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1 Introduction
Let T > 0 be given, J = [0, T ] and ∥x∥ = max{|x(t)| : t ∈ J} be the norm in C(J).

We discuss the fractional boundary value problem

cDαx(t)− p(t, x(t))cDα−1x(t) = f(t, x(t)), (1.1)
x(0) = x(T ), x′(0) = 0, (1.2)

where α ∈ (1, 2], p, f ∈ C(J × R) and cD denotes the Caputo fractional derivative.

Definition 1.1. We say that x : J → R is a solution of equation (1.1) if x′, cDαx ∈ C(J) and (1.1)
holds for t ∈ J . A solution x of (1.1) satisfying the boundary condition (1.2) is called a solution of
problem (1.1), (1.2).

The special case of (1.1) is the differential equation x′′−p(t, x)x′ = f(t, x). Problem (1.1), (1.2) is
at resonance, because each constant function x on J is a solution of problem cDαx−p(t, x)cDα−1x=0,
(1.2).

The aim of this paper is to give conditions guaranteeing the existence and uniqueness of solutions
to problem (1.1), (1.2). It is shown that this problem is reduced to the existence of a fixed point
of an integral operator S in the set C(J)× R. The Schaefer fixed point theorem [1] is applied for
solving S(x, c) = (x, c).

2 Preliminaries
We recall the definitions of the Riemann–Liouville fractional integral and the Caputo fractional
derivative [2, 3].

The Riemann–Liouville fractional integral Iγx of order γ > 0 of a function x : J → R is
defined as

Iγx(t) =

t∫
0

(t− s)γ−1

Γ(γ)
x(s)ds,

where Γ is the Euler gamma function. I0 is the identical operator.
The Caputo fractional derivative cDγx of order γ > 0, γ ̸∈ N, of a function x : J → R is given as

cDγx(t) =
dn

dtn

t∫
0

(t− s)n−γ−1

Γ(n− γ)

(
x(s)−

n−1∑
k=0

x(k)(0)

k!
sk
)

ds,



198 S. Staněk

where n = [γ]+1, [γ] means the integral part of the fractional number γ. If γ ∈ N, then cDγx = x(γ).
In particular,

cDγx(t) =
d

dt

t∫
0

(t− s)−γ

Γ(1− γ)
(x(s)− x(0))ds = d

dt
I1−γ(x(t)− x(0)) if γ ∈ (0, 1).

Let P,F : C(J) → C(J) be the Nemytskii operators associated to p, f ,
Px(t) = p(t, x(t)), Fx(t) = f(t, x(t)).

Equation (1.1) can be written as
cDαx(t)− Px(t)cDα−1x(t) = Fx(t).

Let an operator Q acting on C(J) be defined by the formula

Qx(t) =

t∫
0

Fx(s) exp

( t∫
s

Px(ξ)dξ
)

ds, t ∈ J.

Then Qx(t)|t=0 = 0, Q : C(J) → C1(J) and for x ∈ C(J), t ∈ J ,
(Qx(t))′ = Px(t)Qx(t) + Fx(t),

Iα−1Qx(t) = Iα(Qx(t))′ = Iα(Px(t)Qx(t) + Fx(t)). (2.1)
The following result deals with solutions x of equation (1.1) satisfying the initial condition

x(0) = c, x′(0) = 0, (2.2)
where c ∈ R.
Lemma 2.1. If x is a solution of the initial value problem (1.1), (2.2), then

x(t) = c+ Iα−1Qx(t), t ∈ J. (2.3)
Also vice versa if x ∈ C(J) satisfies (2.3), then x is a solution of problem (1.1), (2.2).

Let S : C(J)× R → C(J)× R be an operator defined by

S(x, c) =
(
c+ Iα−1Qx(t), c− Iα−1Qx(t)

∣∣
t=T

)
.

