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On the Criterion of Well-Posedness of the Modified Cauchy Problem
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Let [a, b] ⊂ R be a finite and closed interval non-degenerated in the point.
Consider the modified initial problem for a linear system of generalized ordinary differential

equations with singularities

dx = dA(t) · x+ df(t) for t ∈ [a, b[ , (1)
lim
t→b−

(Φ−1(t)x(t)) = 0, (2)

where A = (aik)
n
i,k=1 is an n × n-matrix valued function and f = (fk)

n
k=1 is an n-vector valued

function, both of them have a locally bounded variation on [a, b[; Φ = diag(φ1, . . . , φn) is a diagonal
n× n-matrix valued function, defined on [a, b[ and having an inverse Φ−1(t) for each t ∈ [a, b[ .

Along with system (1) consider the perturbed singular systems

dx = dAm(t) · x+ dfm(t) for t ∈ [a, b[ (3)

(m = 1, 2, . . . ) under conditions (2), where Am is an n × n-matrix valued function and fm is an
n-vector valued function, both of them have a locally bounded variation on [a, b[ .

We are interested to established the necessary and sufficient conditions whether the unique
solvability of problem (1), (2) guarantees the unique solvability of problem (3), (2) and nearness of
its solution in the definite sense if matrix-functions Am and A and vector-functions fm and f are
nearly among themselves.

We assume A(a) = Am(a) = On×n and f(a) = fm(a) = 0n (m = 1, 2, . . . ) without loss of
generality.

The same and related problems for ordinary differential systems with singularities dx
dt = P (t)x+

q(t), where P ∈ Lloc([a, b[,Rn×n), q ∈ Lloc([a, b[,Rn), have been investigated in [7,9] (see, also, the
references therein).

The singularity of system (1) consists in the fact that both A and f need not to have bounded
variations on any interval containing the point t0.

The solvability question of the generalized differential problem (1), (2) has been investigated
in [6]. The well-posedness of problem (1), (2) with singularity has been considered in [4]. To
our knowledge, the necessary and sufficient conditions for well-posedness of problem (1), (2) with
singularity has not been investigated up to now.

Some singular boundary problems for the generalized differential system (1) are investigated
in [1, 2] (see, also, the references therein).
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To a considerable extent, the interest to the theory of generalized ordinary differential equations
has also been stimulated by the fact that this theory enables one to investigate ordinary differential,
impulsive and difference equations from a unified point of view (see [1–6,8,10,11] and the references
therein).

In the paper, we give necessary and sufficient conditions for the so called strongly Φ-well-
posedness of problem (1), (2).

Throughout the paper we use the following notation and definitions.
R = ]−∞,+∞[ . R+ = ]0,+∞[ . Rn×m is the space of all real n×m matrices with the standard

norm.
Rn = Rn×1 is the space of all column n-vectors x = (xi)

n
i=1.

If X = (xik)
n,m
i,k=1 ∈ Rn×m, then |X| = (|xik|)n,mi,k=1, [X]∓ = 1

2 (|X| ∓X).
On×m (or O) is the zero n×m-matrix, 0n (or 0) is the zero n-vector.
In is identity n× n-matrix.
If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix inverse to X, the deter-

minant of X and the spectral radius of X.
The inequalities between the matrices are understood componentwisely.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its com-

ponent is such.

If X : R → Rn×m is a matrix-function, then
b∨
a
(X) is the sum of total variations on [a, b] of its

components;
b−∨
a
(X) = lim

t→b−

t∨
a
(X).

X(t−) and X(t+) are, respectively, the left and the right limits of the matrix-function X :
[a, b] → Rn×m at the point t.

BV([c, d],Rn×m) is the set of bounded variation matrix-functions on [c, d].
BVloc([a, b[;Rn×m) is the set of all locally bounded matrix-functions.
If X ∈ BVloc([a, b[;Rn×m), then

[X(t)]v− ≡ 1

2
(V (X)(t)−X(t)), [X(t)]v+ ≡ 1

2
(V (X)(t) +X(t)).

s1, s2, sc : BVloc([a, b[;R) → BVloc([a, b[;R) are the operators defined, respectively, by

s1(x)(a) = s2(x)(a) = 0, sc(x)(a) = x(a),

s1(x)(t) = s1(x)(a) +
∑

a<τ≤t

d1x(τ), s2(x)(t) = s2(x)(a) +
∑

a≤τ<t

d2x(τ),

sc(x)(t) = sc(x)(a) + x(t)− x(a)−
2∑

j=1

sj(x)(t) for a < t < b.

If g : [a, b] → R is a nondecreasing function and x : [a, b] → R, then

t∫
s

x(τ) dg(τ) =

∫
]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ≤t

x(τ) d1g(τ) +
∑

s≤τ<t

x(τ) d2g(τ)

for s < t; s, t ∈ [a, b],
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where
∫

]s,t[

x(τ) dsc(g)(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[ with respect to

the measure corresponding to the function sc(g). So
t∫
s
x(τ) dg(τ) is the Kurzweil integral ( [10,11]).

We put
t−∫
s
x(τ) dg(τ) = limδ→0+

t−δ∫
s

x(τ) dg(τ).

If G = (gik)
l,n
i,k=1 : [a, b] → Rl×n and X = (xkj)

n,m
k,j=1 : [a, b] → Rn×m, then

t∫
a

dG(τ) ·X(τ) ≡
( n∑

k=1

t∫
a

xkj(τ)dgik(τ)

)l,m

i,j=1

.

We introduce the operators A(X,Y ), B(X,Y ) and I(X,Y ) in the following way:

(a) if X∈BVloc(I;Rn×n), det(In+(−1)jdjX(t)) ̸=0 for t ∈ I (j = 1, 2), and Y ∈BVloc(I;Rn×m),
then A(X,Y )(a) = On×m,

A(X,Y )(t) ≡ Y (t)− Y (a) +
∑

a<τ≤t

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)

−
∑

a≤τ<t

d2X(τ) · (In + d2X(τ))−1 d2Y (τ);

(b) if X ∈ BVloc(I;Rn×n) and Y : I → Rn×m, then B(X,Y )(a) = On×m,

B(X,Y )(t) ≡ X(t)Y (t)−X(a)Y (a)−
t∫

a

dX(τ) · Y (τ);

(c) if X ∈ BVloc(I;Rn×n), det(X(t)) ̸= 0, and Y : I → Rn×n, then

I(X,Y )(a) = On×m, I(X,Y )(t) ≡
t∫

a

d
(
X(τ) + B(X,Y )(τ)

)
·X−1(τ).

In addition, let Vj(Φ, A∗, · ) : BVloc(I;Rn×l) → R (j = 1, 2) be operators defined, respec-
tively, by

V1(Φ, A∗, F )(t, τ) =

τ∫
t

Φ−1(s) dV(A(A∗, F ))(s) · Φ(s) and

V2(Φ, A∗, F )(t, τ) =

τ∫
t

Φ−1(s) dV(A(A∗, A∗))(s) · |F (s)| for a ≤ t < τ < b.

A vector-function x : I → Rn is said to be a solution of system (1) if x ∈ BVloc(I,Rn) and

x(t) = x(a) +

t∫
a

dA(τ) · x(τ) + f(t)− f(a) for t ∈ I.
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We assume that det(In + (−1)jdjA(t)) ̸= 0 for t ∈ I (j = 1, 2).
The above inequalities guarantee the unique solvability of the Cauchy problem for the corre-

sponding nonsingular systems, i.e., for the case when A ∈ BV([a, c];Rn×n) and f ∈ BV([a, c];Rn)
for every c ∈ I.

Let a matrix-function A∗ = (a∗ik)
n
i,k=1 ∈ BVloc(I;Rn×n) be such that det(In+(−1)jdjA∗(t)) ̸= 0

for t ∈ I (j = 1, 2).
Then a matrix-function C∗ : I× I → Rn×n is said to be the Cauchy matrix of the homogeneous

system dx = dA∗(t) · x, if, for each interval J ⊂ I and τ ∈ J , the restriction of the matrix-function
C∗( · , τ) : I → Rn×n on J is the fundamental matrix of the system, satisfying the condition
C∗(τ, τ) = In. Therefore, C∗ is the Cauchy matrix of the system if and only if the restriction of C∗
on J × J is the Cauchy matrix of the system in the regular case. Let X∗(τ) ≡ C∗( · , τ).

Definition 1. Problem (1), (2) is said to be weakly Φ-well-posed with respect to the matrix-
function A∗ if it has the unique solution x0 and for every sequences of Am and fm (m = 1, 2, . . . )
such that

det
(
In + (−1)jdjAm(t)

)
̸= 0 for t ∈ I (j = 1, 2), (4)

for each sufficiently large m, and the conditions

lim
m→+∞

∥∥V1(Φ, A∗, Am −A)(t, b−)
∥∥ = 0, (5)

lim
m→+∞

∥∥V2(Φ, A∗, fm − f)(t, b−)
∥∥ = 0, (6)

lim
m→+∞

∥∥Φ−1(t)(fm(t)− f(t))− Φ−1(b−)(fm(b−)− f(b−))
∥∥ = 0 (7)

hold uniformly on I, problem (3), (2) has the unique solution xm for each sufficiently large m and

lim
m→+∞

∥∥Φ−1(t) (xm(t)− x0(t))
∥∥ = 0 uniformly on I. (8)

Definition 2. Problem (1), (2) is said to be strongly Φ-well-posed with respect to the matrix-
function A∗ if it has the unique solution x0 and for every sequences of matrix-and vector-functions
Am and fm (m = 1, 2, . . . ) such that condition (4) holds for every sufficiently large m and the
conditions (6) and

lim
m→+∞

∥∥V1(Φ, A∗, fm − f)(t, b−)
∥∥ = 0

hold uniformly on I, problem (3), (2) has the unique solution xm for each sufficiently large m and
condition (8) holds.

Remark 1. If problem (1), (2) is strongly well-posed, then it is weakly well-posed, as well, because∥∥V1(Φ, A∗, fm − f)(t, τ)
∥∥ ≤

∥∥Φ−1(t)(fm(t)− f(t))− Φ−1(τ)(fm(τ)− f(τ))
∥∥

+
∥∥V2(Φ, A∗, fm − f)(t, τ)

∥∥ for a ≤ t < τ < b.

Definition 3. We say that the sequence (Am, fm) (m = 1, 2, . . . ) belongs to the set SA∗(A, f ; Φ, b),
i.e., (

(Am, fm)
)+∞
m=1

∈ SA∗(A, f ; Φ), (9)

if problem (3), (2) has the unique solution xm for each sufficiently large m and condition (8) holds.

Let I(δ) = [b− δ, b[ for every δ > 0.
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Theorem 1. Let there exist nonnegative constant n× n matrices B0 and B such that

r(B) < 1, (10)

the estimates |C∗(t, τ)| ≤ Φ(t)B0Φ
−1(τ) for b− δ ≤ t ≤ τ < b and∣∣∣∣

b−∫
t

|C∗(t, s)| dV(A(A∗, A−A∗))(s) · Φ(s)
∣∣∣∣ ≤ H(t)B for t ∈ I(δ)

fulfilled for some δ > 0. Let, moreover,

lim
t→b−

∥∥∥∥
b−∫
t

Φ−1(t)C∗(t, τ) dA(A∗, f)(τ)

∥∥∥∥ = 0.

Then problem (1), (2) is weakly Φ-well-posed with respect to A∗.

Theorem 2. Let there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+ such that conditions (10)
and [

(−1)jdjaii(t)
]
+
> −1 for t ∈ I (j = 1, 2; i = 1, . . . , n)

hold, and the estimates

ci(t, τ) ≤ b0
hi(t)

hi(τ)
for b− δ ≤ t ≤ τ < b (i = 1, . . . , n);

∣∣∣∣
b−∫
t

ci(t, τ)hi(τ) d[aii(τ)]
v
−

∣∣∣∣ ≤ bii hi(t) for t ∈ I(δ) (i = 1, . . . , n),

∣∣∣∣
b−∫
t

ci(t, τ)hk(τ) dV(A(a∗ii, aik))(τ)

∣∣∣∣ ≤ bikhi(t) for t ∈ I(δ) (i ̸= k; i, k = 1, . . . , n)

fulfilled for some b0 > 0 and δ > 0. Let, moreover,

lim
t→b−

b−∫
t

ci(t, τ)

hi(t)
dV(A(a∗ii, fi))(τ) = 0 (i = 1, . . . , n),

where a∗ii(t) ≡ [aii(t)]
v
+ (i = 1, . . . , n), and ci is the Cauchy function of the equation dx =

x da∗ii(t). Then problem (1), (2) is weakly Φ-well-posed with respect to the matrix-function A∗(t) ≡
diag(a∗11(t), . . . , a∗nn(t)).

Theorem 3. Let conditions of Theorem 1 be fulfilled and let there exist a sequence of non-
degenerated matrix-functions Hm ∈ BVloc([a, b[;Rn×n) (m = 1, 2, . . . ) such that

lim
m→+∞

∥∥Φ−1(t)H−1
m (t)Φ(t)− In

∥∥ = 0, (11)

lim
m→+∞

∥∥V1(Φ, A∗, A
∗
m −A)(t, b−)

∥∥ = 0, (12)

lim
m→+∞

∥∥V2(Φ, A∗, f
∗
m − f)(t, b−)

∥∥ = 0, (13)

lim
m→+∞

∥∥Φ−1(t)(f∗
m(t)− f(t))− Φ−1(b−)(f∗

m(b−)− f(b−))
∥∥ = 0 (14)

hold uniformly on I, where A∗
m(t) ≡ I(Hm, Am)(t) and f∗

m(t) ≡ B(Hm, fm)(t). Then inclusion
((A∗

m, f∗
m))+∞

m=1 ∈ SA∗(A, f ; Φ) holds.
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Theorem 3 has the following form for Hm(t) ≡ In (m = 1, 2, . . . ).

Corollary 1. Let conditions of Theorem 1 be fulfilled and conditions (5)–(7) hold uniformly on I.
Then inclusion (9) holds.

Theorem 4. Let conditions of Theorem 1 be fulfilled and let, moreover,

∥B0∥ ∥(In −B)−1∥ < 1 (15)

and

lim sup
t→b−

∥∥∥∥Φ−1(t)

b−∫
t

dV (A)(s) · Φ(s)
∥∥∥∥ < +∞.

Then inclusion (9) holds if and only if there exist the sequence of matrix functions Hm ∈
BVloc(I;Rn×n) (m = 1, 2, . . . ) such that

lim sup
t→b−

∥∥∥∥
b−∫
t

Φ−1(s) dV(A(A∗, A∗))(s) · Φ(s)
∥∥∥∥ < +∞ for a ≤ t < τ < b,

lim sup
t→b−

(
∥Φ−1(t)(f∗

m(t)− f(t))∥+
∥∥∥∥Φ−1(t)

b−∫
t

dV(A)(s) · |f∗
m(s)− f(s)|

∥∥∥∥) = 0 (16)

and conditions (11)–(14) hold uniformly on I, where the matrix- and vector functions A∗
m and f∗

m

(m = 1, 2, . . . ) are defined as in Theorem 3.

Theorem 4′. Let conditions of Theorem 4 be fulfilled. Then inclusion (9) holds if and only if
conditions (13), (14) and

lim
m→+∞

∥∥Φ−1(t)(Xm(t)−X0(t))
∥∥ = 0

hold uniformly on I, where X0, Xm are the fundamental matrices of systems (1), (3), respectively,
and f∗

m(t) ≡ B(X0X
−1
m , fm)(t) (m = 1, 2, . . . ).

Remark 2. In Theorem 4, condition (15) is essential and it cannot be neglected, i.e., if the
condition is violated, then the conclusion of the theorem is not true, in general. Below we present
an example.

Let I = [0, 1], n = 1, b = 1, B = 0, B0 = 1, Φ(t) ≡ 1−t; A(t) = Am(t) = A∗(t) ≡ ln(1−t) (m =
1, 2, . . . );

f(t) ≡ 0, fm(t) ≡ − 1

m

t∫
0

cos
ln(1− t)

m
(m = 1, 2, . . . ).

Then C∗(t, τ) ≡ 1− t(1 − τ)−1, x0(t) ≡ 0, xm(t) ≡ (1 − t) sin ln(1−t)
m (m = 1, 2, . . . ). So, all

conditions of Theorem 4 are fulfilled, except of (15), but condition (8) is not fulfilled uniformly
on I.
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1 Introduction
We investigate properties of a solution to the ordinary differential equation arises in mathematical
models describing the physico-chemical processes occurring during a cryochemical modification of
drug substances (see [6, 7]).

Under these assumptions, the thermal conductivity equation with mass transfer for the one–
dimensional case can be used to calculate the temperature field created by the carrier gas stream:

∂T

∂t
= V

∂T

∂x
− µ

ρCV
· ∂

∂x

(
λ
∂T

∂x

)
. (1.1)

Here ρ, µ, λ are the density (kg/m3), molecular weight (kg/mol), thermal conductivity
(W/(m ·K)) of the carrier gas, respectively, CV is the molar heat capacity of the carrier gas
at constant volume (J/(mol ·K)), V is the linear velocity of the carrier-gas flow front (m/s).

In stationary mode we have ∂T/∂t = 0 and equation (1.1) reduces to the ordinary differential
equation

dT

dx
− µ

ρV CV
· d

dx

(
λ
dT

dx

)
= 0. (1.2)

The flow rate of the carrier gas is controlled during the experiment with the help of an external
device (an industrial gas pipeline with accuracy, according to its passport data, not worse than
5%). The regulated gas stream of the carrier, passing through a heated copper screen (a mixed
molecular flow shaper) of cylindrical shape, heats up to a certain temperature, captures the vapors
of the initial substance and takes them out into the vacuum space. Let the nozzle area of the mixed
molecular flow shaper be S(m2). Then the molar flow rate of the carrier gas is dN/dt(mol/s) and
can be written as

Ṅ =
dN

dt
=

ρV S

µ
.

In this case, the ratio of the molar flow rate of the carrier gas dN/dt (mol/s) to the nozzle area of
the mixed molecular flow shaper, that is, the density of the carrier gas flow dn/dt (mol/(m2 · s))
can be represented as

ṅ =
dn

dt
=

Ṅ

S
=

ρV

µ
.
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Therefore, equation (1.2) can be written as

dT

dx
− d

dx

( λ

CV ṅ
· dT
dx

)
= 0.

It can be solved analytically, taking into account the dependence of the thermal conductivity
of the carrier gas on the temperature. An interesting fact is that the heat capacity of gases in a
wide range of pressures practically does not depend on the pressure. This circumstance received its
explanation from the molecular kinetic theory. A large number of gases, such as nitrogen, helium,
argon, carbon dioxide, etc., have the square-root dependence of the thermal conductivity on the
temperature expressed by the approximate formula

λ =
ik

3π3/2d2

√
RT

µ
, (1.3)

where

i is the sum of translational and rotational degrees of freedom of molecules (5 for diatomic
gases, 3 for monatomic ones),

k is the Boltzmann constant,

µ is the molar mass,

T is the absolute temperature,

d is the effective diameter of molecules,

R is the universal gas constant.

Representing λ in (1.3) as α
√
T with the appropriate coefficient α, we obtain

λ

CV ṅ
=

α
√
T

CV ṅ
= b

√
T with b =

α

CV ṅ
.

Now the thermal conductivity equation with mass transfer of these process for the one–dimensional
case can be transformed to the ordinary differential equation [5]:

d

dx

(
T − b

√
T
dT

dx

)
= 0, b > 0. (1.4)

We study the dependence of the temperature on the distance under three types of boundary
conditions, namely the Dirichlet, Neumann, and Robin ones.

The Dirichlet condition specifies the temperature value at the boundary.
The Neumann condition specifies the boundary value for the derivative of the temperature.
In the Robin condition, we specify a linear combination of the temperature value and the

derivative of the temperature at the boundary.
The coefficient of the temperature value in the Robin condition is the Biot number (the ratio

of the conductive thermal resistance inside the object to the convective resistance at the surface of
the object).

The mathematical model was discussed with colleagues from the Department of Chemistry of
M. V. Lomonosov Moscow State University T. A. Shabatina, and Yu. Morozov.
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2 General decreasing solutions
Theorem 2.1. Each positive solution T to equation (1.4) is either constant or strictly monotonic.
Each strictly decreasing solution has the form

T (x) = c2Θ
(x− x∗

bc

)2
, (2.1)

where x∗ and c > 0 are arbitrary constants, while Θ is a decreasing function (−∞; 0) → (0; 1)
implicitly defined by

x = 2Θ(x) + ln
1−Θ(x)

1 + Θ(x)
. (2.2)

The left-hand side of (1.4) contains an expression in parentheses which must be constant and,
for the solution defined by (2.1), equals c2.

If maximally extended, such T is defined on the interval (−∞;x∗) and satisfies

T (x) → c2 and T ′(x) → 0 as x → −∞, (2.3)
T (x) → 0 and T ′(x) → −∞ as x → x∗. (2.4)

Proof. First, by the substitution T = Z2 with Z > 0 we convert equation (1.4) into the form

(Z2 − 2bZ2Z ′)′ = 0,

which immediately yields
Z2 − 2bZ2 Z ′ = C = const

with further transformations depending on sgnC.
If C = 0, then either Z ≡ 0 or 1 = 2bZ ′, which entails that Z ′ > 0 and Z is strictly increasing.
If C = −c2 < 0, then we obtain Z2 + c2 = 2bZ2Z ′. This shows again that Z ′ > 0.
Finally, if C = c2 > 0 with c > 0, then we obtain

Z2 − c2 = 2bZ2Z ′. (2.5)

Now, if Z(x) = c at some point x, then, by the uniqueness theorem, Z must coincide with the
constant solution Z ≡ c. If not, then either Z > c on the whole domain or Z < c. We reject the
first case (with Z ′ > 0 due to (2.5)) as well as the previous constant one.

In the second case we put
Z(x) = c z

( x

bc

)
, 0 < z < 1,

which converts (2.5) into
z2 − 1 = 2z2z′. (2.6)

This can be written as
1 =

2z2z′

z2 − 1
=

(
2 +

2

z2 − 1

)
z′,

whence, for 0 < z < 1,

x− a =

z(x)∫
0

(
2 +

2

ζ2 − 1

)
dζ = 2z(x) + ln

1− z(x)

1 + z(x)

with some a. We have a general family of implicitly defined strictly decreasing solutions to (2.6)
satisfying 0 < z < 1. One of them, with a = 0, is just Θ defined by (2.2). All others can be
obtained from Θ by a horizontal shift. Thus, we have (2.1).
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It follows from (2.2) that

Θ(x) → 0 as x → 0,

Θ(x) → 1 as x → −∞.

