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The extended abstract concerns the parameter-dependent periodic problem

u′′ = p(t)u+ h(t)|u|λ sgnu+ µf(t); u(0) = u(ω), u′(0) = u′(ω), (1)

where p, h, f ∈ L([0, ω]), h ≥ 0 a. e. on [0, ω], λ > 1, and µ ∈ R is a parameter. By a solution
to problem (1), as usual, we understand a function u : [0, ω] → R which is absolutely continuous
together with its first derivative, satisfies the given equation almost everywhere, and meets the
periodic conditions. The text is based on the paper [4].

We first show where problem (1) may appear from. Consider a forced oscillator consisting of
two fixed charged bodies of charges q > 0 and a charged mass body of weight m and charge Q > 0
(see Fig. 1).
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Figure 1: Nonlinear undamped forced oscillator

fixed bodies change ω-periodically, i. e., q : R → ]0,+∞[ is an ω-periodic function. This is a system
with one degree of freedom described by the coordinate x, whose equation of motion is of the form

mx′′ − Qq(t)
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where εr is the relative permittivity and ε0 is the vacuum permittivity.
Numeric simulations show that if y20 < 2x20, then equation (2) with q(t) ≡ Const . and F (t) ≡ 0

has exactly three equilibria x1 := 0, x2 > 0, and x3 = −x2. Approximating the non-linearity in (2) by
the third degree Taylor polynomial centred at 0, we obtain the equation
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which is a particular case of the differential equation in (1) with µ = 1, where

p(t) := −
Qq(t)

(
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)
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)5/2 , h(t) :=
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f(t) := F (t)
m , and λ := 3. Assuming that

(
4− 2

√
10/3

)
x20 < y20 < 2x20 and F (t) 6≡ 0, it is easy to show

that the functions p and h are negative and positive, respectively.
To formulate our results, we need the following definition.
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Figure 1. Nonlinear undamped forced oscillator.

Assume that the mass body moves horizontally without any friction and the charges q of the
fixed bodies change ω-periodically, i.e., q : R → ]0,+∞[ is an ω-periodic function. This is a system
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which is a particular case of the differential equation in (1) with µ = 1, where

p(t) := − Qq(t)(2x20 − y20)

2πεrε0m(x20 + y20)
5/2

, h(t) :=
3Qq(t)(24x20y

2
0 − 3y40 − 8x40)

πεrε0m(x20 + y20)
9/2

,

f(t) := F (t)
m , and λ := 3. Assuming that (4 − 2

√
10/3 )x20 < y20 < 2x20 and F (t) ̸≡ 0, it is easy to

show that the functions p and h are negative and positive, respectively.
To formulate our results, we need the following definition.

Definition ([2]). We say that a function p belongs to the set V−(ω) (resp. V+(ω)) if, for any
function u ∈ AC 1([0, ω]) satisfying

u′′(t) ≥ p(t)u(t) for a. e. t ∈ [0, ω], u(0) = u(ω), u′(0) ≥ u′(ω),

the inequality u(t) ≤ 0 (resp. u(t) ≥ 0) holds for t ∈ [0, ω]. By U(ω), we denote the set of pairs
(p, f) such that the problem

u′′ = p(t)u+ f(t); u(0) = u(ω), u′(0) = u′(ω) (3)

has a unique solution which is positive. The set V0(ω) consists of all the functions p such that
problem (3) with f(t) ≡ 0 possesses a positive solution.

Remark 1. The effective conditions guaranteeing the inclusions p ∈ V−(ω), p ∈ V+(ω), p ∈ V0(ω),
as well as (p, f) ∈ U(ω) are provided in [2] (see also [1, 5]).

Below we discuss the existence/non-existence as well as the exact multiplicity of positive solu-
tions to problem (1) depending on the choice of the parameter µ provided that p ̸∈ V−(ω)∪V0(ω).
Let us show, as a motivation, what happens in the autonomous case of (1). Hence, we consider the
equation

x′′ = −ax+ b|x|λ sgnx+ µ. (4)

In view of our hypotheses h ≥ 0 a. e. on [0, ω], h(t) ̸≡ 0 and since −a ̸∈ V−(ω) ∪ V0(ω) if only if
a > 0, we assume that a, b > 0. By direct calculation, the phase portraits of equation (4) can be
elaborated depending on the choice of the parameter µ ∈ R (see, Fig. 2) and, thus, one can prove
the following proposition concerning the periodic solutions to equation (4).

Proposition 1. Let λ > 1 and a, b > 0. Then, the following conclusions hold:

(i) If µ > (λ−1)a
λ ( a

λb)
1

λ−1 , then equation (4) has a unique negative equilibrium (saddle) and no
other periodic solutions occur.

