## Parameter-Dependent Periodic Problems for Non-Autonomous Duffing Equations with a Sign-Changing Forcing Term

Jiří Šremr

Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic E-mail: sremr@fme.vutbr.cz

The extended abstract concerns the parameter-dependent periodic problem

$$u'' = p(t)u + h(t)|u|^{\lambda} \operatorname{sgn} u + \mu f(t); \quad u(0) = u(\omega), \quad u'(0) = u'(\omega), \tag{1}$$

where  $p, h, f \in L([0, \omega]), h \ge 0$  a.e. on  $[0, \omega], \lambda > 1$ , and  $\mu \in \mathbb{R}$  is a parameter. By a solution to problem (1), as usual, we understand a function  $u : [0, \omega] \to \mathbb{R}$  which is absolutely continuous together with its first derivative, satisfies the given equation almost everywhere, and meets the periodic conditions. The text is based on the paper [4].

We first show where problem (1) may appear from. Consider a forced oscillator consisting of two fixed charged bodies of charges q > 0 and a charged mass body of weight m and charge Q > 0 (see Fig. 1).



Figure 1. Nonlinear undamped forced oscillator.

Assume that the mass body moves horizontally without any friction and the charges q of the fixed bodies change  $\omega$ -periodically, i.e.,  $q : \mathbb{R} \to ]0, +\infty[$  is an  $\omega$ -periodic function. This is a system with one degree of freedom described by the coordinate x, whose equation of motion is of the form

$$mx'' - \frac{Qq(t)}{4\pi\varepsilon_r\varepsilon_0} \left( \frac{x+x_0}{[(x+x_0)^2 + y_0^2]^{3/2}} + \frac{x-x_0}{[(x-x_0)^2 + y_0^2]^{3/2}} \right) = F(t),$$
(2)

where  $\varepsilon_r$  is the relative permittivity and  $\varepsilon_0$  is the vacuum permittivity.

Numeric simulations show that if  $y_0^2 < 2x_0^2$ , then equation (2) with  $q(t) \equiv Const.$  and  $F(t) \equiv 0$  has exactly three equilibria  $x_1 := 0, x_2 > 0$ , and  $x_3 = -x_2$ . Approximating the non-linearity in (2) by the third degree Taylor polynomial centred at 0, we obtain the equation

$$x'' = -\frac{Qq(t)(2x_0^2 - y_0^2)}{2\pi\varepsilon_r\varepsilon_0 m(x_0^2 + y_0^2)^{5/2}} x + \frac{3Qq(t)(24x_0^2y_0^2 - 3y_0^4 - 8x_0^4)}{\pi\varepsilon_r\varepsilon_0 m(x_0^2 + y_0^2)^{9/2}} x^3 + \frac{F(t)}{m},$$

which is a particular case of the differential equation in (1) with  $\mu = 1$ , where

$$p(t) := -\frac{Qq(t)(2x_0^2 - y_0^2)}{2\pi\varepsilon_r\varepsilon_0 m(x_0^2 + y_0^2)^{5/2}}, \quad h(t) := \frac{3Qq(t)(24x_0^2y_0^2 - 3y_0^4 - 8x_0^4)}{\pi\varepsilon_r\varepsilon_0 m(x_0^2 + y_0^2)^{9/2}},$$

 $f(t) := \frac{F(t)}{m}$ , and  $\lambda := 3$ . Assuming that  $(4 - 2\sqrt{10/3})x_0^2 < y_0^2 < 2x_0^2$  and  $F(t) \neq 0$ , it is easy to show that the functions p and h are negative and positive, respectively.

To formulate our results, we need the following definition.