Then, using (2.6), we obtain

Θ′(x) → −∞ as x → 0,

Θ′(x) → 0 as x → −∞.

These limits, together with (2.1), produce the first three limits in (2.3) and (2.4). For the fourth
one, we use (2.5) to obtain

T ′ = 2ZZ ′ =
Z2 − c2

2bZ
=

T − c2

2b
√
T

→ −∞ as T → 0.

3 On existence and uniqueness of solutions
Theorem 3.1. For any constants x0 < x1 and T1 > T0 > 0, equation (1.4) has a unique solution
T defined on [x0;x1] and satisfying the conditions

T (x0) = T0, T (x1) = T1. (3.1)

Proof. The boundary conditions show that, according to Theorem 2.1, the solution T must strictly
decrease and therefore have the form given by (2.1) and (2.2). So, the boundary conditions become√

Tj

c
= Θ

(xj − x∗

bc

)
, j ∈ {0, 1},

or, by using (2.2),

xj − x∗

bc
= 2

√
Tj

c
+ ln

1−
√

Tj

c

1 +

√
Tj

c

, j ∈ {0, 1}. (3.2)

Thus, we have to prove the existence and uniqueness of a pair (x∗, c) satisfying (3.2). Putting

q :=

√
T1

T0
∈ (0; 1) and k :=

√
T0

c
∈ (0; 1), (3.3)

we write the difference of the two equations (3.2) as

k(x1 − x0)

b
√
T0

= 2k(q − 1) + ln
(1− qk)(1 + k)

(1 + qk)(1− k)

or
x1 − x0

2b
√
T0

= Fq(k) (3.4)

with

Fq(k) := f(k)− qf(qk), (3.5)

f(k) :=
1

2k
ln

1 + k

1− k
− 1. (3.6)
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Lemma 3.1. For each A > 0 and q ∈ (0; 1), there exists a unique k ∈ (0; 1) such that Fq(k) = A
with Fq defined by (3.5) and (3.6). The mapping (A, q) 7→ k is a C1 function (0;+∞)×(0; 1) → (0; 1)
strictly increasing with respect to both A and q.

Proof. Note that

f(k) =
ln(1 + k)

2k
− ln(1− k)

2k
− 1,

whence f(k) → 0 as k → 0 (by L’Hôpital’s rule) and f(k) → +∞ as k → 1.
Now we study the derivative of f by using its Taylor series uniformly converging on any sub-

segment of the interval (0, 1).

f ′(k) =
1

2k(1 + k)
− ln(1 + k)

2k2
+

1

2k(1− k)
+

ln(1− k)

2k2
=

1

k(1− k2)
− ln(1 + k)

2k2
+

ln(1− k)

2k2

=
1

k

∞∑
n=0

k2n +
1

2k2

∞∑
n=1

((−1)n − 1)kn

n
=

1

k

∞∑
n=0

k2n − 1

k2

∞∑
m=0

k2m+1

2m+ 1

=
1

k

∞∑
n=0

(
1− 1

2n+ 1

)
k2n =

1

k

∞∑
n=1

2n

2n+ 1
k2n =

∞∑
n=1

2n

2n+ 1
k2n−1 > 0,

whence f(k) > 0 as well.
Further,

f ′′(k) =

∞∑
n=1

2n(2n− 1)

2n+ 1
k2n−2 > 0,

whence f ′ is strictly increasing and

dFq

dk
(k) = f ′(k)− q2f ′(qk) > 0.

So, Fq is strictly increasing in k, Fq(k) → 0 as k → 0, and

Fq(k) = (1− q)f(k) + q(f(k)− f(qk)) > (1− q)f(k) → +∞ as k → 1.

Therefore, Fq must attain, exactly once, each A > 0, which proves the first part of Lemma 3.1.
The second part follows immediately from the implicit function theorem and the evident in-

equalities

∂(Fq(k)−A)

∂A
= −1 < 0,

∂(Fq(k)−A)

∂q
= −f(qk)− qkf ′(qk) < 0.

We return to proving Theorem 3.1. Having the unique value of k satisfying (3.4), we obtain,
from (3.2) and (3.3), the unique values

c =

√
T0

k
>

√
T0 and x∗ = x1 − 2b

√
T1 − bc ln

c−
√
T1

c+
√
T1

to satisfy (3.2). This completes the proof of Theorem 3.1.

Now we will to prove two theorems concerning other boundary conditions for equation (1.4).
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Theorem 3.2. For any real constants x0 < x1, T0 > 0, and U1 < 0, equation (1.4) has a unique
solution T defined on [x0;x1] and satisfying the conditions

T (x0) = T0, T ′(x1) = U1.

Theorem 3.3. For any real constants x0 < x1, T0 > 0, and U1 < 0, equation (1.4) has a unique
solution T defined on [x0;x1] and satisfying the conditions

T (x0) = T0, T ′(x1) = U1T (x1).

Proof. We try to prove the existence and uniqueness of a constant T1 ∈ (0;T0) such that the
unique solution T existing according to Theorem 3.1 satisfies the boundary conditions of the related
theorem.

According to Theorem 2.1, T − b
√
T T ′ = c2, whence, using notation (3.3),

T ′(x1) =
T (x1)− c2

b
√
T (x1)

=
q2T0 − T0/k

2

bq
√
T0

=
k2q2 − 1

k2q
·
√
T0

b
,

T ′(x1)

T (x1)
=

k2q2 − 1

k2q3
· 1

b
√
T0

,

where k ∈ (0; 1) is chosen, depending on q ∈ (0; 1), to provide the boundary conditions (3.1) for
the solution T defined by (2.1).

It follows from Lemma 3.1 that k ∈ (0; 1) strictly increases with respect to q ∈ (0; 1). So, in
both right-hand sides of the last equations, the numerator k2q2−1 is negative and strictly increases
in q, while its absolute value decreases. The denominators are positive and also strictly increase.
Thus, the fractions are negative with strictly decreasing absolute values.

Now consider their limits at 0 and 1.
Both fractions tend to −∞ as q → 0. As for q → 1, there must exist k1 = lim

q→1
k ∈ (0; 1].

If k1 < 1, then it follows from (3.4)–(3.6) that

0 <
x1 − x0

2b
√
T0

= F1(k1) = f(k1)− 1 · f(1 · k1) = 0.

This contradiction shows that k1 = 1. (For this k1, no contradiction arises because f(k) → +∞ as
k → 1.) Hence

T ′(x1) → 0 and T ′(x1)

T (x1)
→ 0 as q → 1.

So, both expressions strictly increase from −∞ to 0 as q increases from 0 to 1 (i.e. as T1

increases from 0 to T0). Therefore, they both must attain, exactly once, each negative value, and
this proves Theorems 3.2 and 3.3.

Remark 3.1. The authors’ results connected with mathematical modeling in other physical pro-
cesses can be found in [1–4].
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For a given n ∈ N let Mn denote the class of linear differential systems

ẋ = A(t)x, x ∈ Rn, t ∈ R+ ≡ [0,+∞), (1)

with continuous bounded coefficients defined on the half-axis R+. In what follows, we identify
system (1) with its defining function A( · ) : R+ → Rn×n and therefore write A ∈ Mn and the like.
The vector space of solutions to system (1) will be denoted by S(A). Recall that the characteristic
exponent (or the Lyapunov exponent) of a non-zero solution x( · ) to system (1) is the quantity [7,
p. 552], [1, p. 25]

λ[x] = lim
t→+∞

1

t
ln ∥x(t)∥;

for the zero solution let it equal −∞. As is well-known [7, p. 561], [1, p. 38], system (1) has exactly
n Lyapunov exponents, counting multiplicity, which we denote by λ1(A) 6 λ2(A) 6 · · · 6 λn(A).

For each α ∈ R, let

Lα(A) =
{
x ∈ S(A) : λ[x] < α

}
and Nα(A) =

{
x ∈ S(A) : λ[x] 6 α

}
.

Clearly [6, p. 2], for every α ∈ R, the sets Lα(A) and Nα(A) are vector subspaces of the space
S(A). Let us denote by dα(A) and Dα(A) respectively their dimensions. In particular, the number
d0(A) is called the exponential stability index and, as follows from its definition, coincides with the
dimension of the subspace of solutions to system (1) that decay exponentially at infinity.

O. Perron constructed [8], see also [6, p. 13], an example of a two-dimensional diagonal system
A ∈ M2 and its perturbation Q ∈ M2 decaying exponentially at infinity such that the following
relations hold:

da(A) = 1, Da(A) = 2, da(A+Q) = 0, Da(A+Q) = 1, (2)

where a is a positive number. Moreover, it is fairly easy to see that in equalities (2) the number
a can be taken arbitrary. This assertion follows from an obvious fact that by adding the matrix
γIn (In being the n × n identity matrix and γ ∈ R) to the coefficient matrix A of system (1), we
change the Lyapunov exponents of all its solutions by γ.
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Thus, by virtue of the Perron example, the quantities dα and Dα are not invariant under
vanishing at infinity perturbations of system coefficients and hence [9, Lemma 7.3], they are not
semicontinuous in the topology of uniform convergence over the half-axis R+ on the space Mn.

System (1) is said [7, p. 563], [1, p. 61] to be regular, if the following two conditions are met:

1) the limit

T (A) = lim
t→+∞

t−1

t∫
0

trA(τ) dτ

exists, where tr ( · ) stands for the trace of a matrix;

2) the equality
λ1(A) + λ2(A) + · · ·+ λn(A) = T (A)

holds.

The class of regular n-dimensional systems will be denoted by Rn.
A. M. Lyapunov demonstrated [7, pp. 576–578] that if a nonlinear system (under natrural as-

sumptions on the right-hand side) has a regular first approximation system with the exponential
stability index equal to k ∈ {1, . . . , n}, then the nonlinear system possesses exactly k-dimensional
exponentially stable manifold passing through the origin (i.e. any solution to the nonlinear sys-
tem starting on this manifold decays exponentially; furthermore, such a solution x( · ) admits the
estimate

∥x(t)∥ 6 Cε exp
{
(λk(A) + ε)t

}
∥x(0)∥ for every ε > 0,

where λk(A) is the k-th Lyapunov exponent of the first approximation system). Taking into account
this fundamental result, one may conjecture that the exponential stability index of a regular system
(and along with it the quantities dα and Dα for all α ∈ R) is invariant under vanishing at infinity
perturbations of its coefficients. Let us note that for exponentially decaying perturbations of a
regular system the mentioned invariance does indeed take place [3, 4].

The conjecture stated above had been around for quite some time, until R. È. Vinograd in the
paper [10] gave an example of systems A,B ∈ R2 for which the relations

d0(A) = 0, D0(A) = 2, D0(B) = d0(B) = 1, lim
t→+∞

∥A(t)−B(t)∥ = 0

are valid.
Let M be a metric space. Consider a family of systems

ẋ = A(t, µ)x, x ∈ Rn, t ∈ R+, (3)

such that for each fixed µ ∈ M the matrix-valued function A( · , µ) has continuous and bounded
coefficients, i.e. A( · , µ) ∈ Mn.

Here and subsequently, Zn stands for the set {0, 1, . . . , n}. For each α ∈ R, define the functions
dα( · ;A), Dα( · ;A) : M → Zn by

dα(µ;A) = dα(A( · , µ)) and Dα(µ;A) = Dα(A( · , µ)), µ ∈ M.

Let Rn(M) denote the class of families of systems (1) with coefficient matrices of the form
A(t, µ) = B(t) + Q(t, µ), where a matrix-valued function B : R+ → Rn×n is continuous and
bounded, the system ẋ = B(t)x is regular, and Q : R+×M → Rn×n is continuous and satisfies the
condition

sup
µ∈M

∥Q(t, µ)∥ → 0 as t → +∞.
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Given α, β ∈ R, let

Rn
α,β(M) ≡

{
(dα( · ,A), Dβ( · ,A)) : A ∈ Rn(M)

}
.

The problem is to obtain a complete function-theoretic description of the classes Rn
α,β(M) for any

metric space M and numbers n ≥ 2 and α, β ∈ R. This problem can be viewed as a generalization
of Vinograd’s example [10] of instability of the Lyapunov exponents of a regular system under
vanishing at infinity perturbations of its coefficient matrix.

Following [5, p. 264], for a number r ∈ R and function f : M → R, we write [f > r] for the
Lebesgue set {µ ∈ M : f(µ) ≥ r}.

Before stating the main result of the report, let us recall [5, p. 156] that a subset of a metric
space is said to be an Fσ-set, if it can be represented as a countable union of closed subsets, and
an Fσδ-set, if it can be represented as a countable intersection of Fσ-sets.

The following statement solves the problem posed above.

Theorem. For any metric space M , real numbers α, β and integer n ≥ 2, a vector function
(g, h) : M → Zn×Zn belongs to the class Rn

α,β(M), if and only if for every r ∈ R, the set [g ≥ r] is
an Fσ-set and [h ≥ r] is an Fσδ-set, and for all µ ∈ M , we have either h(µ) ≥ g(µ) or h(µ) ≤ g(µ),
depending on whether β ≥ α or β < α.

Remark 1. A complete description of an analogous class of vector functions corresponding to fam-
ilies (3) with coefficients of the form A(t, µ) = B(t) +Q(t, µ), where B : R+ → Rn×n is continuous
and bounded, and Q : R+ ×M → Rn×n is continuous and decays exponentially (uniformly in µ)
as t → +∞, is obtained in the paper [2] and coincides with the one stated above.

Remark 2. The class R1
α,β(M) consists of pairs of constant functions M → {0, 1}, namely:

R1
α,β(M) =

{
{(0, 0), (1, 1), (0, 1)}, if β ≥ α,

{(0, 0), (1, 1), (1, 0)}, if β < α.

References

[1] L. Ya. Adrianova, Introduction to Linear Systems of Differential Equations. Translated from
the Russian by Peter Zhevandrov. Translations of Mathematical Monographs, 146. American
Mathematical Society, Providence, RI, 1995.

[2] E. A. Barabanov, V. V. Bykov and M. V. Karpuk, Complete description of the exponential
stability index for linear parametric systems as a function of the parameter. (Russian) Differ.
Uravn. 55 (2019), no. 10, 1307–1318; translation in Differ. Equ. 55 (2019), no. 10, 1263–1274.

[3] Yu. S. Bogdanov, On the theory of systems of linear differential equations. (Russian) Dokl.
Akad. Nauk SSSR (N.S.) 104 (1955), 813–814.

[4] D. M. Grobman, Characteristic exponents of systems near to linear ones. (Russian) Mat.
Sbornik N.S. 30(72) (1952), 121–166.

[5] F. Hausdorff, Set Theory. Second edition. Translated from the German by John R. Aumann
et al. Chelsea Publishing Co., New York, 1962.

[6] N. A. Izobov, Lyapunov Exponents and Stability. Stability, Oscillations and Optimization of
Systems, 6. Cambridge Scientific Publishers, Cambridge, 2012.



20 E. A. Barabanov, V. V. Bykov

[7] A. M. Lyapunov, The general problem of the stability of motion. Translated by A. T. Fuller
from Édouard Davaux’s French translation (1907) of the 1892 Russian original. With an ed-
itorial (historical introduction) by Fuller, a biography of Lyapunov by V. I. Smirnov, and
the bibliography of Lyapunov’s works collected by J. F. Barrett. Lyapunov centenary issue.
Internat. J. Control 55 (1992), no. 3, 521–790.

[8] O. Perron, Die Ordnungszahlen linearer Differentialgleichungssysteme. (German) Math. Z. 31
(1930), no. 1, 748–766.

[9] N. N. Sergeev, A contribution to the theory of Lyapunov exponents for linear systems of
differential equations. J. Sov. Math. volume 33 (1986), 1245–1292.

[10] R. È. Vinograd, Instability of characteristic exponents of regular systems. (Russian) Doklady
Akad. Nauk SSSR (N.S.) 91 (1953), 999–1002.



REPORTS OF QUALITDE, Volume 2, 2023 21

On Solvability Conditions
for the Cauchy Problem for Second Order

Linear Non-Volterra Functional Differential Equations

Eugene Bravyi
Perm National Research Polytechnic University, Perm, Russia

E-mail: bravyi@perm.ru

Consider the Cauchy problem for the most general case of linear second order non-Volterra
functional differential equations, which can be written in the operator form:{

ẍ(t) = (T+x)(t)− (T−x)(t) + f(t), t ∈ [0, 1],

x(0) = c0, ẋ(0) = c1,
(1)

where T+ and T− are linear positive operators acting from the space of real continuous functions
C[0, 1] into the space of real integrable functions L[0, 1] (positive operators map non-negative
functions into non-negative ones), c0, c1 ∈ R, f ∈ L[0, 1] is integrable.

Let p+ and p− be two given non-negative integrable functions. Suppose that positive operators
T+ and T− satisfy the equalities

(T+1 )(t) = p+(t), (T−1 )(t) = p−(t), t ∈ [0, 1], (2)

where 1 is the unit function, 1(t) = 1 for all t ∈ [0, 1]. By imposing various restrictions on the
functions p+ and p−, we can obtain various conditions for the solvability of problem (1) for all
operators T+, T− satisfying equalities (2) and additional restrictions.

All known solvability conditions of this kind for many boundary value problems were obtained
under the same types of restrictions on the operators T+, T−, that is only under pointwise re-
strictions or only under integral ones [2, 4–11]. We can obtain solvability conditions under mixed
restrictions, when pointwise restrictions are imposed on the action of one of the operators T+, T−,
and integral restrictions are imposed on the other operator.

Let us present several obtained statements.
First of all, using ideas of [1,3,5,6], we formulate necessary and sufficient solvability conditions

for pointwise restrictions.
Put

k(t) ≡ 1−
t∫

0

(t− s)(p+(s)− p−(s)) ds.

Theorem 1. Let non-negative functions p+, p− ∈ L[0, 1] be given.
The Cauchy problem (1) is uniquely solvable for all linear positive operators T+, T− : C[0, 1] →

L[0, 1] such that T+1 = p+, T−1 = p− if and only if

1∫
0

(1− s)p+(s) ds < 1
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and

(
1−

t3∫
0

(t1 − s)p+(s) ds+

t1∫
t3

(t1 − s)p−(s) ds

)
k(1)

+

( t3∫
0

(1− s)p+(s) ds−
1∫

t3

(1− s)p−(s) ds

)
k(t1) > 0

for all 0 ≤ t3 ≤ t1 ≤ 1.

Corollary 1. Let a non-negative function p− ∈ L[0, 1] be given.
The Cauchy problem {

ẍ(t) = −(T−x)(t) + f(t), t ∈ [0, 1],

x(0) = c0, ẋ(0) = c1,

is uniquely solvable for all linear positive operators T− : C[0, 1] → L[0, 1] such that T−1 = p− if
and only if the inequality

∆− ≡
(
1 +

t1∫
t3

(t1 − s)p−(s) ds

)(
1 +

1∫
0

(1− s)p−(s) ds

)

−
1∫

t3

(1− s)p−(s) ds

(
1 +

t1∫
0

(t1 − s)p−(s)) ds

)
> 0

holds for all 0 ≤ t3 ≤ t1 ≤ 1.

Corollary 2. If

p−(t) ≤ 16, p−(t) ̸≡ 16 or
p−(t) ≤ 487t2(1− t)2 or p−(t) ≤ 39t or p−(t) ≤ 24.7e−t,

p−(t) ≤ 9.8et or p−(t) ≤ 10.4√
1− t

or p−(t) ≤ 32 sin(10πt),

then the Cauchy problem {
ẍ(t) = −(T−x)(t) + f(t), t ∈ [0, 1],

x(0) = c0, ẋ(0) = c1

is uniquely solvable for all linear positive operators T− : C[0, 1] → L[0, 1] such that T−1 = p−.

With the help of Theorem 1 we can obtain necessary and sufficient solvability conditions for
mixed restrictions.

Theorem 2. Let a non-negative function p− ∈ L[0, 1] and a number P+ ≥ 0 be given.
The Cauchy problem (1) is uniquely solvable for all linear positive operators T+, T− : C[0, 1] →

L[0, 1] such that

T−1 = p−,

1∫
0

(1− s)(T+1 )(s) ds = P+
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if and only if

P+ < 1,

∆−(t3, t1, p
−) > P+

(
1 +

t1∫
t3

(t1 − s)p−(s) ds

)
, 0 ≤ t3 ≤ t1 ≤ 1,

∆−(t3, t1, p
−) ≥ P+

(
t1 + (1− t1)

t3∫
0

sp−(s) ds

)
, 0 ≤ t3 ≤ t1 ≤ 1.

Corollary 3. Let two non-negative numbers P+, P− be given.
The Cauchy problem (1) is uniquely solvable for all linear positive operators T+, T− : C[0, 1] →

L[0, 1] such that

1∫
0

(1− s)(T+1 )(s) ds ≤ P+ and (T−1 )(t) ≤ P−, t ∈ [0, 1],

if and only if
P+ < 1 and P− < 8

(
1 +

√
1− P+

)
.

Theorem 3. Let constants P+ ≥ 0, P− ≥ 0 be given.
The Cauchy problem (1) is uniquely solvable for all linear positive operators T+, T− : C[0, 1] →

L[0, 1] such that

(T−1)(t) ≤ P−, t ∈ [0, 1],

1∫
0

(1− s)(T+1)(s) ds ≤ P+,

if and only if
P+ < 1, P− < 8

(
1 +

√
1− P+

)
.

Theorem 4. Let α ≥ −1. Let a non-negative function p+L[0, 1] and a number P− ≥ 0 be given.
The Cauchy problem (1) is uniquely solvable for all linear positive operators T+, T− : C[0, 1] →

L[0, 1] such that

T+1 = p+,

1∫
0

(1 + αs)(T−1 )(s) ds = P−

if and only if

P+ ≡
1∫

0

(1− s)p+(s) ds < 1,

P− ≤ β(t1)(1 + t1T +
3 − T +

2 ) +
T +
1 − T +

2

t1

+ 2

√
β(t1)(1− T +

2 )
(
T +
3 + 1− T + +

T +
1 − T +

2

t1

)
, 0 < t3 ≤ t1 < 1,
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where

β(t1) =
1 + αt1
t1(1− t1)

,

T +
1 =

t1∫
0

(t1 − s)p+(s) ds, T +
2 =

t3∫
0

(t1 − s)p+(s) ds, T +
3 =

t3∫
0

(1− s)p+(s) ds.

