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1 Introduction
Recently, there has been an increasing interest in studying differential equation with variable ex-
ponents, that is, differential equations with α(t)-Laplacian (Generally referred to as p(t)-Laplacian
and see below for the details) of the form(

p(t)φα(t)(x
′)
)′
+ q(t)φβ(t)(x) = 0, t = a, (A)

where α(t), β(t), p(t) and q(t) are positive continuous functions on [a,∞), a = 1 and use is made
of the notation

φγ(t)(ξ) = |ξ|γ(t)−1ξ = |ξ|γ(t) sgn ξ, ξ ∈ R, γ ∈ C[1,∞).

By a solution of (A) we mean a function x ∈ C1[Tx,∞), Tx = a, which has the property
p(t)φα(t)(x

′) ∈ C1[Tx,∞) and satisfies the equation at all points t = Tx. A nontrivial solution x(t)
of (A) is said to be nonoscillatory if x(t) ̸= 0 for all large t and oscillatory otherwise. In this talk
we restrict our attention to its eventually positive solutions.

The first interest in α( · )-type Laplacian (i.e., p( · )-type Laplacian) was in function spaces called
variable exponent spaces. Variable exponent spaces appeared in the literature for the first time in
a 1931 paper by Orlicz ([9]). In 2000 and 2011, Růžička and Diening et al. studied equation with
non-standard p(x)-growth in the modeling of the so-called electrorheological fluids ([10]) and the
Lebesgue and Sobolev spaces with variable exponetns([2]), respectively. The mathematically and
physically importance of p( · )-type Laplacian was recognized by the above-mentioned Růžička’s
monograph (see [8]).

In recent years, there has been well analyzed the oscillatory and nonoscillatory behavior of the
equation with p(t)-Laplacian(

a(t)φp(t)−1(x
′)
)′ ± b(t)φq(t)−1(x) = 0, t = a, (p(t) = q(t) or p(t) ̸= q(t)),

which is of the same type as (A) but written in a different representation of p(t) = a(t), q(t) = b(t),
α(t) = p(t)− 1 (p(t) > 1) and β(t) = q(t)− 1 (q(t) > 1) in equation (A) (see [1, 3–7]).

To the best of the author’s knowledge, detail is unknown about nonoscillatory behavior of
(A), and so in this talk we make an attempt to investigate in detail the existence and asymptotic
behavior of eventually positive solutions of (A).

2 Existence of positive solutions
In this talk we make the following assumptions without further mentioning:

∞∫
a

[ k

p(t)

] 1
α(t)

dt = ∞ (2.1)
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for every constant k > 0, and employ the notation

Pα(t),k(t) =

t∫
T

[ k

p(s)

] 1
α(s)

ds, t = T = a. (2.2)

From (2.1) and (2.2) it is obvious that

Pα(T ),k(T ) = 0, lim
t→∞

Pα(t),k(t) = ∞ for every k > 0,

Pα(t),k(t) > Pα(t),l(t), t > T for k > l > 0 and lim
k→0

Pα(t),k(t) = 0 for each t = T.

First of all, we begin by classifying all possible positive solutions of equation (A) according to
their asymptotic behavior as t → ∞.

Lemma 2.1. One and only one of the following cases occurs for each positive solution x(t) of (A):

I. lim
t→∞

p(t)φα(t)(x
′(t)) = const. > 0, lim

t→∞
x(t) = ∞;

II. lim
t→∞

p(t)φα(t)(x
′(t)) = 0, lim

t→∞
x(t) = ∞;

III. lim
t→∞

p(t)φα(t)(x
′(t)) = 0, lim

t→∞
x(t) = const > 0.

We want to obtain criteria for the existence of positive solutions of (A) of type I, II and III.

Theorem 2.1. Suppose that for each fixed k > 0 and T = a,

lim
l→0

Pα(t),l(t)

Pα(t),k(t)
= 0 (2.3)

uniformly on any interval of the form [T1,∞), T1 > T . Then equation (A) possesses a positive
solution of type I if and only if

∞∫
a

q(t)(Pα(t),k(t))
β(t) dt < ∞ for some constant k > 0. (2.4)

Theorem 2.2. Equation (A) possesses a positive solution of type III if and only if
∞∫
a

[
1

p(t)

∞∫
t

q(s)cβ(s) ds

] 1
α(t)

dt < ∞ for some constant c > 0. (2.5)

Unlike the solution of the types I and III it is difficult to characterize the type II solution of (A),
and so we content ourselves with sufficient conditions for the existence of such solutions of (A).

