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Following [1], we give the definition of topological entropy that will be necessary hereafter. Let
X be a compact metric space with a metric d and f : X → X a continuous mapping. Along with
the original metric d, we define an additional system of metrics on X:

dfn(x, y) = max
0≤i≤n−1

d
(
f i(x), f i(y)

)
, x, y ∈ X, n ∈ N,

where f i, i ∈ N, is the i-th iteration of f, f0 ≡ idX . For any n ∈ N and ε > 0, denote by Nd(f, ε, n)

the maximum number of points in X, pairwise dfn-distances between which are greater than ε. Then
the topological entropy of the mapping f is defined by the formula

hd(f, x) = lim
ε→0

lim
n→∞

1

n
lnNd(f, ε, n).

Let C(X,X) denote the set of continuous mappings from X to X with the metric

ρ(f, g) = max
x∈X

d(f(x), g(x)).

Consider the function
f 7−→ htop(f). (1)

It was proved in [2] that function (1) belongs to the second Baire class on the space C(X,X), and
the set of points in the space C(X,X) at which function (1) is lower semicontinuous contains an
everywhere dense Gδ set. It was established in [3] that the set of points of lower semicontinuity
itself is an everywhere dense Gδ set in C(X,X).

If X coincides with the Cantor set K on the interval [0, 1] with the metric induced by the natural
metric of the real line, then function (1) is everywhere discontinuous and is lower semicontinuous
only at the points where the topological entropy is equal to zero [3]. It was demonstrated in [4]
that function (1) does not belong to the first Baire class even on the subspace of homeomorphisms
satisfying the Lipschitz condition.

Let us denote by Eh(f) the set of limiting realizable values of topological entropy, i.e. those
that are obtained for arbitrarily small uniform perturbations of the mapping f :

Eh(f) =
∩
n∈N

{
htop(g) : ρ(f, g) < n−1

}
.

Theorem 1 ([5]). For each continuous mapping f : K → K, the equality Eh(f) = [0;+∞] holds.
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Given a metric space M and a continuous mapping f : M → C(X,X) let us construct a
function

µ 7−→ htop(f(µ, · ). (2)

From [2] and [3] it follows that the set of points in the space M at which function (2) is lower
semicontinuous is an everywhere dense Gδ set. In the case M = X = K for any everywhere dense
Gδ set A ⊂ M, there is a continuous mapping f : M → C(X,X) such that htop(f(A, · ) = 0 and
htop(f(M\A, · ) = +∞ [5]. In particular, the set of points of lower semicontinuity of function (2)
coincides with the set A. It turns out that using the method of [5] one can prove the following

Theorem 2. If M = X = K, then for any number h > 0 and an everywhere dense Gδ set A ⊂ M,
there is a continuous mapping f : M → C(X,X) such that the equalities htop(f(A, · )) = 0 and
htop(f(M\A, · )) = h are satisfied.
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