Corollary 4. Let α ≥ −1. Let a non-negative function p+ ∈ L[0, 1] and a number P− ≥ 0 be
given, and p+(t) = 0 for t ∈ [0, 1

1+
√
1+α

].
The Cauchy problem (1) is uniquely solvable for all linear positive operators T+, T− : C[0, 1] →

L[0, 1] such that

T+1 = p+,

1∫
0

(1 + αs)(T−1 )(s) ds = P−

if and only if
P+ < 1, P− + 1− P+ ≤

(
1 +

√
1 + α+

√
1− P−

)2
.

Corollary 5. The Cauchy problem (1) is uniquely solvable for all linear positive operators T+, T− :
C[0, 1] → L[0, 1] such that

(T+1 )(t) ≤ 2, (T+1 )(t) ̸≡ 2, t ∈ [0, 1],

1∫
0

(T−1 )(s) ds ≤ min
t∈(0,1)

( 1

t(1− t)
+ t+

√
1 + t

)
≈ 6.9.

Corollary 6. The Cauchy problem (1) is uniquely solvable for all linear positive operators T+, T− :
C[0, 1] → L[0, 1] such that

(T+1 )(t) ≤ 1, t ∈ [0, 1],

1∫
0

(T−1 )(s) ds ≤ min
t∈(0,1)

(
1

t(1− t)
+

t

2
+

√
(2− t2)(1 + t)

t(1− t)

)
≈ 7.4.

The constants of the solvability conditions from Corollaries 5 and 6 are exact and cannot be
increased.

Finally we obtain solvability conditions under integral restrictions on both operators T+, T−.

Theorem 5. Let α ≥ −1. Let constants P+ ≥ 0, P− ≥ 0 be given.
The Cauchy Problem (1) is uniquely solvable for all linear positive operators T+, T− : C[0, 1] →

L[0, 1] such that

1∫
0

(1 + αs)(T−1)(s) ds ≤ P−,

1∫
0

(1− s)(T+1)(s) ds ≤ P+,

if and only if
P+ < 1, P− − P+ + 1 ≤

(
1 +

√
1 + α+

√
1− P+

)2
.
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Many areas of modern physics and technology are substantially based on various oscillatory
processes or use them. Oscillatory processes also play an important, and sometimes determining
role in a significant part of natural phenomena. These circumstances determine the relevance of
research in the oscillation theory and the necessity for its development. Although an effective
apparatus for studying oscillations in nonlinear systems is developed in modern oscillation theory,
the “linear” part of the theory remains an important and demanded part of it both in theoretical
and practical aspects. At the same time, the center of gravity of practical research methods has
been largely shifted to systems of linear differential equations with periodic coefficients (see, for
example, [1, 3, 12] and many other works).

Let us dwell in more detail on some of the studies of the Uruguayan mathematician J. L. Massera
on the problem of the existence of periodic solutions of ordinary differential periodic systems, which
are directly related to this paper. For quite a long time, up to the middle of the 20th century, it was
believed in the theory of oscillations that the period of a periodic differential system and the period
of its periodic solution are commensurable. And only in 1950 J. L. Massera showed the fallacy of
this assumption. Moreover, he obtained (also for linear systems) the conditions for the existence of
solutions whose period is incommensurable with the period of the system itself [7]. Subsequently,
such solutions, because of their unusual nature, were called strongly irregular [2, p. 17].

In the same 1950, J. L. Massera published another paper [8] on the existence of a periodic
solution of a periodic differential system of the same period as the system. In particular, he
established the following remarkable result: in the linear case the existence of a bounded solution
of a periodic system entails the existence of a periodic solution of the same period as the system. In
other words, the necessary and sufficient condition for a periodic linear system to have a periodic
solution of the same period as the system is the existence of a bounded solution of the system.
Consequently, this Massera’s theorem reduces the problem of the existence of periodic solution
of a periodic linear differential system with the same period as the system to the problem of the
existence of a bounded solution. The latter problem is simplier than the original one, since the class
of bounded continuously differentiable vector functions is much broader than its subclass consisiting
of periodic vector functions.

Thus we have the following rather unexpected property: if a linear periodic system has a solution
from a wide class (bounded solutions), it also has a solution from narrow class (periodic solutions
of the same period as the system), – a rather rare situation in mathematics in general, if we take
into account the fact that only the existence of some object would imply the existence of an object
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with additional properties. This result of J. L. Massera was transferred or generalized to other
types of systems and their solutions in [4–6,9–11,13,14] and others.

As a cosequence of Massera’s theorem a natural question arises: is it possible to replace in its
formulation the class of bounded solutions by some broader class so that modified theorem remains
true. The present paper is devoted to the solution of this problem.

Recall that a set in a topological space is called nowhere dense if the interior of its closure is
empty, and a set of the first category according to Baer, if it can be represented as a countable
union of nowhere dense in this space sets. A set that is not a set of the first category is called a
set of the second category according to Baer.

If M is a topological space and M0 ⊂ M, then we will say that the space M is an essential
extension of a subspace M0 if M0 has the first category in the space M .

Let M be some set of vector functions defined on the entire numerical axis R. A metric in M
given by the equality

distu(f, g) = min
{
1, sup

t∈R
∥f(t)− g(t)∥

}
for all f, g ∈ M,

is called the metric of uniform convergence on the axis, and a metric given by the equality

distc(f, g) = sup
t∈R

min
{
∥f(t)− g(t)∥, |t|−1

}
for all f, g ∈ M,

– the metric of uniform convergence on segments. It is easy to see that convergence of the sequence
(fn)n∈N ⊂ M in the metric distu is equivalent to uniform convergence on the axis, and convergence
in the metric distc is equivalent to uniform convergence on each segment.

Next we denote by B the set of bounded continuously differentiable vector functions R → Rn,
and by Pω its subset consisting of ω-periodic vector functions. Let us introduce the metric distu of
uniform convergence on the axis on the set B and denote the obtained metric space by Bu.

Consider a linear differential system

ẋ = A(t)x+ f(t), x ∈ Rn, t ∈ R, (1)

where n ∈ N is fixed, with continuous ω-periodic n× n coefficient matrix A(t) and free term f(t).
Its solutions are continuously differentiable vector functions x( · ) : R → Rn. As stated above,
according to Massera’s theorem, if the system (1) has a bounded solution, then it also has an
ω-periodic solution. Let us emphasize that we do not assert the ω-periodicity of this bounded
solution, but only the fact that the system (1) has an ω-periodic solution. In general, a bounded
solution of the ω-periodic system (1) may be neither ω-periodic nor periodic.

The problem stated above has the following formal formulation.

Problem. Is it possible to extend the class B of bounded vector-functions to some class so that
the fact that the ω-periodic system (1) has a solution in this wider class implies that it also has an
ω-periodic solution?

Further, while comparing a class of functions and some subclass of it, we will use the language
of Baire’s categories to understand the relation between them. Thus, Massera’s theorem, which
reduces the question of the existence of a solution from the set Pω to the question of the existence
of a solution from the set B, means that the latter question is much simplier, since, as the following
statement shows, the space Bu is an essential extension of its subspace Pω.

Indeed,there is

Proposition. The set Pω is closed and nowhere dense in the space Bu; in particular, it has the
first Baire category in Bu.
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Thus, almost all in the sense of Baire’s categories functions of the space Bu are not ω-periodic.
Nevertheless, according to Massera’s theorem, only the fact of existing of a solution belonging to the
“wide” class (class B) implies the existing of a solution belonging to the “narrow” class (class Pω).

Let us give the following

Definition. We will say that a vector function x( · ) : R → Rn grows slower than a linear function,
if at least one of the following relations holds

lim
t→−∞

∥x(t)∥
t

= 0 or lim
t→+∞

∥x(t)∥
t

= 0. (2)

We denote by L the class of continuously differentiable vector functions R → Rn, which grow
slower than a linear function. Clearly, B ⊂ L and this is a proper inclusion. Indeed, for example,
unbounded on R vector function (ln(t2 + 1), 1, . . . , 1)⊤ satisfies the condition (2), i.e. grows slower
than a linear function. Therefore, the following statement strengthens Massera’s theorem.

Theorem. An ω-periodic system (1) has an ω-periodic solution if and only if it has a solution that
grows slower than a linear function.

The proof of necessity follows obviously from the chain of inclusions Pω ⊂ B ⊂ L. The proof of
sufficiency of the statement of the theorem is equivalent to proving that if the system (1) has no
ω-periodic solutions, then it also has no solutions that grow slower than a linear function.

The question naturally arises how significant is extension L of the set B. If we consider in L
the metric distu of uniform convergence on the axis, then from the point of view of categories there
is no difference between L and B, since, as it is easy to see, in this metric L is the union of two
open sets: the set B of interest and its complement L \ B.

Consider in L the metric distc of uniform convergence on segments. We denote the obtained
metric space by Lc.

The set B has the first Baire’s category in the space Lc. Thus almost all functions in the metric
space Lc are not bounded on the axis in the sense of categories, i.e. do not belong to the set B.
Consequently, the space Lc is an essential extension of the subspace B.
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1 Introduction
Consider the nonlinear equations(

a(t)ΦE(x
′)
)′
+ b(t)F (x) = 0, t ∈ I = [1,∞), (1.1)

and (
a(t)ΦR(x

′)
)′
+ b(t)F (x) = 0, t ∈ I = [1,∞), (1.2)

where the functions a and b are continuous and positive on [1,∞), the function F is continuous
on R with F (u)u > 0 for u ̸= 0, and the functions ΦE : R → (−1, 1) and ΦR : (−1, 1) → R are
defined as

ΦE(u) =
u√

1 + u2
, ΦR(u) =

u√
1− u2

.

The operator ΦE is called the Euclidean mean curvature operator. It arises in the search for
radial solutions to partial differential equations which model fluid mechanics problems, in particular
capillarity-type phenomena for compressible and incompressible fluids. The operator ΦR is called
the Minkowski mean curvature operator or, sometimes, the relativity operator. It originates from
studying certain extrinsic properties of the mean curvature of hypersurfaces in the relativity theory,
see e.g., [1, 2] and the references therein.

The operators ΦE and ΦR are strictly related: the inverse of ΦE is ΦR and vice-versa. This
fact plays an important role in the study of equations (1.1), (1.2), as we show below.

Here we consider the problem associated with (1.1) and (1.2) to find necessary and sufficient
conditions for the existence of solutions such that

lim
t→∞

x(t) = ∞, lim
t→∞

a(t)x′(t) = 0. (1.3)

Observe that sometimes such solutions are called intermediate solutions, see, e.g., [3]. Other boun-
dary value problems concerning Kneser-type boundary value problems for (1.1), or (1.2), are in [7].
More details on Kneser boundary value problems can be found in [11, Sections 13.1, 13.2 and 16.1].

Denote by Ja, Jb, J1 the following integrals

Ja =

∞∫
1

1

a(t)
dt, Jb =

∞∫
1

b(t) dt, Jab =

∞∫
1

b(t)

( t∫
1

1

a(s)
ds

)
dt.
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If the nonlinearity F is odd and satisfies the conditions

lim inf
u→∞

F (u)

u
> 0, lim sup

u→∞

F (u)

u
< ∞, (1.4)

that, is, roughly speaking, F has a linear growth near infinity, we show that equations (1.1) and
(1.2) are closely related with the linear equation(

a(t)x′
)′
+ b(t)x = 0. (1.5)

Indeed, the well-known Leighton criterion states that (1.5) is oscillatory if Ja = Jb = ∞, see,
e.g., [6] or [12, Theorem 2.24]. This oscillation result is valid also for equations with the curvature
operator, see below. Further, the qualitative similarity between equations with the curvature opera-
tor and the linear case continues to hold also when (1.5) is nonoscillatory. More precisely, concerning
the intermediate solutions in the linear case, the following holds, see, e.g., [5, Theorems 1 and 2].

Theorem 1.1. Assume that Ja = ∞, Jb < ∞. If the linear equation (1.5) is nonoscillatory, then
(1.5) has eventually positive solutions x satisfying (1.3) if and only if Jab = ∞.

In the following we illustrate how Theorem 1.1 continues to hold for equations (1.1) and (1.2).

2 Main results
We start by considering equation (1.1). The following oscillation result can be viewed as an exten-
sion of the quoted Leighton criterion.

Theorem 2.1. Let Ja = ∞, Jb = ∞ and lim inf
u→∞

F (u) > 0. Then any continuable solution at
infinity of equation (1.1) is oscillatory.

Theorem 2.1 is proved in [3, Theorem 2.1 (ii)], see also [8, Theorem 4.1], by using a different
argument to the one in [6] or [12, Theorem 2.24] for linear equation.

The next result concerns the asymptotic proximity between the intermediate solutions to equa-
tions (1.1) and (1.5). The following holds.

Theorem 2.2. Let Ja = ∞, lim inf
t→∞

a(t) > 0, conditions (1.4) hold and FM = sup
u≥1

F (u)/u.

If the linear equation (√
3

2
a(t)w′

)′
+ FM b(t)w = 0 (2.1)

is nonoscillatory, then equation (1.1) has infinitely many solutions x satisfying (1.3) if and only if

Jb < ∞, Jab = ∞. (2.2)

Theorem 2.2 follows from [8, Theorem 3.1, Theorem 4.2]. Observe that Theorem 2.2 requires the
existence of a suitable nonoscillatory linear equation (2.1) which, roughly speaking, can be viewed
with respect to (1.1), as a dominant equation. This assumption can be verified by comparing (2.1)
with known linear auxiliary equations such as, for instance, the Euler equation or the Riemann–
Weber equation. More precisely, consider the Euler equation w′′ + 4−1t−2w = 0. Using the
substitution z(t) = t−λw we get that the linear equation

(c(t)z′)′ + d(t)z = 0, (2.3)

where c(t) = t2λ, d(t) = (λ− 2−1)2t2(λ−1), is nonoscillatory. If λ < 2−1, then Jc = ∞, Jd < ∞ and
Jcd = ∞. Hence, from Theorem 2.2 we have the following, see [8, Corollary 5.1].
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Corollary 2.1. Let (1.4) be verified. Assume that there exists λ ∈ (0, 2−1) such that for large t

a(t) ≥ 2√
3
t2λ, b(t) ≤ (λ− 2−1)2

FM
t2(λ−1),

where FM is given in Theorem 2.2. Then equation (1.1) has a solution x satisfying (1.3).

Clearly, any other nonoscillatory linear equation of type (2.3) satisfying Jc = ∞, Jd < ∞ and
Jcd = ∞ can be used as majorant equation.

Now, we study the qualitative similarity between (1.2) and (1.5). The oscillation for (1.2) is a
more subtle problem, see, e.g., [3]. The following holds.

Theorem 2.3. Let Jb = ∞, lim infu→∞ F (u) > 0 and for any λ > 0

∞∫
1

ΦE

( λ

a(t)

)
dt = ∞.

Then any continuable solution at infinity of equation (1.2) is oscillatory.

Theorem 2.3 follows, with minor changes, from a more general result stated in [3, Theorem 2.1 ].
Concerning the existence of intermediate solutions to (1.2), the following holds.

Theorem 2.4. Let Ja = ∞, Jb < ∞, Jab = ∞, lim inf
t→∞

a(t) > 0, conditions (1.4) hold and
FM = sup

u≥1
F (u)/u. If (2.2) holds and the linear equation

(
a(t)w′)′ + FM b(t)w = 0 (2.4)

is nonoscillatory, then equation (1.2) has infinitely many solutions x satisfying (1.3).

Theorem 2.4 is proved in [8, Theorem 5.1]. Moreover, in [8, Section 5] some necessary conditions
for existence of intermediate solutions to (1.2) are given too.

3 Concluding remarks
We start by presenting the idea of the proof of Theorem 2.2. It is based on an important feature
on the operator ΦE and its inverse ΦR. Setting

w = x, z = a(t)ΦE(x
′),

an easy calculation shows that the problem (1.1), (1.3) is equivalent to the problem
w′ = ΦR

( z

a(t)

)
=

z√
a2(t)− z2

, z′ = −b(t)F (w), t ∈ I,

lim
t→∞

w(t) = ∞, lim
t→∞

ΦR

(z(t)
a(t)

)
= 0.

(3.1)

For solving (3.1), we use a fixed point result, which originates from [4, Theorem 1.4], jointly with
some asymptotic properties of the principal solution of a linear equation, see, e.g., [10, Chapter 11,
Section 6]. We briefly describe our approach.
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Let Ω be a nonempty, closed, convex and bounded subset of C([1,∞),R2) and for any (u, v) ∈ Ω
consider the linear boundary value problem

ξ′ =
η√

a2(t)− v2(t)
, η′ = −b(t)

F (u)

u(t)
ξ, t ∈ I,

lim
t→∞

ξ(t) = ∞, lim
t→∞

η(t) = 0.

(3.2)

For any (u, v) ∈ Ω denote by (ξuv, ηuv) the principal solution of the linear system in (3.2) such that
ηuv(1) = ka, where ka is a suitable positive fixed constant. Let T be the operator which maps (u, v)
into (ξuv, ηuv). Defining in an appropriate way the set Ω and using some comparison results on the
behavior of the principal solution, it is easy to show that T has a fixed point (ξ̂, η̂), which clearly
is a solution of (3.1).

Observe that the linear system in (3.2) is equivalent to the second order linear equation(√
a2(t)− v2(t) y′

)′
+ b(t)

F (u)

u(t)
y = 0 (3.3)

and so the principal solution of the linear system in (3.2) coincides with the principal solution y0
of (3.3). Thus, roughly speaking, this approach reduces the solvability of (3.1) to the solvability of
a boundary value problem for a suitable associated second order linear equation. Clearly, a similar
approach, with minor changes, is valid for proving the existence of intermediate solutions to (1.2).

Using the disconjugacy theory and some comparison results for principal solutions of linear
equations, we can extend Theorems 2.2 and 2.4 by obtaining the so-called global positiveness of
intermediate solutions, that is their positiveness on the whole interval I. Observe that, in general,
this fact does not occur, because nonoscillatory solutions can have an arbitrary finite number of
zeros, also in the linear case. This result is a consequence of a more general criterion in the
forthcoming paper [9] and reads as follows.

Theorem 3.1. Let the assumptions of Theorem 2.2 [Theorem 2.4] be valid. In addition, if the
linear equation (2.1) [(2.4)] has the principal solution which is positive on I, then (1.1) [(1.2)] has
infinitely many solutions x which are positive nondecreasing on I and satisfy (1.3).
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In the paper, for a market relation theoretical model is constructed in the form of the controlled
delay functional differential equation. Moreover, for the corresponding optimization problem the
necessary conditions of optimality are formulated.

1 Mathematical model
Let us for the production of goods i1 and i2 require substitutable raw materials with concentration
x1(t) and x2(t), respectively, at the moment t. Let the dynamic of these concentrations is described
by the system of differential equations{

ẋ1(t) = ax1(t) + bx2(t),

ẋ2(t) = cx1(t) + dx2(t),

where a, b, c, d are given numbers.
Let market relation demand and supply for the good i1 are described by functions D1(t, ω)

and S1(t, x1, x2, u) and for the good i2 are described by functions D2(t, ϑ) and S2(t, x1, x2, v). Let
cost of the goods i1 and i2 at the moment t be u(t) and v(t), respectively. Suppose that at time
t consumer demand will be satisfied on the good i1 which has been ordered at time t − ρ, where
ρ > 0 is a fixed delay parameter and on the good i2 which has been ordered at time t − θ, where
θ > 0, in general, is non fixed delay. The function

E1(t) = D1(t− ρ, u(t− ρ))− S1
(
t, x1(t− τ), x2(t− τ), u(t)

)
, t ∈ I
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we call the disbalance index for the good i1. We assume that for the production of the good i1
requires the amount of raw materials x1(t − τ) and x2(t − τ) allocated at moments t − τ , where
τ > 0, in general, is non fixed delay. Here, it is taken into account that the production of i1 good
is carried out after some time from the allocation of raw materials.

Similarly, the function

E2(t) = D2(t− θ, v(t− θ))− S2
(
t, x1(t− τ), x2(t− τ), v(t)

)
, t ∈ I

is called the disbalance index for the good i2.
If E1(t) = 0, then at the moment t we do not have disbalance between demand and supply with

respect to good i1, and the customer will buy exactly the quantity of good i1 he needs. At time
t, if E1(t) > 0, then demand exaggerates supply, if E1(t) < 0, then supply exaggerates demand.
Analogously we can consider above described cases for E2(t).

In order to characterize the dynamics of the disbalance in time, we introduce the integral indices
of the disbalance for the moment t

x3(t) = x30 +

t∫
t0

[
D1(ξ − ρ, u(ξ − ρ))− S1

(
ξ, x1(ξ − τ), x2(ξ − τ), u(ξ)

)]
dξ,

x4(t) = x40 +

t∫
t0

[
D2(ξ − θ, v(ξ − θ))− S2

(
ξ, x1(ξ − τ), x2(ξ − τ), v(ξ)

)]
dξ,

where xi0, i = 3, 4 are given numbers. Thus, in the framework of the above mentioned conditions, we
can describe the market relationship with the following system of controlled functional differential
equation containing delays in phase coordinates and controls

ẋ1(t) = ax1(t) + bx2(t),

ẋ2(t) = cx1(t) + dx2(t),

ẋ3(t) = D1(t− ρ, u(t− ρ))− S1(t, x1(t− τ), x2(t− τ), u(t)),

ẋ4(t) = D2(t− θ, v(t− θ))− S2(t, x1(t− τ), x2(t− τ), v(t)).

(1.1)

Finally, we note that one dimensional models for the market relation and corresponding opti-
mization problems when right-hand side of the differential equation depends only on control both
without delay and with delay were discussed in [1–4].

2 Statement of the problem and necessary conditions
of optimality

Let I = [t0, t1] be a given interval and τ2 > τ1 > 0, ρ > 0 and θ2 > θ1 > 0 be given numbers with
t1 − t0 > max{τ2, ρ, θ2}. Suppose that the functions φi(t) ∈ R+ = (0,∞), i = 1, 2 are continuously
differentiable on the interval [τ̂ , t0], where τ̂ = t0 − τ2. Further, denote by Ω and V the set of
piecewise continuous control functions u(t) ∈ [0, û], t ∈ [t0 − ρ, t1] and continuously differentiable
control functions v(t) ∈ [0, v̂], t ∈ [t0 − θ2, t1], respectively, where û > 0, v̂ > 0 are given numbers.

