192 J. Sremr

Parameter-Dependent Periodic Problems for
Non-Autonomous Duffing Equations with a Sign-Changing
Forcing Term

Ji¥i Sremr
Institute of Mathematics, Faculty of Mechanical Engineering,
Brno University of Technology, Brno, Czech Republic
E-mail: sremr@fme.vutbr.cz

The extended abstract concerns the parameter-dependent periodic problem
u" = p(t)yu+ h(t)u* sgnu+ pf(t);  w(0) = u(w), u'(0)=1u(w), (1)

where p, h, f € L([0,w]), h > 0 a.e. on [0,w], A > 1, and u € R is a parameter. By a solution
to problem (1), as usual, we understand a function u : [0,w] — R which is absolutely continuous
together with its first derivative, satisfies the given equation almost everywhere, and meets the
periodic conditions. The text is based on the paper [4].

We first show where problem (1) may appear from. Consider a forced oscillator consisting of
two fixed charged bodies of charges ¢ > 0 and a charged mass body of weight m and charge @ > 0
(see Fig. 1).

EES

Figure 1. Nonlinear undamped forced oscillator.

Assume that the mass body moves horizontally without any friction and the charges ¢ of the
fixed bodies change w-periodically, i.e., ¢ : R —]0, +00[ is an w-periodic function. This is a system
with one degree of freedom described by the coordinate x, whose equation of motion is of the form
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where ¢, is the relative permittivity and ¢¢ is the vacuum permittivity.

Numeric simulations show that if y3 < 222, then equation (2) with ¢(t) = Const. and F(t) = 0
has exactly three equilibria z; := 0, zo > 0, and x3 = —x2. Approximating the non-linearity in (2)
by the third degree Taylor polynomial centred at 0, we obtain the equation
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which is a particular case of the differential equation in (1) with p = 1, where
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ft) = %, and X := 3. Assuming that (4 — 2,/10/3 )23 < y3 < 223 and F(t) # 0, it is easy to
show that the functions p and h are negative and positive, respectively.
To formulate our results, we need the following definition.

Definition ([2]). We say that a function p belongs to the set V™ (w) (resp. V' (w)) if, for any
function u € AC(]0,w]) satisfying

u’(t) > p(t)u(t) fora.e. t€[0,w], u(0)=u(w), u(0)>u(w),

the inequality u(t) < 0 (resp. wu(t) > 0) holds for ¢ € [0,w]. By U(w), we denote the set of pairs
(p, f) such that the problem

u =p(t)u+ f(t); w(0) =uw), v'(0)=1u(w) (3)

has a unique solution which is positive. The set Vy(w) consists of all the functions p such that
problem (3) with f(¢) = 0 possesses a positive solution.

Remark 1. The effective conditions guaranteeing the inclusions p € V™ (w), p € VT (w), p € Vo(w),
as well as (p, f) € U(w) are provided in [2] (see also [1,5]).

Below we discuss the existence/non-existence as well as the exact multiplicity of positive solu-
tions to problem (1) depending on the choice of the parameter p provided that p € V= (w) U Vp(w).
Let us show, as a motivation, what happens in the autonomous case of (1). Hence, we consider the
equation

2" = —ax + bz sgnx + . (4)
In view of our hypotheses h > 0 a.e. on [0,w], h(t) # 0 and since —a ¢ V™ (w) U Vp(w) if only if
a > 0, we assume that a,b > 0. By direct calculation, the phase portraits of equation (4) can be
elaborated depending on the choice of the parameter y € R (see, Fig. 2) and, thus, one can prove
the following proposition concerning the periodic solutions to equation (4).

Proposition 1. Let A > 1 and a,b > 0. Then, the following conclusions hold:

1
(i) If u > @ (35)>1, then equation (4) has a unique negative equilibrium (saddle) and no
other periodic solutions occur.

1
(i) If p = (’\;\1)& (x5)>1, then equation (4) has a unique positive equilibrium (cusp), a unique
negative equilibrium (saddle), and no other periodic solutions occur.

(iii) If0<p < (A_)\l)a (%)ﬁ, then equation (4) possesses exactly two positive equilibria x1 > x2
(z1 is a saddle and x4 is a center), a unique negative equilibrium xs (saddle), and non-constant
(positive and possibly sign-changing) periodic solutions with different periods. Moreover, all
the non-constant periodic solutions oscillate around xo between x3 and x1.

(iv) If w = 0, then equation (4) possesses a unique positive equilibrium xo (saddle), a trivial
equilibrium (center), a unique negative equilibrium —xo, and non-constant sign-changing
periodic solutions with different periods. Moreover, all the non-constant periodic solutions
oscillate around 0 between —zg and xg.

(v) For pn <0, the conclusions are “symmetric” as compared with the items (i)—(iii), see Fig. 2.
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Figure 2. Phase portraits of equation (4) with a =9, b =4, and A = 3.