The relation between fixed points of S and solutions of problem (1.1), (1.2) is given in the
following result.
Lemma 2.2. If (x, c) ∈ C(J)×R is a fixed point of S, then x is a solution of problem (1.1), (1.2)
and c = x(0). If x is a solution of problem (1.1), (1.2), then (x, x(0)) ∈ C(J) × R is a fixed point
of S.
Proof. Let (x, c) ∈ C(J)× R be a fixed point of S. Then

x(t) = c+ Iα−1Qx(t), t ∈ J, (2.4)
Iα−1Qx(t)

∣∣
t=T

= 0. (2.5)
Now we conclude from Lemma 2.1 and equality (2.4) that x is a solution of (1.1) and x(0) = c,
x′(0) = 0. The equality x(T ) = c follows from (2.4) and (2.5). Hence x is a solution of problem
(1.1), (1.2).

Let x be a solution of problem (1.1), (1.2) and let x(0) = c. Then (see (1.2)) x(T ) = c. By
Lemma 2.1, x satisfies equality (2.3) which together with x(T ) = c gives Iα−1Qx(t)|t=T = 0.
Consequently, (x, c) is a fixed point of S.

Lemma 2.3. Operator S is completely continuous.
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3 Existence results
Theorem 3.1. Let

(H1) p(t, x) be bounded and nonnegative on J × R,

(H2) there exist D > 0 such that

xf(t, x) > 0 for t ∈ J, |x| ≥ D,

(H3) there exist A,B ∈ [0,∞) such that

|f(t, x)| ≤ A+B|x| for t ∈ J, x ∈ R.

Then problem (1.1), (1.2) has at least one solution. In addition, |x(0)| < D for each solution x of
this problem.

Proof. Keeping in mind Lemma 2.2, we need to prove that the operator S admits a fixed point in
C(J) × R. Since S is a completely continuous operator by Lemma 2.3, the Schaefer fixed point
theorem guarantees the existence of a fixed point of S if the set

M =
{
(x, c) ∈ C(J)× R : (x, c) = λS(x, c) for some λ ∈ (0, 1)

}
is bounded in C(J)× R.

In order to prove the boundedness of M, let (x, c) = λS(x, c) for some (x, c) ∈ C(J) × R and
λ ∈ (0, 1). Then

x(t) = λ
(
c+ Iα−1Qx(t)

)
, t ∈ J, (3.1)

c(λ− 1) = λIα−1Qx(t)
∣∣
t=T

. (3.2)

It follows from (2.1) and (3.1) that

x′(t) = λ
d

dt
Iα−1Qx(t) = λIα−1

(
Px(t)Qx(t) + Fx(t)

)
, t ∈ J, (3.3)

and x′(0) = 0. We claim that
|x(0)| < D, (3.4)

where D is from (H2). Suppose x(0) ≥ D. Then Fx(t)|t=0 = f(0, x(0)) > 0 by (H2), and therefore
Fx > 0 on [0, ρ] for some ρ ∈ (0, T ]. Since Px(t) = p(t, x(t)) ≥ 0 on J by the assumption, we have
Qx > 0 on (0, ρ] and then (see (3.3)) x′ > 0 on this interval. Thus x is increasing on [0, ρ] and
so x > D on (0, ρ]. Analysis similar to the above interval [0, ρ] shows that x ≥ D on J . Hence
Fx > 0 on J and therefore λIα−1Qx(t)|t=T > 0 contrary to (3.2) since c(λ − 1) < 0. We have
proved x(0) < D. Similarly we can prove x(0) > −D. Consequently, estimate (3.4) is valid.

Since (see (3.1)) x(0) = λc, we have

x(t) = x(0) + λIα−1Qx(t), t ∈ J.