To each element w = (τ, θ, u(t), v(t)) ∈ W = (τ1, τ2) × (θ1, θ2) × Ω × V we assign the delay
functional differential equation (1.1) with the initial condition

xi(t) = φi(t), t ∈ [τ̂ , t0), xi(t0) = xi0, i = 1, 2;xi(t0) = xi0, i = 3, 4, (2.1)
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where xi0 ∈ R+, i = 1, 2 and, in general, φi(t0) ̸= xi0, i = 1, 2 (so called discontinuous part of the
condition (2.1)). In the equation (1.1) it is assumed that the function D1(t, ω), (t, ω) ∈ [t0−ρ, t1]×
[0, û] is continuous and continuously differentiable with respect to ω; the function S1(t, x1, x2, u),
(t, x1, x2, u) ∈ I × R2

+ × [0, û] is continuous and continuously differentiable with respect to x1, x2,
u; the function D2(t, ϑ), (t, ϑ) ∈ [t0 − θ2, t1] × [0, v̂] is continuous and continuously differentiable
with respect to ϑ; the function S2(t, x1, x2, v), (t, x1, x2, v) ∈ I × R2

+ × [0, v̂] is continuous and
continuously differentiable with respect to x1, x2, v.

Definition 1. Let w = (τ, θ, u(t), v(t)) ∈W . The collection of functions{
xi(t) = xi(t;w) ∈ R+, t ∈ [τ̂ , t1], i = 1, 2; xi(t) = xi(t;w), t ∈ I, i = 3, 4

}
is called a solution of the equation (1.1) with the initial condition (2.1) or a solution corresponding
to the element w, if it satisfies the condition (2.1) and the functions xi(t), i = 1, 2, 3, 4 are absolutely
continuous on the interval I and satisfy the equation (1.1) almost everywhere on I.

Denote by W0 the set of w ∈W for which there exists a solution. We assume that W0 ̸= ∅.

Definition 2. An element w0 = (τ0, θ0, u0(t), v0(t)) ∈ W0 is said to be optimal if for an arbitrary
element w ∈W0 the inequality

J(w0) ≤ J(w)

holds, where

J(w) =

t1∫
t0

[
x23(t) + x24(t)

]
dt

and xi(t) = xi(t;w), i = 3, 4.

Theorem 1. Let w0 be an optimal element and{
xi0(t) = xi(t;w0) ∈ R+, t ∈ [τ̂ , t1], i = 1, 2; xi0(t) = xi(t;w0), t ∈ I, i = 3, 4

}
be the corresponding solution. Let the function u0(t) be continuous at the point t0 + τ0. Then there
exists a solution {ψi(t), t ∈ [t0, t1 + τ0], i = 1, 2, 3, 4} of the equation

ψ̇1(t) = −aψ1(t)− cψ2(t) + S1x1 [t+ τ0]ψ3(t+ τ0) + S2x1 [t+ τ0]ψ4(t+ τ0),

ψ̇2(t) = −bψ1(t)− dψ2(t) + S1x2 [t+ τ0]ψ3(t+ τ0) + S2x2 [t+ τ0]ψ4(t+ τ0),

ψ̇3(t) = 2x30(t),

ψ̇4(t) = 2x40(t),

t ∈ I

with the initial condition

ψi(t) = 0, t ∈ [t1, t1 + τ0], i = 1, 2, 3, 4,

where

S1x1 [t] =
∂

∂x1
S1

(
t, x10(t− τ0), x20(t− τ0), u0(t)

)
,

S2x1 [t] =
∂

∂x1
S2

(
t, x10(t− τ0), x20(t− τ0), v0(t)

)
such that the following conditions hold:
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1) the condition for the delay τ0

Ŝ1ψ3(t0 + τ0) + Ŝ2ψ4(t0 + τ0)

=

t1∫
t0

{[
S1x1 [t]ψ3(t) + S2x1 [t]ψ4(t)

]
ẋ10(t− τ0) +

[
S1x2 [t]ψ3(t) + S2x2 [t]ψ4(t)

]
ẋ20(t− τ0)

}
dt,

where

Ŝ1 = S1
(
t0 + τ0, φ1(t0), φ2(t0), u0(t0 + τ0)

)
− S1

(
t0 + τ0, x10, x20, u0(t0 + τ0)

)
,

Ŝ2 = S2
(
t0 + τ0, φ1(t0), φ2(t0), v0(t0 + τ0)

)
− S2

(
t0 + τ0, x10, x20, v0(t0 + τ0)

)
;

2) the condition for the delay θ0
t1∫

t0

D2ϑ(t− θ0, v0(t− θ0))ψ4(t)v̇0(t− θ0) dt = 0;

3) the condition for the control u0(t)

t1∫
t0

{
ψ3(t)

[
− S1u[t]u0(t) +D1ω(t− ρ, u0(t− ρ))u0(t− ρ)

]}
dt

= max
u(t)∈Ω

t1∫
t0

{
ψ3(t)

[
− S1u[t]u(t) +D1ω(t− ρ, u0(t− ρ))u(t− ρ)

]}
dt;

4) the condition for the control v0(t)

t1∫
t0

{
ψ4(t)

[
− S2v[t]v0(t) +D2w(t− θ0, v0(t− θ0))v0(t− θ0)

]}
dt

= max
v(t)∈V

t1∫
t0

{
ψ4(t)

[
− S2v[t]v(t) +D2w(t− θ0, v0(t− θ0))v(t− θ0)

]}
dt.

It is clear that if φi(t0) = xi0, i = 1, 2, then Ŝi = 0, i = 1, 2. Theorem 1 is proved by the scheme
given in [5].
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We consider a two-membered non-autonomous fourth-order differential equation of the form

y(4) = α0p0(t)[1 + r(t)]eσy (σ ̸= 0), (1)

where α0 ∈ {−1, 1}, p0 : [a, ω[→ ]0,+∞[ is a continuous or continuously differentiable function,
−∞ < a < ω ≤ +∞, r : [a, ω[→ ]− 1,+∞[ is a continuous function such that

lim
t↑ω

r(t) = 0.

It is easy to see that in this equation the function eσy (σ ̸= 0) is a fast-variable function when
y → Y0 = ±∞ (by Karamata). We can choose the intervals ∆Y0 of the points Y0 = ±∞ as the
neighbourhood of ∆Y0

∆Y0 =

[
]0,+∞[ , if Y0 = +∞,

]−∞, 0[ , if Y0 = −∞.

Definition 1. A solution y of the differential equation (1) is called a Pω(Y0, λ0)-solution where
−∞ ≤ λ0 ≤ +∞, if it is defined on the interval [t0, ω[⊂ [a, ω[ and satisfies the following conditions

y(t) ∈ ∆Y0 or t ∈ [t0, ω[ , lim
t↑ω

y(t) = Y0 = ±∞,

lim
t↑ω

y(k)(t) =

[
or 0,

or ±∞,
(k = 1, 2, 3), lim

t↑ω

[y(3)(t)]2

y(2)(t)y(4)(t)
= λ0.

From this definition, in particular, it follows that the number of

ν0 =

{
1, or Y0 = +∞,

−1, or Y0 = −∞

determines the signs of any Pω(Y0, λ0)-solution and its first derivative in any left neighbourhood
of ω. In [1] for Pω(Y0, λ0)-solutions at λ0 ∈ R \ {0, 12 ,

2
3 , 1} (non special case) the following two

theorems were obtained, but to formulate them we need to introduce additional auxiliary notations

K(λ0) =
(λ0 − 1)3

λ0(2λ0 − 1)
, πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞,

J0(t) =

t∫
A0

π3
ω(τ)p0(τ) dτ, J1(t) =

t∫
A1

p0(τ)

J0(τ)
dτ, Ji(t) =

t∫
Ai

Ji−1(τ) dτ (i = 2, 3),

Y (t) = − 1

σ
ln
(
α0

(
− 1

σ

)
K(λ0)J0(t)

)
, q(t) =

Y ′(t)

α0J3(t)
,
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where the integration boundary Ai is chosen to be equal to either ω or constant a and is defined
in such a way that at this value of Ai the integral tends either to 0 or to ±∞. The following two
theorems were established for equation (1) in [1].

Theorem 1. Let λ0 ∈ R\{0, 12 ,
2
3 , 1}. For the differential equation (1) to have Pω(Y0, λ0)-solutions,

the following inequalities

α0ν0λ0(2λ0 − 1)(3λ0 − 2) > 0, α0ν1K(λ0)πω(t) > 0 at t ∈ ]a, ω[ , (2)

and the following conditions

α0σK(λ0)J0(t) < 0 at t ∈ ]a, ω[ ,

lim
t↑ω

πω(t)J
′
0(t)

J0(t)
= ±∞, lim

t↑ω

πω(t)J
′
1(t)

J1(t)
=

1

λ0 − 1
, lim

t↑ω
q(t) = 1 (3)

must be satisfied and each such solution admits at t ↑ ω the following asymptotic mappings

y(t) = − 1

σ
ln
(
α0

(
− 1

σ

)
K(λ0)J0(t)

)
+ o(1), y(k)(t) = α0J4−k(t)[1 + o(1)] (k = 1, 2, 3).

Theorem 2. Let λ0 ∈ R \ {0, 12 ,
2
3 , 1}, the function p0 be continuous and conditions (2), (3) be

satisfied. Let, in addition

lim
t↑ω

(1− q(t))|Y (t)|
3
4 = 0 and α0σ > 0. (4)

Then the differential equation (1) has a two-parameter family Pω(Y0, λ0) of solutions which satisfy
at t ↑ ω the asymptotic mappings

y(t) = Y (t) + o(1), y′(t) = α0J3(t)
[
1 +

o(1)

|Y (t)|
3
4

]
, y′′(t) = α0J2(t)

[
1 +

o(1)

|Y (t)|
1
2

]
,

y′′′(t) = α0J1(t)
[
1 +

o(1)

|Y (t)|
1
4

]
.

In Theorem 2, the first of conditions (4) is rather rigid. In the present paper an attempt is
made to eliminate it.

Theorem 3. Let λ0 ∈ R \ {0, 12 ,
2
3 , 1}, the function p0 be continuously differentiable and conditions

(2), (3) be satisfied. Suppose, in addition, that the second condition in (4) is satisfied and there
exists a finite or equal to ±∞ limit

lim
t↑ω

πω(t)q
′(t).

Then the differential equation (1) has a two-parameter family Pω(Y0, λ0) of solutions which satisfy
at t ↑ ω the asymptotic mappings

y(t) = Y (t) + o(1), y′(t) = α0J3(t)
[
q(t) +

o(1)

|Y (t)|
3
4

]
, y′′(t) = α0J2(t)

[
1 +

o(1)

|Y (t)|
1
2

]
,

y′′′(t) = α0J1(t)
[
1 +

o(1)

|Y (t)|
1
4

]
.

(5)
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Sketch of the proof
First, it is easy to prove that

lim
t↑ω

πω(t)q
′(t) = 0.

In the same way as in the proof of Theorem 2 of [1], equation (1) by the transformation

y(t) = Y (t) + y1(t), y(k)(t) = α0J4−k(t)[1 + yk+1(t)] (k = 1, 2, 3) (6)

is reduced to a system of differential equations of the form

y′1 = α0J3(t)
[
1− q(t) + y2

]
,

y′2 =
J ′
3(t)

J3(t)
(y3 − y2),

y3′ =
J ′
2(t)

J2(t)
(y4 − y3),

y′4 =
J ′
1(t)

J1(t)

[
r(t) + (1 + r(t))y1 − y4 +R(t, y1)

]
.

We will consider this system on the set

Ω = [t1, ω[×D, where D =
{
(y1, y2, y3, y4) ∈ R4

1
2

: |yi| ≤
1

2
, (i = 1, . . . , 4)

}
,

where |R(t, y1| 6 y21 at |y1| 6 δ for some 0 < δ <
1

2
.

Further we will use the obtained system on the set Ω0 = [t1, ω[×R4
δ .

In contrast to Theorem 2, let us make an additional transformation

y1(t) = z1(t), y2(t) = z2(t) + q(t)− 1, y3(t) = z3(t), y4(t) = z4(t), (7)

the sense of which is to exclude the summand (1− q(t)) from the first equation of the system and
as a result we obtain a system of differential equations of the form

z′1 =
Y (t)

πω(t)

{
ξ1(t)z2

}
,

z′2 =
1

πω(t)

{
ξ2(t)(z3 − z2)− πω(t)q

′(t)
}
,

z′3 =
1

πω(t)

{
ξ3(t)(z4 − z3)

}
,

z′4 =
1

πω(t)

{
ξ4(t)

[
r(t) + (1 + r(t))z1 − z4 +R(t, z1)

]}
,

(8)

where

lim
t↑ω

ξ1(t) =
3λ0 − 2

λ0 − 1
, lim

t↑ω
ξ2(t) =

2λ0 − 1

λ0 − 1
, lim

t↑ω
ξ3(t) =

λ0

λ0 − 1
, lim

t↑ω
ξ4(t) =

1

λ0 − 1
.

To asymptotically equalise the multipliers at t ↑ ω in the right-hand side of the equations of the
system (8), we apply the following transformation to it:

z1(t) = υ1(t), z2(t) = |Y (t)|−
3
4υ2(t), z3(t) = |Y (t)|−

1
2υ3(t), z4(t) = |Y (t)|−

1
4υ4(t). (9)
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As a result, we obtain a system of quasilinear differential equations for which all the conditions of
Theorem 2.2 of [2] are fulfilled. The limit matrix of coefficients at υ1, υ2, υ3, υ4 of the obtained
quasilinear system has the form

C =



0
3λ0 − 2

λ0 − 1

( ν0
signσ

)
0 0

0 0
2λ0 − 1

λ0 − 1
0

0 0 0
λ0

λ0 − 1
1

λ0 − 1
0 0 0


,

and has, taking into account the sign conditions (2), (3), a characteristic equation of the form

λ4 +
α0

σ

|3λ0 − 2| |2λ0 − 1| |λ0|
(λ0 − 1)4

= 0.

The characteristic equation has two pairs of complex-conjugate roots with real parts different
from zero. Then the system of differential equations has a two-parameter family of solutions
υ1, υ2, υ3, υ4 : [t2, ω[→ R4

δ (t2 ∈ [t0, ω[), which tend to 0 at t ↑ ω. To each such solution, taking into
account substitutions (6), (7), (9), corresponds a solution y : [t2, ω[→ R of the differential equation
(1) for which the asymptotic representations (5) take place at t ↑ ω. It is also easy to check, taking
into account these asymptotic representations and the form of equation (1), that the solutions we
have constructed are Pω(Y0, λ0)-solutions.
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1 Introduction
The study is devoted to an important class of evolutionary systems characterized by the presence of
impulsive disturbances when the system trajectory reaches a fixed subset in the phase space. The
systematic study of such systems began relatively recently and was mostly focused on the finite-
dimensional case [1, 2, 4, 10–12]. The results regarding the limit behavior of infinite-dimensional
impulsive dynamic systems are contained in works [3, 6, 8], however, in both the parabolic and
hyperbolic cases, the impulsive parameters are “finite-dimensional” in nature, i.e., the situation
was considered when only a finite number of coordinates of the phase vector were subjected to
an impulsive disturbance. The novelty of this study is that we consider the case when the entire
infinite-dimensional phase vector undergoes an impulsive disturbance when the energy functional
reaches a certain threshold value.

2 Setting of the problem and the main results
Let a triple of Hilbert spaces V ⊂ H ⊂ V ∗ with compact dense embeddings be given, ‖ · ‖ be
the norm and ( · , · ) be the scalar product in H, A : V → V ∗ be a linear, continuous, self-adjoint,
coercive operator, ‖u‖V := 〈A

1
2u, u〉 be the norm in V , 〈 · , · 〉 be the scalar product in V .

Let us consider an evolution problem
d2y

dt2
+ 2β

dy

dt
+Ay = 0,

y
∣∣
t=0

= y0 ∈ V,

yt
∣∣
t=0

= y1 ∈ V.

(2.1)

Problem (2.1) in phase space X = V ×H generates a continuous semigroup G : R+×X → X [13],

where for z0 =

(
y0
y1

)
∈ X

G(t, z0) = z(t) =

(
y(t)
yt(t)

)
=
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= e−βt
∞∑
j=1

 (y0, φj) cosωjt+
(
β(y0, φj) + (y1, φj)

) 1

ωj
sinωjt

(y1, φj) cosωjt−
(
λ2
j (y0, φj) + β(y1, φj)

) 1

ωj
sinωjt

 , (2.2)

where ωj =
√
λ2
j − β2 , {λj}∞j=1, {φj}∞j=1 are solutions of the spectral problem

Aφj = λjφj , j ≥ 1,

{φj}∞j=1 is the orthonormal basis in H, 0 < λ1 ≤ λ2 ≤ · · · , λj → +∞, j → ∞, and without
limitation of generality we will assume that λ1 > β.

Consider the functional Ψ : X → R+, that for z =

(
u
v

)
∈ X is determined by the rule

Ψ(z) = ‖z‖2X = ‖u‖2V + ‖v‖2. (2.3)

The impulsive problem is formulated as follows: if at some point in time t > 0 at the solution

z =

(
y
yt

)
the functional (2.3) reaches the value Ψ0, then the system instantly moves to a new

position
z+ = φ(z) + α, (2.4)

where α ∈ X, φ : X → X are given.
In [9] we prove that, under certain conditions on the parameters, the problem (2.1), (2.3), (2.4)

generates in X an impulsive dynamical system G̃ : R+ × X → X (see Definition 3.1 below), for
which, for each z0 ∈ X, the ω-boundary set is nonempty, compact, and the limit relation is true

distX
(
G̃(t, z0), ω̃(z0)

)
→ 0, t → ∞.

3 ω-Boundary set for impulsive dynamical systems
Following the work [7], we will describe the general construction of the impulsive dynamical system.
Suppose that a continuous semigroup G : R+ × X → X is given on the phase space X, the
trajectories of semigroup, when they reach a fixed subset M ⊂ X (impulsive set), are moved by
the mapping I (impulsive mapping) to a new position

z+ := Iz.

For the correctness of such construction, the following conditions must be met

G : R+ ×X → X is continuous semigroup,
i.e. for all z ∈ X and t, s ≥ 0: G(0, z) = z, G(t+ s, z) = G(t, G(s, z)),

map (t, z) 7→ G(t, z) is continuous on R+ ×X;

(3.1)

M is closed set, M ∩ IM = ∅; (3.2)
∀ z ∈ M ∃ τ = τ(z) > 0 ∀ t ∈ (0, τ) : G(t, z) 6∈ M. (3.3)

Under the conditions (3.1)–(3.3) it is known [6] that if for z ∈ X

M+(z) :=
(⋃

t>0

G(t, z)
)
∩M 6= ∅,
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then there exists s̃ := s̃(z) > 0 such that

∀ t ∈ (0, s̃) : G(t, z) 6∈ M, G(s̃, z) ∈ M.

Using the introduced notations z+, M+(z), s̃, the impulsive trajectory G̃( · , z0) starting from
z0 ∈ X is constructed as follows:

- if M+(z0) = ∅, then G̃(t, z0) = G(t, z0), t ≥ 0;

- if M+(z0) 6= ∅, then for s0 := s̃(z0) let’s mark z1 := G(s0, z0), so

G̃(t, z0) =

{
G(t, z0), t ∈ [0, s0),

z+1 , t = s0;
.

- if M+(z+1 ) = ∅, then G̃(t, z0) = G(t− s0, z
+
1 ), t ≥ s0;

- if M+(z+1 ) 6= ∅, then for s1 := s̃(z+1 ) let’s mark z1 := G(s1, z
+
1 ), so

G̃(t, z0) =

{
G(t− s0, z

+
1 ), t ∈ [s0, s0 + s1),

z+2 , t = s0 + s1;

and so on. Continuing this process, we will obtain a finite or infinite number of impulsive points

z+n+1 = IG(sn, z
+
n ), z+0 := z0, n ≥ 0,

and corresponding sequence of time moments

Tn+1 :=

n∑
k=0

sk, T0 := 0, n ≥ 0.

At the same time, G̃ is given by the formula

G̃(t, z0) =

{
G(t− Tn, z

+
n ), t ∈ [Tn, Tn+1),

z+n+1, t = Tn+1.
(3.4)

It should be noted that in such a system there may be “beating effects” or “Zeno”-modes, when
moments of impulsive occur so often that the trajectory (3.4) is destroyed in a finite time [5].

Since we are interested in the behavior of (3.4) when t → ∞, then we will make the following
assumption: {

for each z0 ∈ X there are either no impulsive points,
or their number is finite, or Tn → ∞, n → ∞.

(3.5)

The condition (3.5) guarantees that for an arbitrary z0 ∈ X the function t 7→ G̃(t, z0) is defined
on [0,+∞).

Definition 3.1. The mapping G̃ : R+ × X → X constructed above is called an impulsive dy-
namic system. We will say that {V,M, I} generate an impulsive dynamic system, if the conditions
(3.1)–(3.3), (3.5) are met.
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It is known that under the conditions (3.1) – (3.3), (3.5) the mapping G̃ : R+ × X → X is a
semigroup whose trajectories are continuous from the right.

In addition, by construction for arbitrary z0 ∈ X and t > 0:

G̃(t, z0) ∩M = ∅.

The main object of study in this paper is the ω-boundary set:

ω̃(z0) =
{
ξ ∈ X : ∃ {tn}∞n=1 : tn ↗ ∞, ξ = lim

n→∞
G̃(tn, z0)

}
.

Lemma 3.1. Let {V,M, I} generate an impulsive dynamic system G̃ and for z0 ∈ X the following
conditions be fulfilled:

(1) set γ̃ :=
⋃
t≥0

G̃(t, z0) is bounded;

(2) for each z ∈ γ̃ : G(t, z) = G1(t, z) + G2(t, z), where {G1(t, z), t ≥ 0, z ∈ γ̃} is precompact,
sup
z∈γ̃

G2(t, z) → 0, t → ∞.

