

We first show where problem (1) may appear from. Consider a forced oscillator consisting of two fixed charged bodies of charges $q>0$ and a charged mass body of weight m and charge $Q>0$ (see Fig. 1).

Figure 1. Nonlinear undamped forced oscillator.
Assume that the mass body moves horizontally without any friction and the charges q of the fixed bodies change ω-periodically, i.e., $q: \mathbb{R} \rightarrow] 0,+\infty[$ is an ω-periodic function. This is a system with one degree of freedom described by the coordinate x, whose equation of motion is of the form

$$
\begin{equation*}
m x^{\prime \prime}-\frac{Q q(t)}{4 \pi \varepsilon_{r} \varepsilon_{0}}\left(\frac{x+x_{0}}{\left[\left(x+x_{0}\right)^{2}+y_{0}^{2}\right]^{3 / 2}}+\frac{x-x_{0}}{\left[\left(x-x_{0}\right)^{2}+y_{0}^{2}\right]^{3 / 2}}\right)=F(t) \tag{2}
\end{equation*}
$$

where ε_{r} is the relative permittivity and ε_{0} is the vacuum permittivity.
Numeric simulations show that if $y_{0}^{2}<2 x_{0}^{2}$, then equation (2) with $q(t) \equiv$ Const. and $F(t) \equiv 0$ has exactly three equilibria $x_{1}:=0, x_{2}>0$, and $x_{3}=-x_{2}$. Approximating the non-linearity in (2) by the third degree Taylor polynomial centred at 0 , we obtain the equation

$$
x^{\prime \prime}=-\frac{Q q(t)\left(2 x_{0}^{2}-y_{0}^{2}\right)}{2 \pi \varepsilon_{r} \varepsilon_{0} m\left(x_{0}^{2}+y_{0}^{2}\right)^{5 / 2}} x+\frac{3 Q q(t)\left(24 x_{0}^{2} y_{0}^{2}-3 y_{0}^{4}-8 x_{0}^{4}\right)}{\pi \varepsilon_{r} \varepsilon_{0} m\left(x_{0}^{2}+y_{0}^{2}\right)^{9 / 2}} x^{3}+\frac{F(t)}{m},
$$

which is a particular case of the differential equation in (1) with $\mu=1$, where

$$
p(t):=-\frac{Q q(t)\left(2 x_{0}^{2}-y_{0}^{2}\right)}{2 \pi \varepsilon_{r} \varepsilon_{0} m\left(x_{0}^{2}+y_{0}^{2}\right)^{5 / 2}}, \quad h(t):=\frac{3 Q q(t)\left(24 x_{0}^{2} y_{0}^{2}-3 y_{0}^{4}-8 x_{0}^{4}\right)}{\pi \varepsilon_{r} \varepsilon_{0} m\left(x_{0}^{2}+y_{0}^{2}\right)^{9 / 2}}
$$

$f(t):=\frac{F(t)}{m}$, and $\lambda:=3$. Assuming that $(4-2 \sqrt{10 / 3}) x_{0}^{2}<y_{0}^{2}<2 x_{0}^{2}$ and $F(t) \not \equiv 0$, it is easy to show that the functions p and h are negative and positive, respectively.

To formulate our results, we need the following definition.
Definition ([2]). We say that a function p belongs to the set $\mathcal{V}^{-}(\omega)$ (resp. $\mathcal{V}^{+}(\omega)$) if, for any function $u \in A C^{1}([0, \omega])$ satisfying

$$
u^{\prime \prime}(t) \geq p(t) u(t) \quad \text { for a. e. } t \in[0, \omega], \quad u(0)=u(\omega), \quad u^{\prime}(0) \geq u^{\prime}(\omega)
$$

the inequality $u(t) \leq 0$ (resp. $u(t) \geq 0$) holds for $t \in[0, \omega]$. By $\mathcal{U}(\omega)$, we denote the set of pairs (p, f) such that the problem

$$
\begin{equation*}
u^{\prime \prime}=p(t) u+f(t) ; \quad u(0)=u(\omega), \quad u^{\prime}(0)=u^{\prime}(\omega) \tag{3}
\end{equation*}
$$

has a unique solution which is positive. The set $\mathcal{V}_{0}(\omega)$ consists of all the functions p such that problem (3) with $f(t) \equiv 0$ possesses a positive solution.