(ii) If µ = (λ−1)a
λ ( a

λb)
1

λ−1 , then equation (4) has a unique positive equilibrium (cusp), a unique
negative equilibrium (saddle), and no other periodic solutions occur.

(iii) If 0 < µ < (λ−1)a
λ ( a

λb)
1

λ−1 , then equation (4) possesses exactly two positive equilibria x1 > x2
(x1 is a saddle and x2 is a center), a unique negative equilibrium x3 (saddle), and non-constant
(positive and possibly sign-changing) periodic solutions with different periods. Moreover, all
the non-constant periodic solutions oscillate around x2 between x3 and x1.

(iv) If µ = 0, then equation (4) possesses a unique positive equilibrium x0 (saddle), a trivial
equilibrium (center), a unique negative equilibrium −x0, and non-constant sign-changing
periodic solutions with different periods. Moreover, all the non-constant periodic solutions
oscillate around 0 between −x0 and x0.

(v) For µ < 0, the conclusions are “symmetric” as compared with the items (i)–(iii), see Fig. 2.
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Definition 1 ([2]). We say that a function p belongs to the set V−(ω) (resp. V+(ω)) if, for any
function u ∈ AC 1([0, ω]) satisfying

u′′(t) ≥ p(t)u(t) for a. e. t ∈ [0, ω], u(0) = u(ω), u′(0) ≥ u′(ω),

the inequality u(t) ≤ 0 (resp. u(t) ≥ 0) holds for t ∈ [0, ω]. By U(ω), we denote the set of pairs (p, f)
such that the problem

u′′ = p(t)u+ f(t); u(0) = u(ω), u′(0) = u′(ω) (3)

has a unique solution which is positive. The set V0(ω) consists of all the functions p such that problem
(3) with f(t) ≡ 0 possesses a positive solution.

Remark 2. The effective conditions guaranteeing the inclusions p ∈ V−(ω), p ∈ V+(ω), p ∈ V0(ω), as
well as (p, f) ∈ U(ω) are provided in [2] (see also [1, 5]).

Below we discuss the existence/non-existence as well as the exact multiplicity of positive solutions
to problem (1) depending on the choice of the parameter µ provided that p 6∈ V−(ω) ∪ V0(ω). Let us
show, as a motivation, what happens in the autonomous case of (1). Hence, we consider the equation

x′′ = −ax+ b|x|λ sgnx+ µ. (4)

In view of our hypotheses h ≥ 0 a. e. on [0, ω], h(t) 6≡ 0 and since −a 6∈ V−(ω)∪V0(ω) if only if a > 0,
we assume that a, b > 0. By direct calculation, the phase portraits of equation (4) can be elaborated
depending on the choice of the parameter µ ∈ R (see, Fig. 2) and, thus, one can prove the following
proposition concerning the periodic solutions to equation (4).
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√

3 µ = 4 µ = 2
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3 µ = −14

Figure 2: Phase portraits of equation (4) with a = 9, b = 4, and λ = 3.

Proposition 3. Let λ > 1 and a, b > 0. Then, the following conclusions hold:

2

Figure 2. Phase portraits of equation (4) with a = 9, b = 4, and λ = 3.

We start with the most general statement of the text, which provides the existence/non-existence
results in the case of p ̸∈ V−(ω) ∪ V0(ω). This condition is satisfied, e.g., if

ω∫
0

p(s)ds ≤ 0, p(t) ̸≡ 0.

Theorem 1. Let λ > 1, p ̸∈ V−(ω) ∪ V0(ω), f(t) ̸≡ 0, and

h(t) > 0 for a. e. t ∈ [0, ω]. (5)

Then, there exist −∞ ≤ µ∗ < 0 and 0 < µ∗ ≤ +∞ such that the following conclusions hold:

(1) For any µ ∈ ]µ∗, µ
∗[ , problem (1) has a positive solution u∗ such that every solution u to

problem (1) satisfies

either u(t) < u∗(t) for t ∈ [0, ω], or u(t) ≡ u∗(t). (6)

Moreover, any couple of distinct positive solutions u1, u2 to (1) different from u∗ satisfies

min
{
u1(t)− u2(t) : t ∈ [0, ω]

}
< 0, max

{
u1(t)− u2(t) : t ∈ [0, ω]

}
> 0.

(2) If µ∗ < +∞ (e.g. provided that
ω∫
0

f(s)ds > 0), then
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(a) for µ > µ∗, problem (1) has no positive solution,
(b) for µ = µ∗, problem (1) has a unique non-negative solution u∗ and every solution u to

(1) satisfies (6).