(3) if γ̃ has an infinite number of impulsive points {z+n }n≥0}, then {z+n }n≥0 is precompact.

Then the set ω̃(z0) 6= ∅ is compact and distX(G̃(t, z0), ω̃(z0)) → 0, t → ∞.

Remark 3.1. Fulfillment of the condition (1) can be guaranteed under the following conditions

∃C1, C2 ≥ 0 ∃ δ > 0 ∀ z ∈ γ̃ ∀ t ≥ 0

‖G(t, z)‖X ≤ ‖z‖Xe−δt + C1,

‖Iz‖x ≤ ‖z‖X + C2,

and if C{sk}k≥0 are the distances between impulses along γ̃, then

s := inf
k≥0

sk > 0.

Remark 3.2. The condition (3) can be replaced by the following:

if {zn} is bounded, then {Izn} is precompact.

We cannot expect that ω̃(z0) to be stable in any sense, since this is not true even in the
non-impulsive case. The stability property can be guaranteed for more massive objects – uniform
attractors [6]. However, we can ensure the invariance of the non-impulsive part of ω̃(z0). For this,
it is necessary to impose conditions on trajectories starting from initial data close to ω̃(z0).

Lemma 3.2. Let {V,M, I} generate impulsive dynamical system G̃, the conditions of Lemma 3.1
be fulfilled for z0 ∈ X, and, in addition

I : M → X be continuous;

if ξ ∈ ω̃(z0) \M , then for ξn → ξ{
s̃(ξ) = ∞, if s̃(ξn) = ∞ for infinitely many n,

s̃(ξn) → s̃(ξ), otherwise.
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Then for each t ≥ 0

G̃
(
t, ω̃(z0) \M

)
⊂ ω̃(z0) \M.

If in addition for ξ ∈ ω̃(z0) ∩M and for ξm → ξ, ξm /∈ M ,

s̃(ξn) = ∞ for infinitely many n or s̃(ξn) → 0,

then for arbitrary t ≥ 0

G̃
(
t, ω̃(z0)

)
⊃ ω̃(z0) \M.

Remark 3.3. If we add the following condition to the conditions of Lemma 3.2:

for tn ↗ ∞ by subsequence G(tn, z0) → y 6∈ M, (3.6)

then for an arbitrary t ≥ 0:
G̃
(
t, ω̃(z0) \M

)
= ω̃(z0) \M.

The condition (3.6) means that the ω-boundary set of the non-impulsive half-flow G does not
intersect with M .

4 Limit modes of the impulsive problem (2.1), (2.3), (2.4)
For the problem (2.1), (2.3), (2.4), the phase space is the Hilbert space X = V ×H, on which the
solutions of the evolutionary problem (2.1) generate a continuous semigroup G : R+ × X → X
according to the formula (2.2).

The set M is given by (2.3) according to the formula

M =

{
z =

(
u
v

)
∈ X : Ψ(z) = Ψ0

}
, Ψ0 > 0.

We will consider that the following conditions are fulfilled

‖φ(z)‖X ≤ ‖z‖X , Ψ0 <
1

4
‖α‖2X . (4.1)

In [9] we have checked the fulfillment of the conditions (3.1)–(3.3) and (3.5). Thus, it is proved
that the problem (2.1), (2.3), (2.4) generates an impulsive dynamic system, and each impulsive
trajectory has an infinite number of impulsive points.

Theorem. Suppose that for the problem (2.1), (2.3), (2.4) the conditions (4.1) and the following
are fulfilled

1√
λ1

<
1

8β
ln
(‖α‖2X

2Ψ0
− 1

)
, (4.2)

φ : M → X is a compact mapping.

Then, for the corresponding impulsive dynamical system G̃, we have that for an arbitrary z0 ∈ X
ω-limit set ω̃(z0) 6= ∅, it is compact and

distX
(
G̃(t, z0), ω̃(z0)

)
→ 0, t → ∞.

Remark 4.1. The condition (4.2) can be removed by requiring the limit lim
k→∞

sk to exist instead.
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The neutral functional-differential equation is a mathematical model of such a system whose
behavior at a given moment depends on the velocity of the system in the past. In the paper an
analytic relation between solutions of the original Cauchy problem and a corresponding perturbed
problem is established for the controlled neutral functional-differential equation with the discon-
tinuous initial condition, whose right-hand side is linear with respect to the prehistory of the phase
velocity. In the representation formula of a solution the effects of perturbations of the delay pa-
rameter containing in the phase coordinates, of the initial and control functions are revealed. Such
analytic relation plays an important role in proving the necessary conditions of optimality [1, 6].
Besides, such relation allows one to get an approximate solution of the perturbed equation and to
carry out a sensitive analysis of mathematical models.

Let I = [t0, t1] be a given interval. Let Rn be the n-dimensional vector space of points x =
(x1, . . . , xn)T and let O ⊂ Rn, U ⊂ Rr be convex open sets; let σ > 0 and τ2 > τ1 > 0 be given
numbers, with t0+max{σ, τ2} < t1. Suppose that the n×n -dimensional matrix function A(t, x, y)
is continuous on the set I × O2 and continuously differentiable with respect to xi, i = 1, 2, . . . , n
and yj , j = 1, 2, . . . , n; moreover, there exists M1 > 0 such that

|A(t, x, y)|+
n∑

i=1

|Axi( · )|+
n∑

j=1

|Ayj ( · )| ≤ M1 ∀ (t, x, y) ∈ I ×O ×O.

Let the n-dimensional function f(t, x, y, u) be continuous on the set I×O2×U and continuously
differentiable with respect to x, y, u; moreover, there exists M2 > 0 such that

|f(t, x, y, u)|+ |fx( · )|+ |fy( · )|+ |fu( · )| ≤ M2 ∀ (t, x, y, u) ∈ I ×O2 × U.

Further, denote by Φ and Ω the sets of continuous differentiable functions φ(t) ∈ O, t ∈ [τ̂ , t0],
where τ̂ = t0 − max{σ, τ2} and measurable functions u(t) ∈ U , t ∈ I, respectively, with the set
clu(I) is compact and clu(I) ⊂ U .
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To each element
µ = (τ, x0, φ(t), u(t)) ∈ Λ = (τ1, τ2)×O × Φ× Ω

we assign the quasi-linear neutral functional-differential equation

ẋ(t) = A(t, x(t), x(t− τ))ẋ(t− σ) + f
(
t, x(t), x(t− τ), u(t)

)
, t ∈ I (1)

with the initial condition
x(t) = φ(t), t ∈ [τ̂ , t0), x(t0) = x0. (2)

Condition (2) is called the discontinuous initial condition because in general x(t0) ̸= φ(t0). Dis-
continuity at the initial moment t0 may be related to the instant change in a dynamical process
(for example, change of an investment, environment and so on).

Definition. Let µ ∈ Λ. A function x(t) = x(t;µ) ∈ O, t ∈ I1 = [τ̂ , t1] is called a solution of
equation (1) with condition (2) or a solution corresponding to the element µ and defined on the
interval I1 if it satisfies condition (2) and is absolutely continuous on the interval I and satisfies
equation (1) almost everywhere on I.

Let us introduce the notations:

|µ| = |τ |+ |x0|+ ∥φ∥1 + ∥u∥, Λε(µ0) =
{
µ ∈ Λ : |µ− µ0| ≤ ε

}
,

where
∥φ∥1 = sup

{
|φ(t)|+ |φ̇(t)| : t ∈ I1

}
, ∥u∥ = sup

{
|u(t)| : t ∈ I

}
,

ε > 0 is a fixed number and µ0 = (τ0, x00, φ0(t), u0(t)) ∈ Λ is a fixed element; furthermore,

δτ = τ − τ0, δx0 = x0 − x00, δφ(t) = φ(t)− φ0(t), δu(t) = u(t)− u0(t),

δµ = µ− µ0 = (δτ, δx0, δφ(t), δu(t)).

Let x(t;µ0) be a solution corresponding to the element µ0 ∈ Λ and defined on the interval I1.
Then there exists a number ε1 > 0 such that to each element µ = µ0 + δµ ∈ Λε1(µ0) corresponds
a solution x(t;µ), t ∈ I1, [2, 6], i.e. Cauchy’s perturbed problem has a solution, defined on the
interval I1.

Theorem 1. Let x0(t) := x(t;µ0) be a solution corresponding to the element µ0 = (τ0, x00, φ0, u0) ∈
Λ and defined on the interval I1, with t0 + τ0 ̸∈ {t1 − σ, t1 − 2σ, . . . }. Moreover, let the function
u0(t) be continuous at the point t0 + τ0. Then there exist numbers ε2 ∈ (0, ε1) and δ > 0 such that
for arbitrary µ ∈ Λε2(µ0) on the interval [t1− δ, t1] ⊂ [t0+ τ0, t1] the following representations hold:

x(t;µ) = x0(t) + δx(t; δµ) + o(t; δµ), (3)

δx(t; δµ) = Ψ(t0; t)δx0 +

t0∫
t0−σ

Y (ξ + σ; t)A[ξ + σ]δ̇φ(ξ) dξ

+

t0∫
t0−τ0

Y (ξ+τ0; t)
{ ∂

∂y

[
A[ξ+τ0]ẋ0(ξ+τ0−σ)

]
+fy[ξ+τ0]

}
δφ(ξ) dξ +

t∫
t0

Y (ξ; t)fu[ξ]δu(ξ) dξ

−
{
Y (t0+τ0; t)

(
Âẋ0(t0+τ0−σ)+f̂

)
+

t∫
t0

Y (ξ; t)
( ∂

∂y

[
A[ξ]ẋ0(ξ−σ)

]
+fy[ξ]

)
ẋ0(ξ−τ0) dξ

}
δτ. (4)
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Here,

A[ξ] = A(ξ, x0(ξ), x0(ξ − τ0)), fy[ξ] = fy
(
ξ, x0(ξ), x0(ξ − τ0), u0(ξ)

)
,

∂

∂y

[
A[ξ]ẋ0(ξ − σ)

]
=

∂

∂y

[
A(t, x, y)ẏ0(ξ − σ)

]
x=x0(ξ), y=x0(ξ−τ0)

,

Â = A
(
t0 + τ0, x0(t0 + τ0), x00

)
−A

(
t0 + τ0, x0(t0 + τ0), φ0(t0)

)
,

f̂ = f
(
t0 + τ0, x0(t0 + τ0), x00, u0(t0 + τ0)

)
− f

(
t0 + τ0, x0(t0 + τ0), φ0(t0), u0(t0 + τ0)

)
;

Ψ(ξ; t) and Y (ξ; t) are n× n matrix functions satisfying the system

Ψξ(ξ; t) = −Y (ξ; t)
{ ∂

∂x

[
A[ξ]ẋ0(ξ − σ)

]
+ fx[ξ]

}
−Y (ξ + τ0; t)

( ∂

∂y

[
A[ξ + τ0]ẋ0(ξ + τ0 − σ)

]
+ fy[ξ + τ0]

)
,

Y (ξ; t) = Ψ(ξ; t) + Y (ξ + σ; t)A[ξ + σ],

ξ ∈ (t0, t), t ∈ (t0, t1]

(5)

and the condition

Ψ(ξ; t) = Y (ξ; t) =

{
E, ξ = t,

Θ, ξ > t,
(6)

where E is the identity matrix and Θ is the zero matrix.

Some Comments
The function δx(t; δµ) in (3) is called the first variation of the solution x0(t). The expression (4)
is called the local variation formula of the solution. The term “variation formula of the solution”
has been introduced by R. V. Gamkrelidze and proved for ordinary differential equation in [6].

The addend Ψ(t0; t)δx0 in formula (4) is the effect of perturbation of the initial vector x00.
The expression

t0∫
t0−σ

Y (ξ + σ; t)A[ξ + σ]δ̇φ(ξ) dξ

+

t0∫
t0−τ0

Y (ξ + τ0; t)
{ ∂

∂y

[
A[ξ + τ0]ẋ0(ξ + τ0 − σ)

]
+ fy[ξ + τ0]

}
δφ(ξ) dξ

in formula (4) is the effect of perturbation of the initial function φ0(t).
The addend

t∫
t0

Y (ξ; t)fu[ξ]δu(ξ) dξ

in formula (4) is the effect of perturbation of the control function u0(t).
The expression

{
Y (t0+τ0; t)

(
Âẋ0(t0+τ0−σ)+f̂

)
+

t∫
t0

Y (ξ; t)
( ∂

∂y

[
A[ξ]ẋ0(ξ−σ)

]
+fy[ξ]

)
ẋ0(ξ−τ0) dξ

}
δτ
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in formula (4) is the effect of perturbation of the delay τ0, where Y (t0+ τ0; t)(Âẋ0(t0+ τ0−σ)+ f̂)
is the effect of the discontinuous initial condition (2). If x0(t0) = φ0(t0), then Â = 0 and f̂ = 0.

Formula (3) allows us to obtain an approximate solution of the perturbed equation in the
analytical form on the interval [t1 − δ, t1]. In fact, for a small |δµ| from (3) it follows

x(t;µ) ≈ x0(t) + δx(t; δµ),

where δx(t; δµ) has the form (4). We note that to construct δx(t; δµ) it is sufficient to find a solution
to the linear problem (5), (6).

Theorem 1 is proved by the scheme given in [2,6]. The case when A(t, x, y) = A(t) is considered
in [2, 3, 6] and the case when A(t, x, y) = 0 is considered in [4, 5].
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Consider a functional differential equation

u′(t) = ℓ(u)(t) + λF (u)(t) for a. e. t ∈ R, (1)

where ℓ : Cω(R) → Lω(R) is a linear bounded operator, F : Cω(R) → Lω(R) is a continuous
operator satisfying the Carathéodory conditions, and λ ∈ R is a parameter. By an ω-periodic
solution to the equation (1) we understand a locally absolutely continuous ω-periodic function
u : R → R that satisfies the equation (1) almost everywhere in R. We say that an ω-periodic
solution u to (1) is positive if u(t) > 0 for t ∈ R.

Notation 1.
Z is the set of integers, R is the set of all real numbers, R+ = [0,+∞[ .
Cω(R) is the Banach space of ω-periodic continuous functions v : R → R with the norm

∥v∥Cω = max
{
|v(t)| : t ∈ [0, ω]

}
.

Cω(R+) = {v ∈ Cω(R) : v(t) ∈ R+ for t ∈ R}.
Lω(R) is the Banach space of ω-periodic locally Lebesgue integrable functions p : R → R with

the norm

∥p∥Lω =

ω∫
0

|p(s)| ds.

Lω(R+) =
{
p ∈ Lω(R) : p(t) ∈ R+ for a. e. t ∈ R

}
.

If A : Cω(R) → Cω(R) is a linear bounded operator, by ∥A∥ we denote the norm of A.

Notation 2. Let c ∈ (0, 1). Then Kc ⊂ Cω(R+) is a set of functions such that cu(s) ≤ u(t) for
s, t ∈ R.

Definition 1. We say that an operator ℓ belongs to the set U+
c if every function u ∈ Cω(R) that

is locally absolutely continuous and satisfies

u′(t) ≥ ℓ(u)(t) for a. e. t ∈ R,

belongs to Kc.
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It can be easily seen that if ℓ ∈ U+
c , then the only ω-periodic solution to the homogeneous

equation
u′(t) = ℓ(u)(t) for a. e. t ∈ R (2)

is the trivial solution.
Now we formulate the assumptions laid on the nonlinear operator F .

(H.1) F transforms Cω(R+) into Lω(R+) and it is not the zero operator, i.e., there exists x0 ∈
Cω(R+) such that

ω∫
0

F (x0)(s) ds > 0.

(H.2) F is super-linear with respect to Kc, i.e., there exists a Carathéodory function η : R×R+ → R+

such that
F (v)(t) ≥ η(t, ∥v∥Cω) for a. e. t ∈ R, v ∈ Kc

and

lim
x→+∞

1

x

ω∫
0

η(s, x) ds = +∞.

(H.3) For every 0 ̸= x ∈ Kc there exists δx > 0 such that for every δ ∈ (0, δx] we have

δF (x)(t) ≥ F (v)(t) for a. e. t ∈ R whenever v ∈ Kc, v(t) ≤ δx(t) for t ∈ R

and

δ0

ω∫
0

F (x)(s) ds >

ω∫
0

F (δ0x)(s) ds for some δ0 ∈ (0, δx).

Note that the assumptions (H.1) and (H.3) imply F (0)(t) = 0 for a. e. t ∈ R.

Notation 3. Let λ ∈ R. Then by S(λ) we denote the set of all positive ω-periodic solutions to (1)
for corresponding λ.

Theorem 1. Let c ∈ (0, 1) be such that ℓ ∈ U+
c and F satisfies (H.1)–(H.3). Then there exists a

critical value λc ∈ (0,+∞] such that

(i) Eq. (1) has at least one positive ω-periodic solution provided λ ∈ (0, λc),

(ii) Eq. (1) has no positive ω-periodic solution provided λ ̸∈ (0, λc).

Moreover,

lim
λ→λ−

c

sup
{
∥u∥Cω : u ∈ S(λ)

}
= 0,

lim
λ→0+

inf
{
∥u∥Cω : u ∈ S(λ)

}
= +∞.

Because the ω-periodic solutions to (1) belong to Kc, the latter means that the solutions uni-
formly tends to +∞ as λ tends to zero.

Suppose that the operator F includes a linear part, i.e.,

F (v)(t) = F̃ (v, v)(t) for a. e. t ∈ R, v ∈ Cω(R), (3)
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where F̃ : Cω(R)×Cω(R) → Lω(R) is a continuous operator satisfying the Carathéodory conditions
and it is linear and nondecreasing in the first variable. Therefore, instead of (1) we consider the
equation

u′(t) = ℓ(u)(t) + λF̃ (u, u)(t) for a. e. t ∈ R,

where ℓ and λ are the same as in (1) and F̃ is described above.

Theorem 2. Let c ∈ (0, 1) be such that ℓ ∈ U+
c and F given by (3) satisfies (H.1)–(H.3). Let,

moreover, F̃ (·, 0) : Cω(R) → Lω(R) be a non-zero operator. Then, λc < +∞ and the equation

u′(t) = ℓ(u)(t) + λcF̃ (u, 0)(t) for a. e. t ∈ R (4)

has a positive solution uc, the set of solutions to (4) is one-dimensional (generated by uc), and

Tλ ∈ U+
c for λ ∈ ]0, λc[ ,

where
Tλ(v)(t)

def
= ℓ(v)(t) + λF̃ (v, 0)(t) for a. e. t ∈ R, v ∈ Cω(R).

If F̃ (·, 0) : Cω(R) → Lω(R) is a zero operator, then λc = +∞.
Theorem 2 gives us a method how to calculate the precise value of λc in the cases where F

includes a linear part. Indeed, define an operator A : Cω(R) → Cω(R) by

A(x)(t)
def
=

t∫
t−ω

G(t, s)F̃ (x, 0)(s) ds for t ∈ R, x ∈ Cω(R),

where G is Green’s function to the ω-periodic problem for (2). Then

uc(t) = λcA(uc)(t) for t ∈ R,

i.e., 1/λc is the first eigenvalue to A corresponding to the positive eigenfunction uc. Therefore,
according to Krasnoselski’s theory and Gelfand’s formula,

λc = lim
n→+∞

1
n
√
∥An∥

.

Corollaries
Consider a differential equation with deviating arguments

u′(t) = −g(t)u(σ(t)) + λp(t)
u(τ(t))[a0 + a1u(µ1(t)) + a2u(µ2(t))u(µ3(t))]

b0 + b1u(ν(t))
for a. e. t ∈ R, (5)

where

- p, g ∈ Lω(R+), p ̸= 0, g ̸= 0,

- σ, τ, µi, ν are measurable ω-periodic functions,

- ai > 0, bi > 0 are constants.
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Corollary 1. Let
t∫

σ̃(t)

g(s) ds ≤ 1

e
for a. e. t ∈ [0, ω], (6)

where σ̃(t) = σ(t)− zω if σ(t) ∈ [t+ (z − 1)ω, t+ zω) (z ∈ Z), and let

a1
b1

exp

(
− e

ω∫
0

g(s) ds

)
>

a0
b0

. (7)

Then there exists a critical value λc ∈ (0,+∞) such that (5) has a positive ω-periodic solution iff
λ ∈ (0, λc). Moreover,

lim
λ→λ−

c

sup
{
∥u∥Cω : u ∈ S(λ)

}
= 0, lim

λ→0+
inf

{
∥u∥Cω : u ∈ S(λ)

}
= +∞.

The condition (6) guarantees that the operator

ℓ(v)(t)
def
= −g(t)v(σ(t)) for a. e. t ∈ R, v ∈ Cω(R)

belongs to the set U+
c with

c = exp

(
− e

ω∫
0

g(s) ds

)
,

and the condition (7) guarantees that the assumption (H.3) is fulfilled with F defined by

F (v)(t)
def
= p(t)

v(τ(t))[a0 + a1v(µ1(t)) + a2v(µ2(t))v(µ3(t))]

b0 + b1v(ν(t))
for a. e. t ∈ R, v ∈ Cω(R).

Now consider a differential equation with deviating arguments

u′(t) = −g(t)u(σ(t)) + λp(t)
u1+n(τ(t))(a+ u(µ(t)))m

(b+ uk(ν(t)))
, (8)

where

- p, g ∈ Lω(R+), p ̸= 0, g ̸= 0,

- σ, τ , µ, ν are measurable ω-periodic functions,

- a > 0, b > 0, n > 0, m > 0, k > 0.

Corollary 2. Let n+m > k, and let

t∫
σ̃(t)

g(s) ds ≤ 1

e
for a. e. t ∈ [0, ω],

where σ̃(t) = σ(t)− zω if σ(t) ∈ [t+ (z − 1)ω, t+ zω) (z ∈ Z). Then (8) has a positive ω-periodic
solution for every λ > 0. Moreover,

lim
λ→+∞

sup
{
∥u∥C : u ∈ S(λ)

}
= 0, lim

λ→0+
inf

{
∥u∥C : u ∈ S(λ)

}
= +∞.
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Time-fractional stochastic differential models became popular in applications, and its analysis
is presented in multiple highly cited monographs and articles, for example, [1–3,5, 6].