We start with the most general statement of the text, which provides the existence/non-existence

results in the case of p & V™ (w) U Vy(w). This condition is satisfied, e.g., if [ p(s)ds <0, p(t) # 0.
0

Theorem 1. Let A > 1, p & V™ (w) UVy(w), f(t) £0, and
h(t) >0 fora.e. te[0,w]. (5)
Then, there exist —0o < py < 0 and 0 < p* < 400 such that the following conclusions hold:

(1) For any g € |pw, [, problem (1) has a positive solution u* such that every solution u to
problem (1) satisfies

either u(t) <u*(t) for t € [0,w], or u(t) =u"(t). (6)
Moreover, any couple of distinct positive solutions uy, ug to (1) different from u* satisfies

min {uy(t) — ug(t) : t € [0,w]} <0, max{u(t) —ua(t): t€[0,w]} >0.

(2) If p* < +00 (e.g. provided that [ f(s)ds > 0), then
0
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(a) for p > p*, problem (1) has no positive solution,

(b) for uw = p*, problem (1) has a unique non-negative solution u* and every solution u to
(1) satisfies (6).

(3) If ps > —00 (e.g. provided that [ f(s)ds <0), then
0

(a) for p < ., problem (1) has no positive solution,

(b) for u = p, problem (1) has a unique non-negative solution u* and every solution u to

(1) satisfies (6).
It is clear that w is a solution to problem (1) if and only if —u is a solution to the problem
2 =p(t)z +h(t)]z sgnz — pf(t); 2(0) = 2(w), #(0) =2'(w).
Therefore, we get the following corollary from Theorem 1.

Corollary. Let A > 1, p ¢ V™ (w) U Vp(w), f(t) Z 0, and condition (5) hold. Then, there ezists
0 < po < 400 such that, for any p € |— o, ol , problem (1) has a negative solution u, and a positive
solution u* such that every solution u to problem (1) different from wuy, u* satisfies

us(t) < u(t) <u*(t) for te|0,w].

We showed in [3, Example 2.8] that assuming p & V™ (w) U Vp(w), hypothesis (5) in Theorem 1
(i.e. the positivity of h a.e. on [0,w]) is essential for the existence of a positive solution to problem
(1) with 4 = 0 and cannot be weakened to the non-negativity of h. However, under a stronger
assumption on the coefficient p (namely, p € VT (w)), hypothesis (5) of Theorem 1 can be relaxed to

h(t) >0 fora.e. t€[0,w], h(t)#D0. (7)

Theorem 2. Let A > 1, p € VT (w), h satisfy (7), and

(p, f) €eU(w), [ f(s)ds > 0. (8)

St~

Then, there exist —0o < py <0 and 0 < p* < 400 such that the following conclusions hold:

(1) For any p > u*, problem (1) has no positive solution.

(2) For p= p*, problem (1) has a unique positive solution u* and, moreover, every solution u to
problem (1) satisfies (6).

(3) For p €]0,u*[, problem (1) has exactly two positive solutions ui, ug and these solutions
satisfy

ui(t) > ug(t) >0 for t € [0,w].

Moreover, every solution u to problem (1) different from wy is such that
u(t) <wui(t) for te[0,w].

(4) For p =0, problem (1) has exactly three solutions: a positive solution g, the trivial solution,
a negative solution —uy.

(5) For p €|)ps, 0], problem (1) has either one or two positive solutions. Moreover, (1) has
a positive solution u* such that every solution u to problem (1) satisfies (6).
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(6) If pue > —o0, then, for any p < s, problem (1) has no positive solution.
Open questions. The following two questions remain open in Theorem 2:

(a) Does the inequality p. > —oo hold without any additional assumption?
(b) What happens in the case of p = p, if g > —oo and h(t) = 0 on a set of positive measure?

Remark 2. Assuming f(t) > 0 for a.e. ¢t € [0,w], f(t) # 0, the conclusions of Theorems 1 and 2
can be substantially refined (see [4, Theorems 3.6 and 3.14]).

Theorem 2 guarantees the existence of certain “critical” values s, u* of the parameter u such
that crossing these values, a bifurcation of positive solutions to problem (1) occurs. From an
application point of view, the estimates of these numbers are also needed.

Proposition 2. Let A > 1, p € Int VT (w), h satisfy (7), and

w

Lﬂﬂm4w>mm/v@1w>a
0

0

where the number I'(p), depending only on p, is defined in [2, Section 6]. Then, the numbers p.,
w* appearing in the conclusion of Theorem 2 satisfy

PN S
)\[/\th(s)ds]ﬁ [f(s)]-ds

O—c¢

where A(p) denotes a norm of Green’s operator of problem (8) (see [4, Remark 2.5]), and

w

(A — D[A(p)] *1 (A =1)[T(p) bf[P(S)]—dS — [Ip(s)]+ds] >1

w w S M* < w 1 w - w :
Al J h(s)ds] > g“[f(S)]erS Al g h(s)ds] > [g[f(S)]ers —T(p) Of[f(S)]—d8]
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