Theorem 2.3. Suppose that (2.3) holds. Equation (A) possesses a positive solution of type II if
(2.4) holds for some constant k > 0 and

∞∫
a

[
1

p(t)

∞∫
t

q(s)dβ(s) ds

] 1
α(t)

dt = ∞ (2.6)

for every constant d > 0.



210 T. Tanigawa

3 Examples
We now present some examples illustrating Theorem 2.1 obtained in Section 2.

Example 3.1. Consider the equations with variable exponents of nonlinearity(
e−(t2−1)φt(x

′)
)′
+ q1(t)φt(x) = 0, t = e, (E1)(

e−(t2−1)φt(x
′)
)′
+ q2(t)φ 1

t
(x) = 0, t = e, (E2)

and (
e−(1− 1

t2
)φ 1

t
(x′)

)′
+ q3(t)φ 1

t
(x) = 0, t = e, (E3)

where the functions qi(t), i = 1, 2, 3, are

q1(t) = e−(t2−1)
(
1 +

1

t2

)t{ 2

t2 + 1
− log

(
1 +

1

t2

)}
,

q2(t) = e−(1− 1
t2

)
(
1 +

1

t2

)t{ 2

t2 + 1
− log

(
1 +

1

t2

)}
,

and
q3(t) = e−(1− 1

t2
) 1

t2

(
1 +

1

t2

) 1
t
{ 2

t2 + 1
+ log

(
1 +

1

t2

)}
,

respectively. They are special cases of (A) with α(t) = t in (Ei), i = 1, 2, α(t) = 1/t in (E3),
β(t) = t in (E1), β(t) = 1/t in (Ei), i = 2, 3, p(t) = e−(t2−1) in (Ei), i = 1, 2, p(t) = e−(1− 1

t2
) in

(E3) and q(t) = qi(t), i = 1, 2, 3 in the above. The functions p(t) = e−(t2−1) and p(t) = e−(1− 1
t2

)

satisfy (2.1) with k = 1 and, in addition, the function Pα(t),1(t) associated with (Ei), i = 1, 2, 3 is

Pα(t),1(t) =

t∫
e

[ 1

p(s)

] 1
α(s)

ds =

t∫
e

es−
1
s ds ∼ et−

1
t as t → ∞

by (2.2), where the symbol ∼ is used to denote the asymptotic equivalence

f(t) ∼ g(t) as t → ∞ ⇐⇒ lim
t→∞

f(t)

g(t)
= 1.

Since
∞∫
e

q1(t)(Pt,1(t))
t dt =

∞∫
e

e−(t2−1)
(
1 +

1

t2

)t{ 2

t2 + 1
− log

(
1 +

1

t2

)}
(et−

1
t )t dt

=

∞∫
e

(
1 +

1

t2

)t{ 2

t2 + 1
− log

(
1 +

1

t2

)}
dt < ∞,

∞∫
e

q2(t)(Pt,1(t))
1
t dt =

∞∫
e

(
1 +

1

t2

)t{ 2

t2 + 1
− log

(
1 +

1

t2

)}
dt < ∞,

and
∞∫
e

q3(t)(P 1
t
,1(t))

1
t dt =

∞∫
e

1

t2

(
1 +

1

t2

) 1
t
{ 2

t2 + 1
+ log

(
1 +

1

t2

)}
dt < ∞,
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we can apply Theorem 2.1 to conclude that there exists a positive solution of type I such that
x(t) = et−

1
t , which satisfies

lim
t→∞

p(t)φt(x
′(t)) = lim

t→∞

(
1 +

1

t2

)t
= 1, lim

t→∞
x(t) = ∞

for (Ei), i = 1, 2 and that for (E3)

lim
t→∞

p(t)φ 1
t
(x′(t)) = lim

t→∞

(
1 +

1

t2

) 1
t
= 1, lim

t→∞
x(t) = ∞.
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