The target of this report is a stochastic fractional-in-time Volterra equation defined with mul-
tiple deterministic and stochastic time scales:

dx(t) =
m∑
j=1

[
fj(t, (H1jx)(t)) (dt)

αj + gj(t, (H2jx)(t)) dBj(t)
]

(t ≥ 0). (1)

Here fj(ω, t, v) and gj(ω, t, v) are random functions, H1j and H2j are linear delay operators, 0 <
αj ≤ 1, dBj(t) are Itô differentials generated by the standard scalar Wiener processes (Brownian
motions) Bj , m is the number of the deterministic/stochastic time-scales and x(t) is an unknown
stochastic process on ℜ satisfying, in addition to (1), the initial condition

x(s) = φ(s) (s ≤ 0), (2)

where φ(ω, s) is some random function (not necessarily continuous). Throughout the paper we
tacitly assume that

fj( · , · , 0) = 0 and gj( · , · , 0) = 0 (P ⊗ µ)-almost everywhere

(µ is the Lebesgue measure on ℜ), which simply means that x ≡ 0 satisfies Eq. (1) and the
initial condition (2) with φ ≡ 0. A solution of the initial value problem (1), (2) is a progressively
measurable stochastic process x almost surely satisfying (2) for µ-almost all s ∈ ℜ− and the integral
equation

x(t)− φ(0) =
m∑
j=1

[ t∫
0

αj(t− s)αj−1fj(s, (H1jx)(s)) ds+

t∫
0

gj(s, (H2jx)(s)) dBj(s)

]

for all t ∈ ℜ+. It is assumed that the initial value problem (1), (2) has a unique solution x(t, φ) for
all admissible φ (see Definition 1).
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Below we keep fixed the stochastic basis (Ω,F , (F)t∈ℜ, P ) satisfying the standard conditions [1]
assuming, in addition, that Ft = F0 for all t ≤ 0. All stochastic processes in this paper are supposed
to be progressively measurable w.r.t. this stochastic basis or parts of it.

Basic notation used below:

- ℜ = (−∞,∞), ℜ+ = [0,∞), ℜ− = (−∞, 0).

- µ is the Lebesgue measure defined on ℜ or its subintervals.

- E is the expectation.

- | · | is the fixed norm in ℜn and ∥ · ∥ is the associated matrix norm ∥ · ∥.

- Bj(t) (t ∈ ℜ+, j = 1, . . . ,m) are the standard scalar Brownian motions (Wiener processes).

The constants used below:

- n ∈ N is the dimension of the phase space, i.e. the size of the solution vector.

- m ∈ N is the number of the deterministic/stochastic time-scales.

- The indices i, j satisfy 1 ≤ i ≤ 2, 1 ≤ j ≤ m.

- 0 < αj ≤ 1 define the time scales.

- p is a fixed real constant appearing in the p-stability we assume that p ≥ 2 and p > α−1
j .

Let J ⊂ ℜ+. The following spaces of random variables and stochastic processes are used below
as well:

- The space knp consists of all n-dimensional, F0-measurable random variables {ξ : E|ξ|p < ∞}.

- Lp(J,ℜl) contains all progressively measurable l-dimensional stochastic processes x(t) (t ∈ J)
such that ∫

J

E|x(t)|p dt < ∞.

- For a given positive continuous function γ(t), t ∈ J , the space Mγ
p(J,ℜl) consists of all

progressively measurable l-dimensional stochastic processes x(t) (t ∈ J) such that

sup
t∈J

E|γ(t)x(t)|p < ∞.

- For l = n and J = ℜ+ we define Mγ
p ≡ Mγ

p(ℜ+,ℜn), and if, in addition, γ = 1, then we put
Mp ≡ M1

p(ℜ+,ℜn).

- The Banach space U is the direct product of 2m copies of the space Mp(ℜ+,ℜl) equipped
with the natural norms.

In the well-known definition of the stochastic Lyapunov stability below we assume that φ ∈
Mp(ℜ− ∪ {0},ℜn).

Definition 1. Eq. (1) is called globally

- p-stable if there exists c > 0 such that

E|x(t, φ)|p ≤ c sup
s≤0

E|φ(s)|p for all t ∈ ℜ+;
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- asymptotically p-stable if it is p-stable and, in addition,

lim
t→∞

E|x(t, φ)|p = 0;

- exponentially p-stable if there exist c > 0 and β > 0 such that the inequality

E|x(t, φ)|p ≤ c exp{−βt} sup
s≤0

E|φ(s)|p for all t ∈ ℜ+

holds.

To study Lyapunov stability of the solutions of Eq. (1), it is convenient to rewrite it as a
multi-time scale stochastic Volterra equation with predefined controls:

dy(t) =

m∑
j=1

[
(Fj(y, u1j))(t) (dt)

αj + (Gj(y, u2j))(t) dBj(t)
]

(t ≥ 0), (3)

where uij = uij(t, ω) (t ∈ ℜ+) belong to the space Mp(ℜ+,ℜl), Fj and Gj are some nonlinear
Volterra mappings. The way to construct uij , Fj and Gj is described in the paper [7]. Note that
Eq. (3) only requires the initial condition for t = 0

y(0) = y0 ∈ knp . (4)

Given uij ∈ Mp(ℜ+,ℜl), by a solution of the control problem (3), (4) we understand a progressively
measurable stochastic process y(t) almost surely satisfying the initial condition (4) and the integral
equation

y(t)− y0 =
m∑
j=1

[ t∫
0

αj(t− s)αj−1Fj(y, u1j)(s) ds+

t∫
0

Gj(y, u2j)(s) dBj(s)

]

for all t ∈ ℜ+. Two integrals here are understood in the sense of Lebesgue and Itô, respectively.
In the sequel, we will assume that the restrictions on the operators Fj and Gj ensure the existence
of these integrals and existence and uniqueness of the solution y(t, y0, u) of the control problem
(3), (4) for all uij ∈ Mp(ℜ+,ℜl) and y0 ∈ knp .

The Lyapunov stability of the solutions of Eq. (1) will be, then, replaced by a particular version
of the input-to-state stability, which is well-known in the control theory. Below, we call this version
Mγ

p-stability.

Definition 2. We say that Eq. (3) is Mγ
p-stable if for all y0 ∈ knp and uij ∈ Mp(ℜ+,ℜl)

- y( · , y0, u) ∈ Mγ
p ;

- there exists K > 0 such that

∥y( · , y0, u)∥Mγ
p
≤ K

(
∥y0∥knp + ∥u∥U

)
.

Under some very natural conditions on γ (see [7] for the details) the Mγ
p-stability of solutions

of Eq. (3) implies p-stability, asymptotic p-stability and exponential p-stability of solutions of Eq.
(1). This result is exploited in this report.
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To study the property of Mγ
p-stability for Eq. (3) it is convenient to start with choosing some

simpler linear equation, which already has this property:

dy(t) =

m∑
j=1

[(
(Qjy)(t) + z1j(t)

)
(dt)αj + z2j(t) dBj(t)

]
(t ∈ ℜ+). (5)

Here Qj : Mp → Lpj (ℜ+,ℜn) (pj > 1
αj
) are k1p-linear operators, z1j ∈ Lpj (ℜ+,ℜn) and z2j ∈

L2(ℜ+,ℜn). Assuming the existence and uniqueness property for Eq. (5) for any initial condition
(4) and using the linearity of Qj , we obtain the following representation of its solutions:

y(t) = U(t)χ(0) + (Wz)(t),

where U(t) is the fundamental matrix of the associated homogeneous equation, which is an n× n-
matrix whose columns satisfy this homogeneous equation and U(0) = In and

W :

m∏
j=1

(
Lpj (ℜ+,ℜn)× L2(ℜ+,ℜn)

)
→ Mp

is Green’s operator for (5), (Wz)(0) = 0 and Wz is a solution of Eq. (5) for any z from the domain
of W . Using the solutions representation of the auxiliary equation we can regularize Eq. (3) by
rewriting it as

y(t) = U(t)y0 +
m∑
j=1

[(
W1j(−Qjy + Fj(y, u1j))

)
(t) +

m∑
j=1

(W2jGj(y, u2j))(t)
]

(t > 0).

Given a continuous function γ : ℜ+ → (0,∞), an initial value y0 = [y01,→, y0n]
T ∈ knp , a control

u = (uij : i = 1, 2, j = 1, . . . ,m), uij ∈ Mp(ℜ+,ℜl), which produce the solution of Eq. (3)

y(t, y0, u) =
[
y1(t, y0, u), . . . , yn(t, y0, u)

]T
and a nonnegative stopping time η, we define

- y0 = [y01, . . . , y0n]
T , where

y0ν = (E|y0ν |p)1/p ≡ ∥y0ν∥k1p ;

- y η = [y η
1 , . . . , y

η
n ]T , where

y η
ν = sup

0≤t≤η

(
E|γ(t)yν(t, y0, u)|p

)1/p
,

so that y η
ν = y η

ν (γ, p), y η = y η(γ, p) and y η
ν = y η

ν (γ, p) for ν = 1, . . . , n. These notations allow us
to formulate and prove the main result of this report.

Theorem 1. Suppose there exist a real n × n-matrix C and two constants K1 > 0 and K2 > 0
such that In −C is inverse-positive and for any stopping time 0 ≤ η < ∞ the vector y η = y η(γ, p)
satisfies the matrix inequality

y η ≤ Cy η +K1y0 +K2∥u∥Uen (en = [1, . . . , 1]T ∈ ℜn).

Then Eq. (3) is Mγ
p-stable.
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The proof of the theorem can be found in [7].
Using this theorem, one can conveniently study different kinds of Lyapunov stability of the

solutions of Eq. (1), choosing an appropriate weight γ and an auxiliary equation (5).
The illustrative example below demonstrates applications of Theorem 1. The universal constant

cp used in the example comes from the following estimate:

E

∣∣∣∣
t∫

0

f(s) dB(s)

∣∣∣∣2p ≤ c2pp E

( t∫
0

|f(s)|2 ds
)p

(t ∈ ℜ+, p ≥ 1), (6)

where B(t) (t ∈ ℜ+) is the standard scalar Brownian motion and f(s) ia an arbitrary scalar,
progressive measurable stochastic process on ℜ+; some explicit formulae for cp can be found in the
literature, for instance, in [4], where cp = 2

√
12p, which, however, is not best possible, as evidently,

c1 = 1,

Example. Let 1 ≤ p < ∞. Consider the following system of linear equations

dx(t) = −
m∑
j=1

[
A(j)x(hj(t)) (dt)

αj +

mj∑
τ=1

A(j,τ)x(hjτ (t)) dBj(t)
]

(t ≥ 0), (7)

where A(j) = (a
(j)
sl )

n
s,l=1, j = 1, . . . ,m, A(j,τ) = (a

(j,τ)
sl )ns,l=1, j = 1, . . . ,m, τ = 1, . . . ,mi are real

n×n-matrices and hj , hjτ , j = 1, . . . ,m, τ = 1, . . . ,mj are continuous functions such that hj(t) ≤ t,
hjτ ≤ t, t ≥ 0, j = 1, . . . ,m, τ = 1, . . . ,mj , 0 < αj ≤ 1, j = 1, . . . ,m, A(1) is a diagonal matrix
with the positive diagonal entries a

(1)
ν and α1 = 1.

Let C be the n× n-matrix with the entries

cνκ =

m∑
j=2

[
|a(j)νκ |

(
exp{−αj}

( αj

a
(1)
νν

)αj

+Γ
(αj + 1

a
(1)
νν

)αj
)]

+

m∑
j=1

mj∑
τ=1

cp

[
|a(j,τ)νκ |√
2aνν

]
(ν, κ = 1, . . . , n). (8)

Then the system (7) will be globally 2p-stable if the matrix In−C defined by (8) is inverse-positive.
Here cp is the universal constant from the estimate (6).

In this case one uses the constant weigth function γ(t) = 1 and an ordinary scalar equation (5).
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We consider the linear differential systems

ẋ = A(t)x, x ∈ Rn, t ≥ t0, (1)

with bounded infinitely differentiable coefficients and characteristic exponents λ1(A) ≤ · · · ≤ λn(A).
Along with them, we consider the nonlinear systems

ẏ = A(t)y + f(t, y), y ∈ Rn, t ≥ t0, (2)

with m-perturbations f(t, y) also with infinitely differentiable coefficients of order m > 1 smallness
in the neighbourhood of the origin y = 0 and admissible growth outside it:

‖f(t, y)‖ ≤ Cf‖y‖m, m > 1, Cf = const, y ∈ Rn, t ≥ t0. (3)

Perron’s effect [6], [5, pp. 50–51] in a two-dimensional case establishes the existence of system (1)
with negative exponents and 2 – perturbation (3) such that all nontrivial solutions of the two-
dimensional system (2) are infinitely extendable to the right, and a part of them have coinciding
positive exponents, and the remaining, nonempty part, has a negative exponent. This effect of
changing negative exponents of system (1) to positive for solutions of system (2) is investigated by
us (including the joint work with S. K. Korovin) in a cycle of works [1,2] which are completed by a
full description of the sets of positive and negative (and in their absence) exponents of all nontrivial
solutions of system (2).

Of greater interest for its possible applications is the anti-Perron effect [3, 4], i.e., the effect of
changing all positive exponents of linear approximation (1) to negative ones for the solutions of
perturbed systems with small perturbations (with linear exponentially decreasing and tending to
zero at infinity; nonlinear of higher order of smallness). Moreover, in [3], the change of exponents

λ1(A) > 0 7→ λn−1(A+Q) < 0 < λn(A+Q)

is realized by exponentially decreasing linear perturbations f(t, y) = Q(t)y (the case λn(A+Q) < 0
remains open), while in [4] – a complete change of exponents λ1(A) > 0 7→ λn(A + Q) < 0 is
realized by perturbations Q(t) → 0 for t → +∞.

In this report, we have realized the following version of the anti-Perron effect of changing the
positive exponents of the two-dimensional linear approximation (1) to a negative one for a nontrivial
solution of the nonlinear system (2) with m-perturbation (3).

The following theorem is valid.
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Theorem. For any parameters m > 1, θ > 1 and λ > 0 there exist:

1) two-dimensional linear system (1) with a bounded infinitely differentiable matrix of coefficients
A(t) and characteristic exponents λ1(A) = λ2(A) = λ > 0;

2) also infinitely differentiable with respect to its arguments m-perturbation

f(t, y) : [t0,+∞)×R2 → R2,

such that the perturbed nonlinear system (2) has a solution y(t) with the Lyapunov exponent

λ[y] = −λ
θ + 1

mθ − 1
< 0.

References
[1] N. A. Izobov and A. V. Il’in, Construction of an arbitrary Suslin set of positive characteristic

exponents in the Perron effect. (Russian) Differ. Uravn. 55 (2019), no. 4, 464–472; translation
in Differ. Equ. 55 (2019), no. 4, 449–457.

[2] N. A. Izobov and A. V. Il’in, Construction of a countable number of different Suslin’s sets of
characteristic exponents in Perron’s effect of their values change. (Russian). Differentsialnye
Uravnenia 56 (2020), no. 12, 1585–1589.

[3] N. A. Izobov and A. V. Il’in, On the existence of linear differential systems with all positive
characteristic exponents of the first approximation and with exponentially decaying pertur-
bations and solutions. (Russian) Differ. Uravn. 57 (2021), no. 11, 1450–1457; translation in
Differ. Equ. 57 (2021), no. 11, 1426–1433.

[4] N. A. Izobov and A. V. Il’in, Linear version of the anti-Perron effect of change of positive
characteristic exponents to negative ones. (Russian) Differ. Uravn. 58 (2022), no. 11, 1443–
1452; translation in Differ. Equ. 58 (2022), no. 11, 1439–1449.

[5] G. A. Leonov, Chaotic Dynamics and Classical Theory of Motion Stability. (Russian) NITs
RKhD, Izhevsk, Moscow, 2006.

[6] O. Perron, Die Stabilitätsfrage bei Differentialgleichungen. (German) Math. Z. 32 (1930),
no. 1, 703–728.



66 T. Jangveladze

On Decomposition Method
for Bitsadze–Samarskii Nonlocal Boundary Value Problem

for Nonlinear Two-Dimensional Second Order Elliptic Equations

Temur Jangveladze1,2
1Ilia Vekua Institute of Applied Mathematics of Ivane Javakhishvili Tbilisi State University

Tbilisi, Georgia
2Department of Mathematics, Georgian Technical University, Tbilisi, Georgia

E-mail: tjangv@yahoo.com

The present note is devoted to the Bitsadze–Samarskii nonlocal boundary value problem for
nonlinear two-dimensional second-order elliptic equations. The sequential and parallel domain
decomposition algorithms are considered.

The different kinds of problems with nonlocal boundary conditions arise very often. Nonlocal
boundary value problems are quite an interesting generalization of classical problems and at the
same time, they are naturally obtained when constructing mathematical models of real processes
and phenomena in physics, engineering, sociology, ecology, etc. (see, for example, [1, 3, 5, 10] and
the references therein).

The nonlocal problems for ordinary differential equations, elliptic and other models are studied
in many works (see, for example, [1–3, 5–7, 18] and the references therein). One of the main
publications in this direction is work [3] by A. Bitsadze and A. Samarskii, in which by means of the
method of integral equations the theorems of existence and uniqueness of a solution for the second-
order multi-dimensional elliptic equations are proved. There are given some classes of problems for
which the proposed method also works.

Numerous scientific papers deal with the investigation and numerical solution of problems con-
sidered in [3] and their modifications and generalizations. Many scientific papers are devoted to
the construction and investigation of discrete analogs of the above-mentioned models. One of the
first among them was the work [6] where the iterative method of proving the existence of a solution
for the Laplace equation was proposed. By the approach proposed in the work [6], the nonlocal
problem reduced to the classical Dirichlet problems, which yields the possibility to apply the elab-
orated effective methods for the numerical resolution of these problems. After this work, many
scientists have been investigating nonlocal problems by using the same or different methods for
elliptic equations and, among them, nonlinear models as well (see, for example, [1,2,5,7–14,16] and
the references therein). Nevertheless, there are still many open questions in this direction.

It is well known that, in order to find the approximate solutions, it is important to construct
useful cost-effective algorithms. For constructing such algorithms, the method of domain decom-
position has great importance (see, for example, [19] and the references therein). There are several
reasons why the domain decomposition techniques might be attractive. Applying this method, the
whole problem can be reduced to relative subproblems on the domains which are comparatively
less in size than the one considered at the beginning. At the same time, it’s worth noting that, in
addition to the sequential count algorithm on each of these domains, it is often possible to apply a
parallel count algorithm as well. In the works [10–14, 16] domain decomposition method based on
the Schwarz alternative method [4] is given for the study of nonlocal problems for Laplace [11–14,16]
and nonlinear elliptic equations [10].
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It is well known how a great role takes place variational formulation of boundary problems in
modern mathematics. This question for nonlocal elliptic problems is at the beginning of study so
far (see, for example, [13, 14] and the references therein).

The results of this paper are partially published in the work [10].
The outline of this note is as follows. The Bitsadze–Samarskii nonlocal boundary value problem

for the nonlinear-second order two-dimensional elliptic equation in a rectangle is considered. The
convergence of the Schwarz-type iterative sequential algorithm as well as the same question for the
parallel algorithm is studied.

In the plane Oxy, let us consider the rectangle G = {(x, y)| − a < x < 0, 0 < y < b}, where a
and b are the given positive constants. We denote the boundary of the rectangle G by ∂G and the
intersection of the line x = t with the set G = G ∪ ∂G by Γt correspondingly.

Consider the following nonlocal Bitsadze–Samarskii boundary value problem:

F
(
x, y, u,

∂u

∂x
,
∂u

∂y
,
∂2u

∂x2
,
∂2u

∂x∂y
,
∂2u

∂y2

)
= 0,

u(x, y)
∣∣
Γ
= 0,

u(x, y)
∣∣
Γ−ξ

= u(x, y)
∣∣
Γ0
,

(1)

where Γ = ∂G \ Γ0, ξ ∈ (0, a); u(x, y) ∈ C(G) ∩ C2(G) is an unknown function, F is the analytic
function of its arguments: u, ux = p, uy = q, uxx = r, uxy = s, uyy = t and

4FrFt − F 2
s ≥ const > 0, Fu ≤ 0.

For the problem (1) let’s consider the following sequential iterative procedure:

F
(
x, y, uk1,

∂uk1
∂x

,
∂uk1
∂y

,
∂2uk1
∂x2

,
∂2uk1
∂x∂y

,
∂2uk1
∂y2

)
= 0, (x, y) ∈ G1,

uk1(x, y)
∣∣
Γ1 = 0, uk1(x, y)

∣∣
Γ−ξ1

= uk−1
2 (x, y)

∣∣
Γ−ξ1

,

(2)

F
(
x, y, uk2,

∂uk2
∂x

,
∂uk2
∂y

,
∂2uk2
∂x2

,
∂2uk2
∂x∂y

,
∂2uk2
∂y2

)
= 0, (x, y) ∈ G2,

uk2(x, y)
∣∣
Γ2 = 0, uk2(x, y)

∣∣
Γ−ξ

= uk2(x, y)
∣∣
Γ0

= uk1(x, y)
∣∣
Γ−ξ

,

(3)

k = 1, 2, . . . .

Here we utilize the following notations:

G1 = {(x, y) | −a < x < −ξ1, 0 < y < b}, G2 = {(x, y) − ξ < x < 0, 0 < y < b},

where −ξ1 is a fixed point of the interval (−ξ, 0), Γ1 = ∂G1 \ Γ−ξ1 , Γ2 = ∂G2 \ (Γ−ξ ∪ Γ0) and
u02(−ξ1, y) ≡ 0.

The iterative procedure (2), (3) reduces the nonlocal nonclassical problem (1) to the sequence
of classical Dirichlet boundary value problems on every step of the iteration.

As we have already noted, algorithm (2), (3) for the solution of the problem (1) has a sequential
form. Now, let us consider one more approach to the solution of the problem (1). In this case,
the search for approximate solutions on domains G1 and G2 will be carried out not by means of a
sequential algorithm, but in a parallel way.
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Consider the following parallel iterative process:

F
(
x, y, uk1,

∂uk1
∂x

,
∂uk1
∂y

,
∂2uk1
∂x2

,
∂2uk1
∂x∂y

,
∂2uk1
∂y2

)
= 0, (x, y) ∈ G1,

uk1(x, y)
∣∣
Γ1 = 0, uk1(x, y)

∣∣
Γ−ξ1

= uk−1
2 (x, y)

∣∣
Γ−ξ1

,

(4)

F
(
x, y, uk2,

∂uk2
∂x

,
∂uk2
∂y

,
∂2uk2
∂x2

,
∂2uk2
∂x∂y

,
∂2uk2
∂y2

)
= 0, (x, y) ∈ G2,

uk2(x, y)
∣∣
Γ2 = 0, uk2(x, y)

∣∣
Γ−ξ

= uk2(x, y)
∣∣
Γ0

= uk−1
1 (x, y)

∣∣
Γ−ξ

,

(5)

k = 1, 2, . . . ,

where u01(−ξ, 0) ≡ u02(−ξ1, 0) ≡ 0.
The following statements are true.

