
REPORTS OF QUALITDE, Volume 2, 2023 183

Definition and Some Properties of Measures
of Stability and Instability of a Differential System

I. N. Sergeev
Lomonosov Moscow State University, Moscow, Russia

E-mail: igniserg@gmail.com

For a given n ∈ N and zero neighborhood G ⊂ Rn, we consider the differential system

ẋ = f(t, x), f(t, 0) ≡ 0, t ∈ R+ ≡ [0,+∞), x ∈ G, (1)

where f, f ′
x ∈ C(R+, G). Let’s put

Bδ ≡
{
x0 ∈ Rn | 0 < |x0| < δ

}
, ∆ ≡ sup

{
δ | Bδ ⊂ G

}
,

and denote by x( · , x0) a non-extendable solution of system (1) with the initial value x(0, x0) = x0.
The differential system (1) is completely deterministic, however, it is possible to give a natural

stochastic meaning to its measures of stability µκ(f) or instability νκ(f) [1, 2]. They allow us to
estimate from below the possibility or impossibility of randomly selecting the initial value x0 of
perturbed solution x( · , x0), arbitrarily close to zero, so that its graph falls into a given tube of the
zero solution in any of the following senses [3, 4]:

(a) immediately on the entire time semi-axis (the Lyapunov stability for κ = λ);

(b) at least episodically, but at arbitrarily late points in time (the Perron stability for κ = π);

(c) at least from some moment, but then forever (the upper-limit stability for κ = σ).

The forerunners of the described measures were the recent concepts of almost stability and
almost complete instability [5], which provide the corresponding properties of solutions with a full
measure.

Definition 1. We will say that system (1) has the following property of the Lyapunov, Perron or
upper-limit type:

(a) stability (almost stability) if for any ε > 0 there exists δ ∈ (0,∆) such that any (respec-
tively, almost any in the sense of the Lebesgue measure) initial value x0 ∈ Bδ satisfies the
corresponding requirement

sup
t∈R+

|x(t, x0)| < ε, lim
t→+∞

|x(t, x0)| < ε, lim
t→+∞

|x(t, x0)| < ε; (2)

(b) complete instability (almost complete instability) if there exist ε > 0 and δ ∈ (0,∆) such
that any (respectively, almost any) initial value x0 ∈ Bδ does not satisfy the corresponding
requirement (2) (which is considered to be unfulfilled by definition, in particular, when the
solution x( · , x0) is not defined on the entire ray R+).

Definition 2. For system (1), the number

µκ(f) ∈ [0, 1], κ = λ, π, σ,

is called, respectively, the Lyapunov, Perron and upper-limit measure of stability, if system (1):
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(a) for each µ < µκ(f) is µ-stable, i.e. for any ε > 0 there exists δε ∈ (0,∆) such that for every
δ ∈ (0, δε) all values x0 ∈ Bδ, satisfying the corresponding requirement (2), form a subset,
whose relative measure (in the Lebesgue sense) in Bδ is

Mκ(f, ε, δ) ≥ µ;

(b) for each µ > µκ(f) is not µ-stable.

Definition 3. For system (1), the number

νκ(f) ∈ [0, 1], κ = λ, π, σ,

is called, respectively, the Lyapunov, Perron and upper-limit measure of instability, if system (1):

(a) for each ν < νκ(f) is ν-unstable, i.e. for any ε > 0 there exists δε ∈ (0,∆) such that for every
δ ∈ (0, δε) all values x0 ∈ Bδ, unsatisfying the corresponding requirement (2), form a subset,
whose relative measure (in the Lebesgue sense) in Bδ is

Nκ(f, ε, δ) ≥ ν;

(b) for each ν > νκ(f) is not ν-unstable.

The correctness of Definitions 2 and 3 is justified by the following theorems.

Theorem 1. For any system (1), any ε > 0 and each of the requirements (2), the sets of all points
x0 ∈ G, both satisfying this requirement and not satisfying it, are measurable.

Theorem 2. For any system (1) the set of all values µ ∈ [0, 1] for which it is Lyapunov, Perron
or upper-limit µ-stable, as well as all values ν ∈ [0, 1], for which it is ν-unstable, obviously contains
the point 0 and represents an interval, possibly degenerate to this point.

The following two theorems offer specific formulas for measures of stability and instability and
define a set of basic relations linking various measures.

Theorem 3. For each system (1), the entire six of its Lyapunov, Perron and upper-limit measures
of stability or instability are uniquely defined, which are respectively given by the formulas

µκ(f) = lim
ε→+0

lim
δ→+0

Mκ(f, ε, δ), νκ(f) = lim
ε→+0

lim
δ→+0

Nκ(f, ε, δ), (3)

where the limits at ε → +0 can be replaced by the lower or, respectively, upper exact bound on
ε > 0.