Remark 1. The effective conditions guaranteeing the inclusions $p \in \mathcal{V}^{-}(\omega), p \in \mathcal{V}^{+}(\omega), p \in \mathcal{V}_{0}(\omega)$, as well as $(p, f) \in \mathcal{U}(\omega)$ are provided in [2] (see also [1,5]).

Below we discuss the existence/non-existence as well as the exact multiplicity of positive solutions to problem (1) depending on the choice of the parameter μ provided that $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$. Let us show, as a motivation, what happens in the autonomous case of (1). Hence, we consider the equation

$$
\begin{equation*}
x^{\prime \prime}=-a x+b|x|^{\lambda} \operatorname{sgn} x+\mu \tag{4}
\end{equation*}
$$

In view of our hypotheses $h \geq 0$ a.e. on $[0, \omega], h(t) \not \equiv 0$ and since $-a \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$ if only if $a>0$, we assume that $a, b>0$. By direct calculation, the phase portraits of equation (4) can be elaborated depending on the choice of the parameter $\mu \in \mathbb{R}$ (see, Fig. 2) and, thus, one can prove the following proposition concerning the periodic solutions to equation (4).

Proposition 1. Let $\lambda>1$ and $a, b>0$. Then, the following conclusions hold:
(i) If $\mu>\frac{(\lambda-1) a}{\lambda}\left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}$, then equation (4) has a unique negative equilibrium (saddle) and no other periodic solutions occur.
(ii) If $\mu=\frac{(\lambda-1) a}{\lambda}\left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}$, then equation (4) has a unique positive equilibrium (cusp), a unique negative equilibrium (saddle), and no other periodic solutions occur.
(iii) If $0<\mu<\frac{(\lambda-1) a}{\lambda}\left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}$, then equation (4) possesses exactly two positive equilibria $x_{1}>x_{2}$ (x_{1} is a saddle and x_{2} is a center), a unique negative equilibrium x_{3} (saddle), and non-constant (positive and possibly sign-changing) periodic solutions with different periods. Moreover, all the non-constant periodic solutions oscillate around x_{2} between x_{3} and x_{1}.
(iv) If $\mu=0$, then equation (4) possesses a unique positive equilibrium x_{0} (saddle), a trivial equilibrium (center), a unique negative equilibrium $-x_{0}$, and non-constant sign-changing periodic solutions with different periods. Moreover, all the non-constant periodic solutions oscillate around 0 between $-x_{0}$ and x_{0}.
(v) For $\mu<0$, the conclusions are "symmetric" as compared with the items (i)-(iii), see Fig. 2.

Figure 2. Phase portraits of equation (4) with $a=9, b=4$, and $\lambda=3$.

We start with the most general statement of the text, which provides the existence/non-existence results in the case of $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$. This condition is satisfied, e.g., if $\int_{0}^{\omega} p(s) \mathrm{d} s \leq 0, p(t) \not \equiv 0$.

Theorem 1. Let $\lambda>1, p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega), f(t) \not \equiv 0$, and

$$
\begin{equation*}
h(t)>0 \quad \text { for a.e. } t \in[0, \omega] . \tag{5}
\end{equation*}
$$

Then, there exist $-\infty \leq \mu_{*}<0$ and $0<\mu^{*} \leq+\infty$ such that the following conclusions hold:
(1) For any $\mu \in] \mu_{*}, \mu^{*}\left[\right.$, problem (1) has a positive solution u^{*} such that every solution u to problem (1) satisfies

$$
\begin{equation*}
\text { either } u(t)<u^{*}(t) \quad \text { for } t \in[0, \omega], \text { or } u(t) \equiv u^{*}(t) \text {. } \tag{6}
\end{equation*}
$$