Theorem 1. The sequential iterative process (2), (3) converges to a solution of the problem (1)
uniformly in the domain G.

Theorem 2. The parallel iterative process (4), (5) converges to a solution of the problem (1)
uniformly in the domain G.

Remark 1. In the case of the Poisson equation, in Theorem 1 the following estimations are valid
too for the sequential iterative process (2), (3):

|u(x, y)− uk1(x, y)| ≤ Cqk−1, (x, y) ∈ G1,

|u(x, y)− uk2(x, y)| ≤ Cqk−1, (x, y) ∈ G2,

and

|u(x, y)− uk1(x, y)| ≤ Cq
k
2
−1, (x, y) ∈ G1,

|u(x, y)− uk2(x, y)| ≤ Cq
k
2
−1, (x, y) ∈ G2,

for the parallel iterative process (4), (5).

Here q ∈ (0, 1) and C are constants independent of functions: u(x, y), uk1(x, y), u
k
2(x, y).

Remark 2. The Bitsadze–Samarskii nonlocal boundary value problem for the above-mentioned
nonlinear equation by using iterative process analogical to (2), (3) at first was studied in [14].

Remark 3. Theorems analogous to the above Theorems 1 and 2 are valid for the sequential as
well as parallel algorithms for multi-grid domain decomposition case too.
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1 Introduction
Since the publication of the pioneering papers by Koplatadze [2, 3], Koplatadze and Kvinikadze
[4] and Yoshida [5, 6] there has been an increasing interest in the qualitative study of nonlinear
differential equations with variable exponents. See also Došlá and Fujimoto [1].

In this lecture we take up second order Emden–Fowler type differential equations of the form(
p(t)φα(t)(x

′)
)′
+ q(t)φβ(t)(x) = 0, (A)

for which it is assumed that

(a) the coefficients p(t) and q(t) are positive continuous functions on I = [a,∞), a ≥ 0;

(b) the exponents α(t) and β(t) are positive continuous functions on I which tend to the non-zero
limits α(∞) and β(∞), respectively, as t → ∞ in the extended real number system;

(c) the symbol φγ(t) with a positive continuous function γ(t) on I denotes the operator on C(I)
defined by

φγ(t)(u(t)) = |u(t)|γ(t) sgn u(t), u ∈ C(I).

We are concerned exclusively with nonoscillatory solutions of equation (A), that is, those solu-
tions x(t) of (A) which are defined on an interval of the form J = [T,∞), T ≥ a, and eventually
positive or negative there. For any solution x(t) of (A) we define

Dαx(t) = p(t)φα(t)(x
′(t)),

and call it the quasi-derivative of x(t). It is easy to see that if x(t) is a nonoscillatory solution of
(A) on J , then (A) implies that its quasi-derivative Dαx(t) is eventually monotone on J so that
x′(t) is eventually of constant sign, and this means that x(t) is eventually monotone on J . Thus it
turns out that both Dαx(t) and x(t) have the limits as t → ∞ in the extended real number system.
The pair of these limits (x(∞), Dαx(∞)) is referred to as the terminal state of the solution x(t).
The terminal state of x(t) can be a crucial indicator of the asymptotic behavior of x(t) as t → ∞.
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Given an equation of the form (A), consider the set of all terminal states of its nonoscillatory
solutions. This set is divided into a finite number of subsets, each of which claims its own pattern
(or type) of asymptotic behavior shared by all members of that subset. It is expected that all
these patterns specific to (A), once precisely analyzed, will provide us with a deeper insight into
the overall asymptotic behavior at infinity of solutions of (A). As the object of our investigation
we choose two classes of equations of the form (A), equations of category I and category II, which
are defined in terms of the integrals

Ip =

∞∫
a

p(t)
− 1

α(t) dt and Iq =

∞∫
a

q(t) dt,

as follows. Equation (A) is said to be of category I or of category II according to whether Ip = ∞
and Iq < ∞ or Ip < ∞ and Iq = ∞, respectively. In this work we focus our attention on equations
of these two categories, leaving equations of the remaining categories for later studies. Equation
(A) of category I is studied in Section 2, where it turns out that there are three different patterns of
terminal states of solutions of (A). This means that the entirety of solutions of (A) can be divided
into three groups whose members exhibit different astmptotic behaviors as t → ∞. Our most
important task is to answer the question about the existence of solutions of (A) having these three
patterns of asymptotic behavior. As it turns out, the question is too difficult to gain a complete
answer. Section 3 is devoted to the study of equation (A) of category II. This equation of new
category can also be handled by way of the standard analysis as developed in Section 1. However,
we present here a surprisingly convenient means named Duality Principle which makes it possible to
derive the desired results for equations of category II almost automatically from the results already
known for equations of category I.

2 Nonoscillatory solutions of equation (A) of category I
We start with equation (A) of category I. Use is made of the following functions:

Pα(t) =

t∫
a

p(s)
− 1

α(s) ds, ρ(t) =

∞∫
t

q(s) ds, t ≥ a.

It is clear that Pα(t) → ∞ and ρ(t) → 0 as t → ∞.
Let x(t) be any nonoscillatory solution of (A) on J = [T,∞), T ≥ a. We may assume without

loss of generality that x(t) > 0 on J . Then, it can be shown that Dαx(t) > 0 on J , so that the
terminal states of x(t) is divided into the following three patterns:

I-(i) {x(∞) = ∞, < Dαx(∞) < ∞},

I-(ii) {x(∞) = ∞, Dαx(∞) = 0},

I-(iii) {0 < x(∞) < ∞, Dαx(∞) = 0}.

A solution of (A) having the asymptotic pattern I-(i), I-(ii) or I-(iii) is named a maximal solution,
an intermediate solution or a minimal solution of (A). Note that maximal and intermediate solutions
are unbounded on J . It is important to recognize that the order of growth of a maximal solution
x(t) of (A) as t → ∞ is precisely determined by the value Dαx(∞) as follows:

Dαx(∞) = d ∈ (0,∞) =⇒ lim
t→∞

x(t)

Pα(t)
= d

1
α(∞) .
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On the other hand, as for an intermediate solution x(t) of (A) nothing precise can be said about
its growth at infinity except that it satisfies lim

t→∞
x(t)/Pα(t) = 0 because of Dαx(∞) = 0.

Our primary goal in this section is to characterize the existence of solutions with three different
asymptotic patterns. More specifically, we want to find necessary and sufficient conditions for (A)
to have maximal, intermediate and minimal solutions. This, however, is a difficult task in general.
The first result concerns necessary conditions for the existence of maximal solutions of (A).

Theorem 2.1. Let (A) be of category I. Suppose that (A) has a maximal solution x(t) such that

lim
t→∞

Dαx(t) = d or equivalently lim
t→∞

x(t)

Pα(t)
= d

1
α(∞) for some constant d > 0. (2.1)

(i) If d > 1, then it holds that
∞∫
a

q(t)Pα(t)
β(t) dt < ∞. (2.2)

(ii) Let the condition β(∞) < ∞ be added to (A). If 0 < d ≤ 1, then (2.2) is satisfied.

The second result gives sufficient conditions for (A) to have maximal solutions.

Theorem 2.2. Let (A) be of category I. Suppose that (2.2) is satisfied.

(i) Equation (A) has a maximal solution x(t) satisfying (2.1) for any given d < 1.

(ii) Equation (A) with β(∞) < ∞ has a maximal solution x(t) satisfying (2.1) for any given
d ≥ 1.

From the above two theorems combined we have the following result characterizing the existence
of maximal solutions for (A).

Theorem 2.3. Let (A) be of category I. Assume that β(∞) < ∞. Then, (A) has a maximal
solution x(t) satisfying (2.1) for any positive constant d if and only if (2.2) is satisfied.

Let us turn our attention to minimal solutions x(t) of equation (A) having the asymptotic
pattern

lim
t→∞

Dαx(t) = 0, lim
t→∞

x(t) = ω for some constants ω ̸= 0. (2.3)

Such solutions can also be handled in essentially the same way as maximal solutions, and we are
led to the following results.

Theorem 2.4. Let (A) be of category I. Suppose that (A) has a minimal solution x(t) satisfying
(2.3) for some non-zero constant ω.

(i) If |ω| > 1, then it holds that
∞∫
a

(
p(t)−1ρ(t)

) 1
α(t) dt < ∞. (2.4)

(ii) Let the condition β(∞) < ∞ be added to (A). If 0 < |ω| ≤ 1, then (2.4) is satisfied.

Theorem 2.5. Let (A) be category I. Suppose that (2.4) is satisfied.

(i) Equation (A) has a minimal solution x(t) satisfying (2.3) for any given ω with 0 < |ω| ≤ 1.
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(ii) Equation (A) with β(∞) < ∞ has a minimal solution x(t) satisfying (2.3) for any given ω
with |ω| > 1.

Theorem 2.6. Let (A) be of category I. Assume that β(∞) < ∞. Then, (A) has a minimal solution
x(t) satisfying (2.3) for any positive constant ω if and only if (2.4) is satisfied.

The analysis of intermediate solutions seems to be extremely difficult. What we have been able
to achieve so far is to prove the existence of such a solution x(t) satisfying

lim
t→∞

x(t) = ∞ and lim
t→∞

x(t)

Pα(t)
= 0,

only for the sublinear case of equation (A). We call equation (A) sublinear if α(t) decreases to
α(∞) > 0, β(t) increases to β(∞) > 0 and α(∞) > β(∞). Our result reads:

Theorem 2.7. Let (A) be of category I and sublinear. There exists an intermediate solution of
(A) if

∞∫
a

(
p(t)−1ρ(t)

) 1
α(t) dt = ∞ and

∞∫
a

q(t)Pα(t)
β(t) dt < ∞.

3 Nonoscillatory solutions of equation (A) of category II
This section is concerned with equation (A) of category II. Naturally this equation of new category
can also be analyzed by the method similar to that employed in Section 2 for equations of category
I. Here we avoid the routine approach, but instead we introduce a surprisingly convenient means
called Duality Principle that makes it possible to derive all the desired asymptotic results for
category II equations almost automatically from the known results for category I equations.

Let there be given equation (A). Putting y(t) = −p(t)φα(t)(x
′(t)) split (A) into the cyclic

differential system

x′(t) = −p(t)
− 1

α(t) φ 1
α(t)

(y(t)), y′(t) = q(t)φβ(t)(x(t)), (3.1)

and eliminate x(t) and x′(t) from (3.1). We then obtain the following differential equation for y(t):(
q(t)

− 1
β(t)φ 1

β(t)
(y′)

)′
+ p(t)

− 1
α(t)φ 1

α(t)
(y) = 0. (B),

Equation (B) is called the reciprocal equation of (A). Equation (B) is of the same type as (A)
with different exponents α∗(t) = 1/β(t) and β∗(t) = 1/α(t). It is clear that the assumption (b)
required for equation (A) is also satisfied for equation (B). As is easily seen, (A) is the reciprocal
equation of (B).

A simple but noteworthy relationship between (A) and (B) called the duality principle will play
a vital role in the whole development of this section.

Duality Principle
If equation (A) is of category I (resp. category II), then equation (B) is of category II (resp.
category I), and vice versa.

We start with equation (A) for x(t) of category II. To gain information about the asymptotic
properties of its solutions, proceed as follows. First, form the reciprocal equation (B) for y(t). Since
(B) is of category I, all the results obtained in Section 1 can be applied to (B) so that we have
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a list of the main theorems describing the asymptotic properties of solutions y(t) of (B). All the
theorems in the list need to be rewritten as the statements regarding solutions x(t) of equation (A).
The new theorems thus obtained provide the asymptotic results we want to establish for equations
of category II.

In the process of rewriting it is imperative to make correct use of the precise relationship between
the data on (A) and those on (B) which are generated by (3.1) or equivalently by y(t) = −Dαx(t)
and x(t) = D 1

β
y(t). Some of the main results obtained for (A) of category II via the duality

principle are mentioned below.

Classification of solutions
Let (A) be of category II. If x(t) is a positive solution on J of (A), then Dαx(t) < 0 on J and its
terminal state is one of the three patterns:

II-(i): 0 < x(∞) < ∞, Dαx(∞) = −∞;

II-(ii): x(∞) = 0, Dαx(∞) = −∞;

II-(iii): x(∞) = 0, −∞ < Dαx(∞) < 0.

A solution satisfying II-(i), II-(ii) or II-(iii) are called, respectively, a maximal solution, an
intermediate solution, or a minimal solution of equation (A) of category II.

Using the functions

πα(t) =

∞∫
t

p(s)
− 1

α(s) ds, Q(t) =

t∫
a

q(s) ds,

which satisfy πα(t) → 0 and Q(t) → ∞ as t → ∞, it is easy to show that the asymptotic behavior
of a maximal solution or a minimal solution can be expressed as

lim
t→∞

x(t) = c, lim
t→∞

Dαx(t)

Q(t)
= −c

1
α(∞) , for some constant c > 0, (3.2)

or
lim
t→∞

Dαx(t) = −d, lim
t→∞

x(t)

πα(t)
= d

1
α(∞) for some constant d > 0. (3.3)

Existence of maximal and minimal solutions
Only the rewritten versions of Theorems 2.3 and 2.6 applied to (B) are presented here. The
condition β(∞) < ∞ needed in Theorems 2.3 and 2.6 is dispensed with for an obvious reason.

Theorem 3.1. Equation (A) of category II has a maximal solution satisfying (3.2) for any c > 0
if and only if

∞∫
a

(
p(t)−1Q(t)

) 1
α(t)

dt < ∞.

Theorem 3.2. Equation (A) of category II has a minimal solution satisfying (3.3) for any d > 0
if and only if

∞∫
a

q(t)πα(t)
β(t) dt < ∞.
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Existence of an intermediate solution
Let (A) be of category II. If in addition (A) is sublinear, then so is its reciprocal equation (B)
of category I. First, apply Theorem 2.5 on equation (A) of category I to (B) and formulate a
proposition on the existence of intermediate solutions y(t) of (B). Then, using Duality Principle,
translate the result into a theorem on intermediate solutions x(t) of (A). It should read as follows:

Theorem 3.3. Sublinear equation (A) of category II has an intermediate solution if
∞∫
a

q(t)πα(t)
β(t) dt = ∞ and

∞∫
a

(
p(t)−1Q(t)

) 1
α(t)

dt < ∞.
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In the infinite stripe DT := {(x, t) ∈ R2, x ∈ R, 0 < t < T} of the plane of independent
variables x, t we consider the problem of finding a regular solution u = u(x, t) of the hyperbolic
equation

autt + 2butx + cuxx = f(x, t), (x, t) ∈ DT , a, b, c := const, a ̸= 0, (1)
satisfying the periodic boundary conditions with respect to the variable t

u(x, 0) = u(x, T ), ut(x, 0) = ut(x, T ), x ∈ R := (−∞,+∞). (2)

For hyperbolic equations and systems time periodic problems have been the subject of research
by many authors (see, for example, works [2–6] and the references therein), in which questions of
existence, absence, uniqueness and representation of solutions are studied.

Assuming that
b2 − ac > 0, f ∈ C1(DT ), (3)

the regular solution u ∈ C2(DT ) of the equation (1) can be represented in the form

u(x, t) =
λ2φ(x− λ1t)− λ1φ(x− λ2t)

λ2 − λ1

+
1

λ2 − λ1

x−λ1t∫
x−λ2t

ψ(τ) dτ +
1

a(λ2 − λ1)

∫
Dx,t

f(ξ, τ) dξ dτ, (4)

where λi, i = 1, 2 by virtue (3) are the different real roots of the quadratic equation aλ2−2bλ+c = 0
and Dx,t is the triangular domain bounded by an axis Ox and characteristic lines of the equation
(1) coming from the point (x, t) ∈ DT and

φ(x) := u(x, 0), ψ(x) := ut(x, 0), x ∈ R.

By applying the representation (4), the problem (1), (2) is equivalently reduced to a system of
functional equations

ψ(x) +
1

λ2 − λ1

[
λ1ψ(x− λ1T )− λ2ψ(x− λ2T ) + λ1λ2φ

′(x− λ1T )− λ1λ2φ
′(x− λ2T )

]

=
1

a(λ2 − λ1)

T∫
0

{
− λ1f

[
x− λ1(T − τ), τ

]
+ λ2f

[
x− λ2(T − τ), τ

]}
dτ,

φ′(x) +
1

λ2 − λ1

[
− λ2φ

′(x− λ1T ) + λ1φ
′(x− λ2T )− ψ(x− λ1T ) + ψ(x− λ2T )

]

=
1

a(λ2 − λ1)

T∫
0

{
f
[
x− λ1(T − τ), τ

]
− f

[
x− λ2(T − τ), τ

]}
dτ.

(5)
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In the notation v :=
(
ψ,φ′) we write the system of equations (5) in the form

v(x) +
2∑

i=1

Aiv(x− λiT ) = F (x), x ∈ R, (6)

where
A1 :=

1

λ2 − λ1

∥∥∥∥λ1 λ1λ2
−1 −λ2

∥∥∥∥ , A2 :=
1

λ2 − λ1

∥∥∥∥−λ2 −λ1λ2
1 λ1

∥∥∥∥ , (7)

and

F (x) :=
1

a(λ2 − λ1)

∥∥∥∥∥∥∥∥∥∥∥∥

T∫
0

{
− λ1f

[
x− λ1(T − τ), τ

]
+ λ2f

[
x− λ2(T − τ), τ

]}
dτ

T∫
0

{
f
[
x− λ1(T − τ), τ

]
− f

[
x− λ2(T − τ), τ

]}
dτ

∥∥∥∥∥∥∥∥∥∥∥∥
.

If we introduce the notations
ωi := Aiv, i = 1, 2, (8)

by virtue of (7) and taking into account the facts that: A1A2 = A2A1 = O and A2
i := −Ai,

i = 1, 2, from the equation (6) with respect to the unknown functions ωi, i = 1, 2, we get the
following independent from each other equations

ωi(x)−Aiωi(x− λiT ) = AiF (x), x ∈ R, i = 1, 2. (9)

For arbitrary α, β ∈ R let’s introduce the following spaces:

Cα,β(R) :=
{
v ∈ C(R) : sup

x∈(−∞,0)
e−αx|v(x)|+ sup

x∈(0,+∞)
e−βx|v(x)| < +∞

}
,

C2
α,β(DT ) :=

{
u ∈ C2(DT ) : sup

(x,t)∈(−∞,0)×[0,T ]
e−αx

(
|u(x, t)|+ |ut(x, t)|

)
+ sup

(x,t)∈(0,+∞)×[0,T ]
e−βx

(
|u(x, t)|+ |ut(x, t)|

)
< +∞

}
,

C1
α,β(DT ) :=

{
f ∈ C1(DT ), sup

x∈(−∞,0)×[0,T ]
e−αx|f(x, t)|+ sup

x∈(0,+∞)×[0,T ]
e−βx|f(x, t)| < +∞

}
,

and the notation
Iα,β :=

[
min(α, β),max(α, β)

]
.

Remark 1. It is easy to check that from the equalities (8) the vector function v is uniquely
determined if and only if

λ1λ2 =
c

a
̸= 0. (10)

Throughout Theorems 1–4 formulated below we will assume that the condition (10) is satisfied.
Based on Bochner’s results [1] regarding to the functional equation (9) in the space Cα,β(R) there
are proved the following:

Theorem 1. If αβ > 0, then for any right-hand side f ∈ C1
α,β(DT ) the problem (1), (2) has a

unique solution in the space C2
α,β(DT ).

Theorem 2. If α < 0 and β > 0, then for any right-hand side f ∈ C1
α,β(DT ) there exists a solution

of the problem (1), (2) in the space C2
α,β(DT ), besides the corresponding homogeneous problem has

an infinite number of linearly independent solutions in the same space.
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Theorem 3. If α > 0 and β < 0, then the problem (1), (2) in the space C2
α,β(DT ) cannot have more

than one solution and for its solvability it is necessary and sufficient that the function f ∈ C1
α,β(DT )

satisfy the following condition
Λγ(f) = 0, γ ∈ R,

where Λγ - is a well-defined linear functional on the space C1
α,β(DT ), depending on a real parameter

γ.

Theorem 4. If αβ = 0, then the problem (1), (2) is not solvable even in the Hausdorff’s sense in
the space C2

α,β(DT ), when f ∈ C1
α,β(DT ), i.e. the set of functions f from the space C1

α,β(DT ) for
which the problem (1), (2) is solvable in the space C2

α,β(DT ) is not closed in the space C1
α,β(DT ).

Remark 2. Note also that in the case, when the condition (10) is violated, i.e. when c = 0, to
the necessary conditions for the solvability of the problem (1), (2) in space C2

α,β(DT ) there will be
added the following condition

T∫
0

f(x, τ) dτ = 0 ∀x ∈ R,

imposed on the function f ∈ C1
α,β(DT ).
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We consider the following initial boundary-value problem:
∂u(t, x)

∂t
=

∂2u(t, x)

∂x2
+ f(u(t, x)), t > 0, x ∈ (0, l),

u
∣∣
x=0

= d1(t), u
∣∣
x=l

= d2(t),

u
∣∣
t=0

= u0(x).

(1)

Here u = u(t, x) is an unknown function, f ∈ C1(R) is a given nonlinear function satisfying
conditions

∃C1 > 0 ∀ s ∈ R |f(s)| ≤ C1(1 + |s|3),
∃C2 > 0, α > 0 ∀ s ∈ R f(s) · s ≥ −αs4 − C2,

∃C3 > 0 ∀ s ∈ R |f ′(s)| ≤ C3(1 + |s|2).
(2)

We consider bounded d = d1, d2 as a boundary disturbances.
It is well-known [6] that the corresponding undisturbed problem (d ≡ 0)

∂u(t, x)

∂t
=

∂2u(t, x)

∂x2
+ f(u(t, x)),

u
∣∣
x=0

= u
∣∣
x=l

= 0,

u
∣∣
t=0

= u0(x),

(3)

for every u0 ∈ X = L2(0, l) has a unique weak solution defined on [0,+∞).
Such solutions generate semigroup {S(t) : X 7→ X}t≥0 which has a global attractor Θ ⊂ X [6].