Now by applying (3.4), (H1) and (H3), some calculations give

|x(t)| ≤ L1 + L2

t∫
0

|x(s)|ds, t ∈ J,

where L1, L2 are positive constants independent of λ. By the Gronwall–Bellman lemma, ∥x∥ ≤
L1e

L2T .
In order to give the bound for c, two cases if λ ∈ (0, 1/2] or λ ∈ (1/2, 1) are discussed.
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Example 3.1. Let k > 0, ρ ∈ (0, 1), q ∈ C(J) and w, r ∈ C(J × R) be bounded, |r(t, x)| ≤ P for
(t, x) ∈ J × R. Then the function

f(t, x) = r(t, x) + q(t)|x|ρ + kx

satisfies condition (H3) for A = P + ∥q∥, B = k + ∥q∥. Since

lim
x→±∞

P + ∥q∥|x|ρ

x
= 0,

there exists D > 0 such that
P + ∥q∥|x|ρ

x
> −k for x ≤ −D,

P + ∥q∥xρ

x
< k for x ≥ D.

Hence f satisfies condition (H2). By Theorem 3.1, there exists a solution of problem
cDαx− |w(t, x)|cDα−1x = r(t, x) + q(t)|x|ρ + kx,

x(0) = x(T ), x′(0) = 0.

4 Uniqueness results
In this section we assume that the function p(t, x) in equation (1.1) is independent of the variable
x, that is, p(t, x) = p(t). Hence we discuss the fractional differential equation

cDαx(t)− p(t)cDα−1x(t) = f(t, x(t)), (4.1)

where p ∈ C(J). According to Lemma 2.2, x is a solution of problem (4.1), (1.2) if and only if
x ∈ C(J),

x(t) = x(0) + Iα−1Qx(t) for t ∈ J and x(0) = x(T ),

where

Qx(t) =

t∫
0

Fx(s) exp

( t∫
s

p(ξ)dξ
)

ds.

Let A be the set of all solutions to problem (4.1), (1.2). Under conditions (H2), (H3) and p ≥ 0
on J , A ̸= ∅ and |x(0)| < D for x ∈ A by Theorem 3.1. We are interested in the structure of the
set A, especially when A is a singleton set, that is, when problem (4.1), (1.2) has a unique solution.

Lemma 4.1. Let p ≥ 0 on J and let (H2), (H3),

(H4) for each t ∈ J , f(t, x) is increasing in the variable x on R

hold. Then u(0) = v(0) for u, v ∈ A.

The following theorem says that if u, v ∈ A and u ̸= v, then the function u − v vanishes at
points tn of a sequence {tn} ⊂ (0, T ).

Theorem 4.1. Let (H2)–(H4) hold and let p ≥ 0 on J . Let u, v ∈ A and u ̸= v. Then there exists
a decreasing sequence {tn} ⊂ (0, T ), lim

n→∞
tn = 0, such that

u(tn)− v(tn) = 0 for n ∈ N.

We are now in the position to give the conditions for the existence of a unique solution to
problem (4.1), (1.2).
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Theorem 4.2. Let p ≥ 0 on J and let (H2)–(H4),

(H5) f satisfies the local Lipschitz condition on J×R, that is, for each S > 0 there is L = L(S) > 0
such that

|f(t, x1)− f(t, x2)| ≤ L|x1 − x2| for t ∈ J, x1, x2 ∈ [−S, S]

hold. Then problem (4.1), (1.2) has a unique solution.

Example 4.1. Let k > 0, ρ ∈ (0, 1), q, r ∈ C(J) and f(t, x) = r(t) + |x|ρ arctanx + kx. Then
f satisfies conditions (H2) and (H3) for D = ∥r∥/k and A = ∥r∥ + π/2, B = k + π/2. Since the
function ϕ(x) = |x|ρ arctanx+ kx has continuous derivative on R, ∂f

∂x ∈ C(J ×R), and therefore f
satisfies condition (H5). Clearly, f satisfies condition (H4). Consequently, by Theorem 4.2, there
exists a unique solution of problem

cDαx− |q(t)|cDα−1x = r(t) + |x|ρ arctanx+ kx,

x(0) = x(T ), x′(0) = 0.

References
[1] K. Deimling, Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985.
[2] K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Ex-

position Using Differential Operators of Caputo Type. Lecture Notes in Mathematics, 2004.
Springer-Verlag, Berlin, 2010.

[3] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Dif-
ferential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amster-
dam, 2006.