Moreover, any couple of distinct positive solutions u_{1}, u_{2} to (1) different from u^{*} satisfies

$$
\min \left\{u_{1}(t)-u_{2}(t): t \in[0, \omega]\right\}<0, \quad \max \left\{u_{1}(t)-u_{2}(t): t \in[0, \omega]\right\}>0
$$

(2) If $\mu^{*}<+\infty$ (e.g. provided that $\int_{0}^{\omega} f(s) \mathrm{d} s>0$), then
(a) for $\mu>\mu^{*}$, problem (1) has no positive solution,
(b) for $\mu=\mu^{*}$, problem (1) has a unique non-negative solution u^{*} and every solution u to (1) satisfies (6).
(3) If $\mu_{*}>-\infty$ (e.g. provided that $\int_{0}^{\omega} f(s) \mathrm{d} s<0$), then
(a) for $\mu<\mu_{*}$, problem (1) has no positive solution,
(b) for $\mu=\mu_{*}$, problem (1) has a unique non-negative solution u^{*} and every solution u to (1) satisfies (6).

It is clear that u is a solution to problem (1) if and only if $-u$ is a solution to the problem

$$
z^{\prime \prime}=p(t) z+h(t)|z|^{\lambda} \operatorname{sgn} z-\mu f(t) ; \quad z(0)=z(\omega), \quad z^{\prime}(0)=z^{\prime}(\omega)
$$

Therefore, we get the following corollary from Theorem 1.
Corollary. Let $\lambda>1, p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega), f(t) \not \equiv 0$, and condition (5) hold. Then, there exists $0<\mu_{0}<+\infty$ such that, for any $\left.\mu \in\right]-\mu_{0}, \mu_{0}\left[\right.$, problem (1) has a negative solution u_{*} and a positive solution u^{*} such that every solution u to problem (1) different from u_{*}, u^{*} satisfies

$$
u_{*}(t)<u(t)<u^{*}(t) \quad \text { for } t \in[0, \omega]
$$

We showed in [3, Example 2.8] that assuming $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$, hypothesis (5) in Theorem 1 (i.e. the positivity of h a.e. on $[0, \omega]$) is essential for the existence of a positive solution to problem (1) with $\mu=0$ and cannot be weakened to the non-negativity of h. However, under a stronger assumption on the coefficient p (namely, $p \in \mathcal{V}^{+}(\omega)$), hypothesis (5) of Theorem 1 can be relaxed to

$$
\begin{equation*}
h(t) \geq 0 \quad \text { for a. e. } t \in[0, \omega], \quad h(t) \not \equiv 0 \tag{7}
\end{equation*}
$$

Theorem 2. Let $\lambda>1, p \in \mathcal{V}^{+}(\omega)$, h satisfy (7), and

$$
\begin{equation*}
(p, f) \in \mathcal{U}(\omega), \quad \int_{0}^{\omega} f(s) \mathrm{d} s>0 \tag{8}
\end{equation*}
$$

Then, there exist $-\infty \leq \mu_{*}<0$ and $0<\mu^{*}<+\infty$ such that the following conclusions hold:
(1) For any $\mu>\mu^{*}$, problem (1) has no positive solution.
(2) For $\mu=\mu^{*}$, problem (1) has a unique positive solution u^{*} and, moreover, every solution u to problem (1) satisfies (6).
(3) For $\mu \in] 0, \mu^{*}\left[\right.$, problem (1) has exactly two positive solutions u_{1}, u_{2} and these solutions satisfy

$$
u_{1}(t)>u_{2}(t)>0 \quad \text { for } t \in[0, \omega]
$$

Moreover, every solution u to problem (1) different from u_{1} is such that

$$
u(t)<u_{1}(t) \quad \text { for } t \in[0, \omega]
$$

(4) For $\mu=0$, problem (1) has exactly three solutions: a positive solution u_{0}, the trivial solution, a negative solution $-u_{0}$.
(5) For $\mu \in] \mu_{*}, 0[$, problem (1) has either one or two positive solutions. Moreover, (1) has a positive solution u^{*} such that every solution u to problem (1) satisfies (6).
(6) If $\mu_{*}>-\infty$, then, for any $\mu<\mu_{*}$, problem (1) has no positive solution.