**Definition** ([2]). We say that a function p belongs to the set  $\mathcal{V}^{-}(\omega)$  (resp.  $\mathcal{V}^{+}(\omega)$ ) if, for any function  $u \in AC^{1}([0, \omega])$  satisfying

$$u''(t) \ge p(t)u(t)$$
 for a.e.  $t \in [0, \omega], \quad u(0) = u(\omega), \quad u'(0) \ge u'(\omega),$ 

the inequality  $u(t) \leq 0$  (resp.  $u(t) \geq 0$ ) holds for  $t \in [0, \omega]$ . By  $\mathcal{U}(\omega)$ , we denote the set of pairs (p, f) such that the problem

$$u'' = p(t)u + f(t); \quad u(0) = u(\omega), \quad u'(0) = u'(\omega)$$
(3)

has a unique solution which is positive. The set  $\mathcal{V}_0(\omega)$  consists of all the functions p such that problem (3) with  $f(t) \equiv 0$  possesses a positive solution.

**Remark 1.** The effective conditions guaranteeing the inclusions  $p \in \mathcal{V}^{-}(\omega), p \in \mathcal{V}^{+}(\omega), p \in \mathcal{V}_{0}(\omega)$ , as well as  $(p, f) \in \mathcal{U}(\omega)$  are provided in [2] (see also [1,5]).

Below we discuss the existence/non-existence as well as the exact multiplicity of positive solutions to problem (1) depending on the choice of the parameter  $\mu$  provided that  $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$ . Let us show, as a motivation, what happens in the autonomous case of (1). Hence, we consider the equation

$$x'' = -ax + b|x|^{\lambda}\operatorname{sgn} x + \mu.$$
(4)

In view of our hypotheses  $h \ge 0$  a.e. on  $[0, \omega]$ ,  $h(t) \ne 0$  and since  $-a \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$  if only if a > 0, we assume that a, b > 0. By direct calculation, the phase portraits of equation (4) can be elaborated depending on the choice of the parameter  $\mu \in \mathbb{R}$  (see, Fig. 2) and, thus, one can prove the following proposition concerning the periodic solutions to equation (4).

**Proposition 1.** Let  $\lambda > 1$  and a, b > 0. Then, the following conclusions hold:

- (i) If  $\mu > \frac{(\lambda-1)a}{\lambda} \left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}$ , then equation (4) has a unique negative equilibrium (saddle) and no other periodic solutions occur.
- (ii) If  $\mu = \frac{(\lambda-1)a}{\lambda} \left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}$ , then equation (4) has a unique positive equilibrium (cusp), a unique negative equilibrium (saddle), and no other periodic solutions occur.
- (iii) If  $0 < \mu < \frac{(\lambda-1)a}{\lambda} \left(\frac{a}{\lambda b}\right)^{\frac{1}{\lambda-1}}$ , then equation (4) possesses exactly two positive equilibria  $x_1 > x_2$ ( $x_1$  is a saddle and  $x_2$  is a center), a unique negative equilibrium  $x_3$  (saddle), and non-constant (positive and possibly sign-changing) periodic solutions with different periods. Moreover, all the non-constant periodic solutions oscillate around  $x_2$  between  $x_3$  and  $x_1$ .
- (iv) If  $\mu = 0$ , then equation (4) possesses a unique positive equilibrium  $x_0$  (saddle), a trivial equilibrium (center), a unique negative equilibrium  $-x_0$ , and non-constant sign-changing periodic solutions with different periods. Moreover, all the non-constant periodic solutions oscillate around 0 between  $-x_0$  and  $x_0$ .
- (v) For  $\mu < 0$ , the conclusions are "symmetric" as compared with the items (i)–(iii), see Fig. 2.



**Figure 2.** Phase portraits of equation (4) with a = 9, b = 4, and  $\lambda = 3$ .

We start with the most general statement of the text, which provides the existence/non-existence results in the case of  $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$ . This condition is satisfied, e.g., if  $\int_{0}^{\omega} p(s) ds \leq 0$ ,  $p(t) \neq 0$ .