(3) If µ∗ > −∞ (e.g. provided that
ω∫
0

f(s)ds < 0), then

(a) for µ < µ∗, problem (1) has no positive solution,
(b) for µ = µ∗, problem (1) has a unique non-negative solution u∗ and every solution u to

(1) satisfies (6).

It is clear that u is a solution to problem (1) if and only if −u is a solution to the problem

z′′ = p(t)z + h(t)|z|λ sgn z − µf(t); z(0) = z(ω), z′(0) = z′(ω).

Therefore, we get the following corollary from Theorem 1.

Corollary. Let λ > 1, p ̸∈ V−(ω) ∪ V0(ω), f(t) ̸≡ 0, and condition (5) hold. Then, there exists
0 < µ0 < +∞ such that, for any µ ∈ ]−µ0, µ0[ , problem (1) has a negative solution u∗ and a positive
solution u∗ such that every solution u to problem (1) different from u∗, u∗ satisfies

u∗(t) < u(t) < u∗(t) for t ∈ [0, ω].

We showed in [3, Example 2.8] that assuming p ̸∈ V−(ω) ∪ V0(ω), hypothesis (5) in Theorem 1
(i.e. the positivity of h a. e. on [0, ω]) is essential for the existence of a positive solution to problem
(1) with µ = 0 and cannot be weakened to the non-negativity of h. However, under a stronger
assumption on the coefficient p (namely, p ∈ V+(ω)), hypothesis (5) of Theorem 1 can be relaxed to

h(t) ≥ 0 for a. e. t ∈ [0, ω], h(t) ̸≡ 0. (7)

Theorem 2. Let λ > 1, p ∈ V+(ω), h satisfy (7), and

(p, f) ∈ U(ω),
ω∫

0

f(s)ds > 0. (8)

Then, there exist −∞ ≤ µ∗ < 0 and 0 < µ∗ < +∞ such that the following conclusions hold:

(1) For any µ > µ∗, problem (1) has no positive solution.
(2) For µ = µ∗, problem (1) has a unique positive solution u∗ and, moreover, every solution u to

problem (1) satisfies (6).
(3) For µ ∈ ]0, µ∗[ , problem (1) has exactly two positive solutions u1, u2 and these solutions

satisfy
u1(t) > u2(t) > 0 for t ∈ [0, ω].

Moreover, every solution u to problem (1) different from u1 is such that

u(t) < u1(t) for t ∈ [0, ω].

(4) For µ = 0, problem (1) has exactly three solutions: a positive solution u0, the trivial solution,
a negative solution −u0.

(5) For µ ∈ ]µ∗, 0[ , problem (1) has either one or two positive solutions. Moreover, (1) has
a positive solution u∗ such that every solution u to problem (1) satisfies (6).
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(6) If µ∗ > −∞, then, for any µ < µ∗, problem (1) has no positive solution.

Open questions. The following two questions remain open in Theorem 2:

(a) Does the inequality µ∗ > −∞ hold without any additional assumption?
(b) What happens in the case of µ = µ∗, if µ∗ > −∞ and h(t) = 0 on a set of positive measure?

Remark 2. Assuming f(t) ≥ 0 for a. e. t ∈ [0, ω], f(t) ̸≡ 0, the conclusions of Theorems 1 and 2
can be substantially refined (see [4, Theorems 3.6 and 3.14]).

Theorem 2 guarantees the existence of certain “critical” values µ∗, µ∗ of the parameter µ such
that crossing these values, a bifurcation of positive solutions to problem (1) occurs. From an
application point of view, the estimates of these numbers are also needed.

Proposition 2. Let λ > 1, p ∈ IntV+(ω), h satisfy (7), and
ω∫

0

[f(s)]+ds > Γ(p)

ω∫
0

[f(s)]−ds > 0,

where the number Γ(p), depending only on p, is defined in [2, Section 6]. Then, the numbers µ∗,
µ∗ appearing in the conclusion of Theorem 2 satisfy

µ∗ ≤ − (λ− 1)[∆(p)]−
λ

λ−1

λ
[
λ

ω∫
0

h(s)ds
] 1
λ−1

ω∫
0

[f(s)]−ds

,

where ∆(p) denotes a norm of Green’s operator of problem (8) (see [4, Remark 2.5]), and

(λ− 1)[∆(p)]−
λ

λ−1

λ
[
λ

ω∫
0

h(s)ds
] 1
λ−1

ω∫
0

[f(s)]+ds

≤ µ∗ <

(λ− 1)
[
Γ(p)

ω∫
0

[p(s)]−ds−
ω∫
0

[p(s)]+ds
] λ
λ−1

λ
[
λ

ω∫
0

h(s)ds
] 1
λ−1

[ ω∫
0

[f(s)]+ds− Γ(p)
ω∫
0

[f(s)]−ds
] .
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