Theorem 4. For any system (1) the inequalities are satisfied

0 6 µλ(f) 6 µσ(f) 6 µπ(f) 6 1, 0 6 νπ(f) 6 νσ(f) 6 νλ(f) 6 1, (4)
0 6 µκ(f) + νκ(f) 6 1. (5)

Almost stability and almost complete instability are naturally associated with single values of
the corresponding measures, but this logical connection turns out to be only one-way.

Theorem 5. System (1) has almost stability or almost complete instability (of some type) if and
only if it is 1-stable or, accordingly, 1-unstable (of that type), and then its measures of stability and
instability (of the same type) are equal to 1 and 0 or, respectively, vice versa.
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Theorem 6. For n = 2, there are two autonomous systems of the form (1), which have neither
almost stability nor almost complete instability of any of the three types: one of them has measures
of stability and instability of all three types equal to 1 and 0, respectively, and the other is the
opposite.

In the case of a linear system, the Lyapunov and upper-limit measures can only take their
extreme values, which are obviously also realized on the Perron measures – this is what the following
two theorems establish.

Theorem 7. For any linear system (1), only the following two situations are possible, and in
formulas (3) for all measures of stability and instability mentioned in them, the lower limits for
δ → +0 are exact:

(a) either the relations are satisfied

µλ(f) = µσ(f) = µπ(f) = 1 > 0 = νπ(f) = νσ(f) = νλ(f)

and system (1) has stability of all three types;

(b) either the relations are satisfied

µλ(f) = µσ(f) = 0 < 1 = νσ(f) = νλ(f)

and system (1) has the Lyapunov and upper-limit almost complete (possibly even complete)
instability.

In addition, in the linear case, the upper-limit complete instability follows from the Lyapunov
one, but the Perron instability does not follow, and not to any extent.

Theorem 8. For any n ∈ N, each of the situations listed in Theorem 7 is realized on some limited
scalar linear system of the form (1), and the second situation is realized on at least two systems:
one of them is autonomous and has the Perron complete instability, i.e.

µπ(f) = 0 < 1 = νπ(f),

and the other – the Perron stability, i.e.

µπ(f) = 1 > 0 = νπ(f).

The set of all possible sets of different measures of stability and instability of one-dimensional
systems is finite.

Theorem 9. For n = 1, the measures of stability and instability of any system (1) satisfy the
relations

µλ(f) = µσ(f) 6 µπ(f), νπ(f) 6 νσ(f) = νλ(f), (6)
µκ(f), νκ(f) ∈ {0, 1/2, 1}, µκ(f) + νκ(f) = 1, κ = λ, π, σ. (7)

Theorem 10. For n = 1, both inequalities in chains (6) for some limited linear system (1) are
strict, and the cases of all equalities in these chains for each pair of measures of stability and
instability specified by conditions (7) are implemented on some autonomous systems (1).

Theorem 6 simultaneously confirms the realizability of both zero and one values by all measures
of stability or instability for two-dimensional autonomous systems. Moreover, for such systems the
set of implementable sets of all measures turns out to be quite rich.
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Theorem 11. For n = 2, for each individual non-strict inequality in chains (4) and (5) there are
two autonomous systems of the form (1): for one of them it turns into an equality, and for the
other into a strict inequality.

Theorem 12. For n = 2, for any r > 0 there exists an autonomous system (1), in which the
measures of stability of all three types take the same positive value, as well as all measures of
instability, and the ratio of these two values equals r, and the right inequality in chain (5) turns
into equality.

The following two theorems implement the most contrasting situations in the autonomous ar-
bitrarily non-one-dimensional case.

Theorem 13. For every integer n > 1, some autonomous system (1) satisfies the relations

µλ(f) = µσ(f) = 0 < 1 = µπ(f), νπ(f) = νσ(f) = 1 > 0 = νλ(f).

Theorem 14. For every integer n > 1, some autonomous system (1) satisfies the relations

µλ(f) = 0 < 1 = µσ(f) = µπ(f), νπ(f) = 1 > 0 = νσ(f) = νλ(f).

In the one-dimensional autonomous case, two contrasting situations described in Theorems 13
and 14 are impossible.

Theorem 15. For n = 1, for any autonomous system (1) the equalities are satisfied

µλ(f) = µσ(f) = µπ(f), νπ(f) = νσ(f) = νλ(f).
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