**Theorem 1.** Let  $\lambda > 1$ ,  $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$ ,  $f(t) \not\equiv 0$ , and

$$h(t) > 0 \quad for \ a. \ e. \ t \in [0, \omega].$$

$$\tag{5}$$

Then, there exist  $-\infty \leq \mu_* < 0$  and  $0 < \mu^* \leq +\infty$  such that the following conclusions hold:

(1) For any  $\mu \in ]\mu_*, \mu^*[$ , problem (1) has a positive solution  $u^*$  such that every solution u to problem (1) satisfies

either 
$$u(t) < u^*(t)$$
 for  $t \in [0, \omega]$ , or  $u(t) \equiv u^*(t)$ . (6)

Moreover, any couple of distinct positive solutions  $u_1$ ,  $u_2$  to (1) different from  $u^*$  satisfies

$$\min\left\{u_1(t) - u_2(t): t \in [0, \omega]\right\} < 0, \quad \max\left\{u_1(t) - u_2(t): t \in [0, \omega]\right\} > 0$$

(2) If  $\mu^* < +\infty$  (e.g. provided that  $\int_0^{\omega} f(s) ds > 0$ ), then

- (a) for  $\mu > \mu^*$ , problem (1) has no positive solution,
- (b) for  $\mu = \mu^*$ , problem (1) has a unique non-negative solution  $u^*$  and every solution u to (1) satisfies (6).
- (3) If  $\mu_* > -\infty$  (e.g. provided that  $\int_0^{\omega} f(s) ds < 0$ ), then
  - (a) for  $\mu < \mu_*$ , problem (1) has no positive solution,
  - (b) for  $\mu = \mu_*$ , problem (1) has a unique non-negative solution  $u^*$  and every solution u to (1) satisfies (6).

It is clear that u is a solution to problem (1) if and only if -u is a solution to the problem

$$z'' = p(t)z + h(t)|z|^{\lambda} \operatorname{sgn} z - \mu f(t); \quad z(0) = z(\omega), \ z'(0) = z'(\omega).$$

Therefore, we get the following corollary from Theorem 1.

**Corollary.** Let  $\lambda > 1$ ,  $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$ ,  $f(t) \neq 0$ , and condition (5) hold. Then, there exists  $0 < \mu_{0} < +\infty$  such that, for any  $\mu \in ]-\mu_{0}, \mu_{0}[$ , problem (1) has a negative solution  $u_{*}$  and a positive solution  $u^{*}$  such that every solution u to problem (1) different from  $u_{*}, u^{*}$  satisfies

$$u_*(t) < u(t) < u^*(t) \text{ for } t \in [0, \omega].$$

We showed in [3, Example 2.8] that assuming  $p \notin \mathcal{V}^{-}(\omega) \cup \mathcal{V}_{0}(\omega)$ , hypothesis (5) in Theorem 1 (i.e. the positivity of h a.e. on  $[0, \omega]$ ) is essential for the existence of a positive solution to problem (1) with  $\mu = 0$  and cannot be weakened to the non-negativity of h. However, under a stronger assumption on the coefficient p (namely,  $p \in \mathcal{V}^{+}(\omega)$ ), hypothesis (5) of Theorem 1 can be relaxed to

$$h(t) \ge 0 \quad \text{for a. e. } t \in [0, \omega], \ h(t) \not\equiv 0.$$
 (7)

**Theorem 2.** Let  $\lambda > 1$ ,  $p \in \mathcal{V}^+(\omega)$ , h satisfy (7), and

$$(p,f) \in \mathcal{U}(\omega), \quad \int_{0}^{\omega} f(s) \mathrm{d}s > 0.$$
 (8)

Then, there exist  $-\infty \leq \mu_* < 0$  and  $0 < \mu^* < +\infty$  such that the following conclusions hold:

- (1) For any  $\mu > \mu^*$ , problem (1) has no positive solution.
- (2) For  $\mu = \mu^*$ , problem (1) has a unique positive solution  $u^*$  and, moreover, every solution u to problem (1) satisfies (6).
- (3) For  $\mu \in ]0, \mu^*[$ , problem (1) has exactly two positive solutions  $u_1, u_2$  and these solutions satisfy

$$u_1(t) > u_2(t) > 0$$
 for  $t \in [0, \omega]$ .

Moreover, every solution u to problem (1) different from  $u_1$  is such that

$$u(t) < u_1(t) \quad for \ t \in [0, \omega].$$

- (4) For  $\mu = 0$ , problem (1) has exactly three solutions: a positive solution  $u_0$ , the trivial solution, a negative solution  $-u_0$ .
- (5) For  $\mu \in ]\mu_*, 0[$ , problem (1) has either one or two positive solutions. Moreover, (1) has a positive solution  $u^*$  such that every solution u to problem (1) satisfies (6).