Open questions. The following two questions remain open in Theorem 2:
(a) Does the inequality $\mu_{*}>-\infty$ hold without any additional assumption?
(b) What happens in the case of $\mu=\mu_{*}$, if $\mu_{*}>-\infty$ and $h(t)=0$ on a set of positive measure?

Remark 2. Assuming $f(t) \geq 0$ for a.e. $t \in[0, \omega], f(t) \not \equiv 0$, the conclusions of Theorems 1 and 2 can be substantially refined (see [4, Theorems 3.6 and 3.14]).

Theorem 2 guarantees the existence of certain "critical" values μ_{*}, μ^{*} of the parameter μ such that crossing these values, a bifurcation of positive solutions to problem (1) occurs. From an application point of view, the estimates of these numbers are also needed.

Proposition 2. Let $\lambda>1, p \in \operatorname{Int} \mathcal{V}^{+}(\omega)$, h satisfy (7), and

$$
\int_{0}^{\omega}[f(s)]_{+} \mathrm{d} s>\Gamma(p) \int_{0}^{\omega}[f(s)]_{-} \mathrm{d} s>0,
$$

where the number $\Gamma(p)$, depending only on p, is defined in [2, Section 6]. Then, the numbers μ_{*}, μ^{*} appearing in the conclusion of Theorem 2 satisfy

$$
\mu_{*} \leq-\frac{(\lambda-1)[\Delta(p)]^{-\frac{\lambda}{\lambda-1}}}{\lambda\left[\lambda \int_{0}^{\omega} h(s) \mathrm{d} s\right]^{\frac{1}{\lambda-1}} \int_{0}^{\omega}[f(s)]-\mathrm{d} s},
$$

where $\Delta(p)$ denotes a norm of Green's operator of problem (8) (see [4, Remark 2.5]), and

$$
\frac{(\lambda-1)[\Delta(p)]^{-\frac{\lambda}{\lambda-1}}}{\lambda\left[\lambda \int_{0}^{\omega} h(s) \mathrm{d} s\right]^{\frac{1}{\lambda-1}} \int_{0}^{\omega}[f(s)]_{+} \mathrm{d} s} \leq \mu^{*}<\frac{(\lambda-1)\left[\Gamma(p) \int_{0}^{\omega}[p(s)]_{-} \mathrm{d} s-\int_{0}^{\omega}[p(s)]_{+} \mathrm{d} s\right]^{\frac{\lambda}{\lambda-1}}}{\lambda\left[\lambda \int_{0}^{\omega} h(s) \mathrm{d} s\right]^{\frac{1}{\lambda-1}}\left[\int_{0}^{\omega}[f(s)]_{+} \mathrm{d} s-\Gamma(p) \int_{0}^{\omega}[f(s)]_{-} \mathrm{d} s\right]} .
$$

Acknowledgements

The research is supported by the internal grant \# FSI-S-23-8161 of FME BUT.

References

[1] A. Cabada, J. Á. Cid and L. López-Somoza, Maximum Principles for the Hill's Equation. Academic Press, London, 2018.
[2] A. Lomtatidze, Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations. Mem. Differ. Equ. Math. Phys. 67 (2016), 1-129.
[3] A. Lomtatidze and J. Šremr, On periodic solutions to second-order Duffing type equations. Nonlinear Anal. Real World Appl. 40 (2018), 215-242.
[4] J. Šremr, Parameter-dependent periodic problems for non-autonomous Duffing equations with sign-changing forcing term. Electron. J. Differential Equations 2023, Paper no. 65, 23 pp.
[5] P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem. J. Differential Equations 190 (2003), no. 2, 643-662.