(6) If  $\mu_* > -\infty$ , then, for any  $\mu < \mu_*$ , problem (1) has no positive solution.

**Open questions.** The following two questions remain open in Theorem 2:

- (a) Does the inequality  $\mu_* > -\infty$  hold without any additional assumption?
- (b) What happens in the case of  $\mu = \mu_*$ , if  $\mu_* > -\infty$  and h(t) = 0 on a set of positive measure?

**Remark 2.** Assuming  $f(t) \ge 0$  for a.e.  $t \in [0, \omega]$ ,  $f(t) \ne 0$ , the conclusions of Theorems 1 and 2 can be substantially refined (see [4, Theorems 3.6 and 3.14]).

Theorem 2 guarantees the existence of certain "critical" values  $\mu_*$ ,  $\mu^*$  of the parameter  $\mu$  such that crossing these values, a bifurcation of positive solutions to problem (1) occurs. From an application point of view, the estimates of these numbers are also needed.

**Proposition 2.** Let  $\lambda > 1$ ,  $p \in \text{Int } \mathcal{V}^+(\omega)$ , h satisfy (7), and

$$\int_{0}^{\omega} [f(s)]_{+} \mathrm{d}s > \Gamma(p) \int_{0}^{\omega} [f(s)]_{-} \mathrm{d}s > 0,$$

where the number  $\Gamma(p)$ , depending only on p, is defined in [2, Section 6]. Then, the numbers  $\mu_*$ ,  $\mu^*$  appearing in the conclusion of Theorem 2 satisfy

$$\mu_* \leq -\frac{(\lambda-1)[\Delta(p)]^{-\frac{\lambda}{\lambda-1}}}{\lambda \left[\lambda \int\limits_0^\omega h(s) \mathrm{d}s\right]^{\frac{1}{\lambda-1}} \int\limits_0^\omega [f(s)]_- \mathrm{d}s}$$

where  $\Delta(p)$  denotes a norm of Green's operator of problem (8) (see [4, Remark 2.5]), and

$$\frac{(\lambda-1)[\Delta(p)]^{-\frac{\lambda}{\lambda-1}}}{\lambda\left[\lambda\int\limits_{0}^{\omega}h(s)\mathrm{d}s\right]^{\frac{1}{\lambda-1}}\int\limits_{0}^{\omega}[f(s)]_{+}\mathrm{d}s} \leq \mu^{*} < \frac{(\lambda-1)\left[\Gamma(p)\int\limits_{0}^{\omega}[p(s)]_{-}\mathrm{d}s - \int\limits_{0}^{\omega}[p(s)]_{+}\mathrm{d}s\right]^{\frac{\lambda}{\lambda-1}}}{\lambda\left[\lambda\int\limits_{0}^{\omega}h(s)\mathrm{d}s\right]^{\frac{1}{\lambda-1}}\left[\int\limits_{0}^{\omega}[f(s)]_{+}\mathrm{d}s - \Gamma(p)\int\limits_{0}^{\omega}[f(s)]_{-}\mathrm{d}s\right]}$$

## Acknowledgements

The research is supported by the internal grant # FSI-S-23-8161 of FME BUT.

## References

- A. Cabada, J. Á. Cid and L. López-Somoza, Maximum Principles for the Hill's Equation. Academic Press, London, 2018.
- [2] A. Lomtatidze, Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations. *Mem. Differ. Equ. Math. Phys.* 67 (2016), 1–129.
- [3] A. Lomtatidze and J. Šremr, On periodic solutions to second-order Duffing type equations. Nonlinear Anal. Real World Appl. 40 (2018), 215–242.
- [4] J. Sremr, Parameter-dependent periodic problems for non-autonomous Duffing equations with sign-changing forcing term. *Electron. J. Differential Equations* **2023**, Paper no. 65, 23 pp.
- [5] P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem. J. Differential Equations 190 (2003), no. 2, 643–662.