Definition. A compact set Θ ⊂ X is called a global attractor of a semigroup {S(t) : X 7→ X}t≥0 if

- ∀ t ≥ 0 Θ = S(t)Θ (invariance);

- ∀ r > 0 sup
∥u0∥≤r

dist(S(t)u0,Θ) → 0 as t → ∞ (attraction).

The structure of the global attractor of problem (2) can be rather complicated, but it is well
understood and can be investigated by analytical and numerical methods [3, 5, 6].

In particular, the set Θ is bounded in L∞(0, l) and in H2(0, l), and

Θ = W u(N),

where N is a set of stationary solutions of (3), and W u(N) is an unstable set emanating from N ,
i.e., Θ consist of points lying on complete trajectories u( · ) of (3) such that

dist(u(t), N) → 0 as t → ∞.
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Moreover, the global attractor is stable in the Lyapunov sense, i.e.,

∀ ε > 0 ∃ δ > 0 ∀ ξ such that ‖ξ‖Θ := dist(ξ,Θ) < δ

we have that
∀ t ≥ 0 ‖S(t)ξ‖Θ < ε.

So, for the undisturbed problem (3), we have that all trajectories eventually get to any neigh-
borhood of the stable invariant set Θ.

The natural question arises: does this limit behaviour remain true under the presence of distur-
bances? The problem is that the disturbed problem is non-autonomous, and we have no guarantee
in general, that it’s solutions converge to Θ as t → ∞. But we can expect that such attractivity
property are affected only slightly by disturbances of small magnitude [2]. In [1] it was given a
positive answer for this question in the case of external disturbances, i.e. when bounded functions
d = d(t, x) appears in the right-hand part of equation (3).

This property, named robust stability with respect to (w.r.t.) disturbances, can be effectively
described in the Input-to-State Stability (ISS) framework [4]. In this work we apply this approach
to the case of boundary disturbances.

Let us introduce the following classes of functions:

K =
{
γ : [0,+∞) 7→ [0,+∞) | γ is continuous strictly increasing, γ(0) = 0

}
;

KL =
{
β : [0,+∞)× [0,+∞) 7→ [0,+∞) | β is continuous

}
,

∀ t > 0 β( · , t) ∈ K, ∀ s > 0 β(s, · ) is strictly decreasing to zero.

We prove that for every d = {d1, d2} ∈ L∞[0,+∞) and for every u0 ∈ X = L2(0, l) problem (1)
has a unique weak solution u(t) = Sd(t, u0) defined on [0,+∞).

We also prove that for a shift-invariant subset U ⊂ L∞[0,+∞) the family {Sd}d∈U generates
the semiprocess family, i.e.,

Sd(t+ h, u0) = Sd( ·+h)(t, Sd(h, u0)).

Our main results are the following:

Theorem 1. The semiprocess family {Sd}d∈U , generated by (1), is locally ISS w.r.t. Θ, i.e., there
exists r > 0, β ∈ KL, and γ ∈ K such that for any ‖u0‖Θ ≤ r and ‖d‖∞ ≤ r it holds that

∀ t ≥ 0 ‖Sd(t, u0)‖Θ ≤ β
(
‖u0‖Θ, t

)
+ γ(‖d‖∞). (4)

Theorem 2. The semiprocess family {Sd}d∈U , generated by (1), satisfies the asymptotic gain (AG)
property w.r.t. Θ, i.e. there exists γ ∈ K such that ∀u0 ∈ X ∀ d ∈ U it holds that

lim sup
t→∞

‖Sd(t, u0)‖Θ ≤ γ(‖d‖∞). (5)

It should be noted that the methods of proving (4) and (5) are different. To prove (4), we
use Lyapunov’s function technique. To prove (5), we use results on upper semicontinuity of global
attractors with respect to parameters.
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1 Statement of the problem
We consider the following nth-order differential equation

(
r(t)u(m)

)(n−m)
=

m∑
k=0

pku
(k), n ≥ 2, (1.1)

where pk ∈ Cloc([a; +∞[) (k = 0, . . . ,m),

lim
t→+∞

p0(t)

q(t)
= σ, σ = sign(p0(a)), (1.2)

r(t) and q(t) are positive twice differentiable on the set [a; +∞[ functions, Cloc([a; +∞[) is the space
of locally continuous functions on the interval [a; +∞[ , L([a; +∞[) is the Banach space of Lebesgue
integrable functions.

In case m = 0 we have the equation(
r(t)u(m)

)(n−m) ± qy = 0, n ≥ 2,

that was considered, and for which the asymptotic images of the solutions were obtained, in Hinton’s
work [2].

In case s ≡ 1 and m = n− 1 the equation

u(n) =
n−1∑
k=0

pk(t)u
(k)

was considered in the work by I. T. Kiguradze [3], the corresponding asymptotic images of the
solutions were obtained when various conditions were imposed on the coefficients.

The purpose of this work is to establish the asymptotic images of the solutions of equation (1.1)
as t → +∞.

2 Main results
The following theorem has been obtained.

Theorem. Let for equation (1.1) condition (1.2) and the following conditions be satisfied(q
r

) 1
n ̸∈ L([a; +∞[), (2.1)(r′

r
·
(q
r

)− 1
n
)′

∈ L([a; +∞[),
(q′
q
·
(q
r

)− 1
n
)′

∈ L([a; +∞[), (2.2)
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(r′
r

)2
·
(q
r

)− 1
n ∈ L([a; +∞[),

(q′
q

)2
·
(q
r

)− 1
n ∈ L([a; +∞[), (2.3)

pk−1(t)

q(t)
·
(q
r

) k−1
n ∈ L([a; +∞[) (k = 2, . . . ,m),

pm(t)

r(t)q(t)
·
(q
r

)m
n ∈ L([a; +∞[).

Then equation (1.1) has a fundamental system of solutions uj (j = 1, . . . , n), which admit the
asymptotic images

uk−1
j = q(t)−αk · r(t)−βk · exp

[
λj ·

t∫
a

(q
r

) 1
n

]
·
[
λk−1
j + o(1)

]
(k, j = 1, . . . , n) (2.4)

in which λ0
j are the roots of the equation

λn = σ. (2.5)

To prove this theorem, the following transformations were applied to equation (1.1):
u(i)(t) = zi+1(t), 0 ≤ i ≤ m− 1,

u(m)(t) =
zm+1(t)

r(t)
,

(r(t)u(m))(i−m) = zi+1(t), m+ 1 ≤ i ≤ n− 1, m ̸= n− 1.

The following system of quasi-linear equations equivalent to equation (1.1) is obtained

z′(i)(t) = zi+1(t), 1 ≤ i ≤ n− 1, i ̸= m,

z′(m)(t) =
zm+1(t)

r(t)
,

z′n = p0(t)z1 +
m−1∑
i=1

pi(t) · zi+1 +
pm(t)

r(t)
· zm+1.

(2.6)

Let’s write system (2.6) in matrix form:

Z ′ = P · Z, (2.7)

where

P = (pij)
n
1 , pij =



1, 1 ≤ i ≤ n− 1, i ̸= m, j = i+ 1,

1

r(t)
, i = m, j = i+ 1,

pi−1, i = n, 1 ≤ j ≤ m,

pm
r
, i = n, j = m+ 1,

0, otherwise.

Further, the following transformation can be applied to system (2.7):

Z(t) = Q(t) ·W (t), (2.8)

in which
Q(t) = diag

[
qα1rβ1 · · · qαnrβn

]
.
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As a result of transformation (2.8), we have a system

W ′ =
[
Q−1PQ−Q−1Q′] ·W. (2.9)

Also we note that the following statements are true

Q−1 = diag
[ 1

qα1rβ1
· · · 1

qαnrβn

]
,

P ·Q = (aij)
n
1 , aij =



qαi+1 · rβi+1 , 1 ≤ i ≤ n− 1, i ̸= m, j = i+ 1,

qαm+1 · rβm+1−1, i = m, j = i+ 1,

pi−1 · qαi · rβi , i = n, 1 ≤ j ≤ m,

pm · qαm+1 · rβm+1−1, i = n, j = m+ 1,

0, otherwise.

Q−1PQ = (bij)
n
1 , bij =



qαi+1−αi · rβi+1−βi , 1 ≤ i ≤ n− 1, i ̸= m, j = i+ 1,

qαm+1−αm · rβm+1−βm−1, i = m, j = i+ 1,

pi−1 · qαi−αn · rβi−βn , i = n, 1 ≤ j ≤ m,

pm · qαm+1−αn · rβm+1−βn−1, i = n, j = m+ 1,

0, otherwise,

Q−1Q =
q′

q
·D1 +

r′

r
·D2, D1 = diag[α1, . . . , αn], D2 = diag[β1, . . . , βn].

We choose αi and βi in such a way that

α2 − α1 = α3 − α2 = · · · = αm+1 − αm = αn − αn−1 = 1 + α1 − αn = τα,

β2 − β1 = β3 − β2 = · · · = βm+1 − βm − 1 = βn − βn−1 = β1 − βn = τβ.

It follows from the last equalities that τα = 1
n , τβ = − 1

n .
Then we have the following equalities:

α1 − αn =
1

n
− 1 ,

α2 − αn =
1

n
− n− 1

n
,

. . . . . . . . . . . . . . . . . . . . . . . . . .

αm+1 − αn =
1

n
− n−m

n
.

Then let’s Q−1PQ = ( qr )
1
n · [K + V ], where K = (kij)

n
1 , V = (vij)

n
1 ,

kij =


1, 1 ≤ i ≤ n− 1, j = i+ 1,

σ, i = n, j = 1,

0, otherwise,
vij =



p0
q

− σ, i = n, j = 1,

pi−1

q
·
(q
r

) i−1
n
, i = n, 2 ≤ j ≤ m,

pm
q

·
(q
r

)m
n
, i = n, j = m+ 1,

0, otherwise.

Therefore, system (2.9) turns into the following system

W ′ =
[(q

r

) 1
n · [K + V ]− q′

q
·D1 +

r′

r
·D2

]
·W. (2.10)
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We apply the following transformation to system (2.10) once again:

h(t) =

t∫
a

(q(ς)
r(ς)

) 1
n
dς. (2.11)

Let, moreover, g be a function inverse of the function h and for all t > a, g(h(t)) = t.
Since conditions (2.1)–(2.3) of the theorem are fulfilled, then h(t) → ∞ as t → ∞. We also

have that W (s) = Z(g(s)). As a result of transformation (2.11), we obtain a system

W ′ =
[
K + V − α(s) ·D1 + β(s) ·D2

]
·W,

in which
α(s) =

(q(t)
r(t)

)− 1
n q′

q
, β(s) =

(q(t)
r(t)

)− 1
n r′

r
.

It also follows from conditions (2.1)–(2.3) that
∞∫
0

|α′(s)| ds =
∞∫
a

∣∣∣∣((q(t)r(t)

)− 1
n q′

q

)′
∣∣∣∣ ds < +∞

and
∞∫
0

α2(s) ds =

∞∫
a

((q(t)
r(t)

)− 1
n
(q′
q

)2)
ds < +∞.

Similar results are valid for β(s).
From all that has been shown and taking into account the conditions of the theorem, we proved

that the conditions of the well-known Levinson result are satisfied [1, Theorem 8.1], the equation
(1.1) is in some sense asymptotically equivalent to the corresponding binomial differential equation
of the nth order. Therefore, equation (1.1) has a fundamental system of solutions uj (j = 1, . . . , n),
which admit the asymptotic images (2.4).
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In the plane of variables x and t consider a nonlinear partial differential equation of the form

Lfu :=
∂2u

∂t2
− ∂4u

∂x4
+ λ

∂2u

∂x2
+ f(u) = F, (1)

where f , F are given, while u unknown function, λ = const.
For the equation (1) we consider the following antiperiodic problem: find in the domain DT :

0 < x < l, 0 < t < T a solution u = u(x, t) of the equation (1) according to the boundary conditions

u(x, 0) = −u(x, T ), ut(x, 0) = −ut(x, T ), 0 ≤ x ≤ l, (2)
∂iu

∂xi
(0, t) = −∂iu

∂xi
(l, t), 0 ≤ t ≤ T, i = 0, 1, 2, 3. (3)

Note that to the study of antiperiodic problems for nonlinear partial differential equations,
having a structure different from (1), is devoted numerous literature (see, for example, [1–7] and
the references therein).

Denote by C1,2(DT ) the space of functions continuous in DT , having in DT continuous partial
derivatives ∂iu

∂ti
, i = 1, 2, ∂ju

∂xj , j = 1, 2, 3, 4. Let

C1,2
− (DT ) :=

{
u ∈ C1,2(DT ) :

∂iu

∂ti
(x, 0) = −∂iu

∂ti
(x, T ), 0 ≤ x ≤ l, i = 0, 1,

∂ju

∂xj
(0, t) = −∂ju

∂xj
(l, t), 0 ≤ t ≤ T, j = 0, 1, 2, 3

}
.

Consider the Hilbert space W 1,2
− (DT ) as a completion of the classical space C1,2

− (DT ) with
respect to the norm

∥u∥2
W 1,2

− (D
T
)
=

∫
D

T

[
u2 +

(∂u
∂t

)2
+

(∂u
∂x

)2
+
(∂2u

∂x2

)2]
dx dt. (4)

Remark 1. It follows from (4) that if u ∈ W 1,2
− (DT ) then u ∈ W 1

2 (DT ) and ∂2u
∂x2 ∈ L2(DT ). Here

W 1
2 (DT ) is the well-known Sobolev space consisting of the elements L2(DT ), having up to the first

order generalized derivatives from L2(DT ).

Below, for function f in the equation (1) we require that

f ∈ C(R), |f(u)| ≤ M1 +M2|u|α, α = const > 1, u ∈ R, (5)

where Mi = const ≥ 0, i = 1, 2.
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Remark 2. As it is known, since the dimension of the domain DT ⊂ R2 equals two, then the
embedding operator

I : W 1
2 (DT ) → Lq(DT )

is linear and compact operator for any fixed q = const > 1. At the same time the Nemitskii
operator K : Lq(DT ) → L2(DT ), acting by formula Ku = f(u). where u ∈ Lq(DT ), and function f
satisfies the condition (5) is bounded and continuous, when q ≥ 2α. Therefore, if we take q = 2α
then the operator

K0 = KI : W 1
2 (DT ) → L2(DT )

will be continuous and compact. Whence, in particular, we have that if u ∈ W 1
2 (DT ), then f(u) ∈

L2(DT ) and from un → u in the space W 1
2 (DT ) it follows f(un) → f(u) in the space L2(DT ).

Remark 3. Let u ∈ C1,2
− (DT ) be a classical solution of the problem (1)–(3). Multiplying the both

sides of the equation (1) by an arbitrary function φ ∈ C1,2
− (DT ) and integrating obtained equality

over the domain DT with taking into account that the functions from the space C1,2
− (DT ) satisfy

the boundary conditions (2) and (3), we get∫
D

T

[∂u
∂t

∂φ

∂t
+

∂2u

∂x2
∂2φ

∂x2
+ λ

∂u

∂x

∂φ

∂x

]
dx dt−

∫
D

T

f(u)φ dx dt = −
∫
D

T

Fφ dx dt ∀φ ∈ C1,2
− (DT ). (6)

We take the equality (6) as a basis of definition of a weak generalized solution of the problem
(1)–(3).

Definition 1. Let a function f satisfy the condition (5). A function u ∈ W 1,2
− (DT ) is named a

weak generalized solution of the problem (1)–(3), if the integral equality (6) holds for any function
φ ∈ W 1,2

− (DT ), i.e.∫
D

T

[∂u
∂t

∂φ

∂t
+

∂2u

∂x2
∂2φ

∂x2
+λ

∂u

∂x

∂φ

∂x

]
dx dt−

∫
D

T

f(u)φ dx dt = −
∫
D

T

Fφ dx dt ∀φ ∈ W 1,2
− (DT ). (7)

Note that due to Remark 2 the integral
∫

D
T

f(u)φ dx dt in the left-hand side of the equality (7)

is defined correctly since from u ∈ W 1,2
− (DT ) it follows that f(u) ∈ L2(DT ), and since φ ∈ L2(DT ),

then f(u)φ ∈ L1(DT ).
It is easy to see that if a weak generalized solution u of the problem (1)–(3) in the sense of

Definition 1 belongs to the class C1,2
− (DT ), then it is a classical solution to this problem.

Under fulfillment of the condition
λ ≥ 0 (8)

in the space C1,2
− (DT ) together with the scalar product

(u, v)0 =

∫
D

T

[
uv +

∂u

∂t

∂v

∂t
+

∂u

∂x

∂v

∂x
+

∂2u

∂x2
∂2v

∂x2

]
dx dt (9)

with norm ∥ · ∥0 = ∥ · ∥
W 1,2

− (D
T
)
, defined by the right-hand side of the equality (4), let us consider

the following scalar product

(u, v)1 =

∫
D

T

[∂u
∂t

∂v

∂t
+

∂2u

∂x2
∂2v

∂x2
+ λ

∂u

∂x

∂v

∂x

]
dx dt (10)
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with the norm
∥u∥21 =

∫
D

T

[(∂u
∂t

)2
+
(∂2u

∂x2

)2
+ λ

(∂u
∂x

)2]
dx, dt, (11)

where u, v ∈ C1,2
− (DT ).

The following inequalities

c1∥u∥0 ≤ ∥u∥1 ≤ c2∥u∥0 ∀u ∈ C1,2
− (DT )

with positive constants c1 and c2, independent of u, are valid. Whence due to (8)–(11) it follows
that if we complete the space C1,2

− (DT ) with respect to the norm (11), then we obtain the same
Hilbert space W 1,2

− (DT ) with the equivalent scalar products (9) and (10). Using this circumstance,
one can prove the unique solvability of the linear problem corresponding to (1)–(3), when f = 0,
i.e. for any F ∈ L2(DT ) there exists a unique solution u = L−1

0 F ∈ W 1,2
− (DT ) to this problem,

where the linear operator
L−1
0 : L2(DT ) → W 1,2

− (DT )

is continuous.

Remark 4. From the above reasoning, it follows that the nonlinear problem (1)–(3) is reduced
equivalently to the functional equation

u = L−1
0 [f(u)− F ] (12)

in the Hilbert space W 1,2
− (DT ).

Supposing that
lim

|u|→∞
sup

f(u)

u
≤ 0, (13)

it can be proved a priori estimate for the solution of the functional equation (12) in the space
W 1,2

− (DT ), whence, due to Remarks 2 and 4, it follows the existence of the solution of the equation
(12), and, therefore, of the problem (1)–(3) in the specified space. Thus, the following theorem is
valid.

Theorem 1. Let the conditions (5), (8) and (13) be fulfilled. Then for any F ∈ L2(DT ) the problem
(1)–(3) has at least one weak generalized solution u in the space W 1,2

− (DT ).

Note that the monotonicity of the function f can provide the uniqueness of the solution of the
problem (1)–(3).

Theorem 2. If the conditions (5), (8) are fulfilled and f is a non-strictly decreasing function, i.e.

(f(s2)− f(s1))(s2 − s1) ≤ 0 ∀ s1, s2 ∈ R, (14)

then for any F ∈ L2(DT ) the problem (1)–(3) can not have more than one weak generalized solution
in the space W 1,2

− (DT ).

These theorems imply the following theorem.

Theorem 3. Let the conditions (5), (8) and (13), (14) be fulfilled. Then for any F ∈ L2(DT ) the
problem (1)–(3) has a unique weak generalized solution u in the space W 1,2

− (DT ).

Note that if the condition (13) is violated, then the problem (1)–(3) may be unsolvable. Indeed,
there is valid the following theorem.
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Theorem 4. Let the function f satisfy the conditions (5), (8) and

f(u) ≤ −|u|α ∀u ∈ R, α = const > 1, (15)

and the function F = µF0, where F0 ∈ L2(DT ), F0 > 0 in the domain DT , µ = const > 0. Then
there exists a number µ0 = µ0(F0, α) > 0 such that for µ > µ0 the problem (1)–(3) can not have a
weak generalized solution in the space W 1,2

− (DT ).

It is easy to see that when the condition (15) is fulfilled, then the condition (13) is violated.
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Problems on the existence and asymptotic estimates of blow-up solutions occupy an important
place in the qualitative theory of ordinary differential equations and have been studied in sufficient
detail for a wide class of nonlinear nonautonomous ordinary differential equations (see [1–9] and
the references therein). However, for delay differential equations this problem remained practically
unstudied. Most probably, [10] is the first work done in this direction. Here theorems on the existen-
ce of blow-up solutions are proved for the equation that does not contain intermediate derivatives.
In the present paper, similar results are given for the equation of general type.

On a finite interval [0, b[ we investigate the delay differential equation

u(n)(t) = f
(
t, u(τ(t)), . . . , u(n−1)(τ(t))

)
(1)

with the initial conditions

u(i−1)(t) = ci(t) for a ≤ t ≤ 0 (i = 1, . . . , n). (2)

Here n is an arbitrary natural number, f : [0, b]×Rn
+ → R+ is a continuous function, R+ = [0,+∞[ ,

τ : [0, b] → R is a continuous function, satisfying the conditions

τ(t) < t for 0 ≤ t < b, τ(b) = b, (3)
a = min

{
τ(t) : 0 ≤ t ≤ b

}
,

and ci : [a, 0] → R+ (i = 1, . . . , n) are also continuous functions.

Definition 1. Let t0 ∈ [0, b[ and

t∗ = min
{
τ(t) : t0 ≤ t ≤ b

}
.

An n-times continuously differentiable function u : [t0, b[→ R+ is said to be a solution of equation
(1) in the interval [t0, b[ if

u(i−1)(t) ≥ 0 for t0 ≤ t < b (i = 1, . . . , n),

and there exist continuous functions u0i : [t∗, t0] → R+ (i = 1, . . . , n) such that in that interval
equality (1) is satisfied, where

u(i−1)(t) = u0i(t) for t∗ ≤ t ≤ t0 (i = 1, . . . , n).

A solution u of equation (1), defined in the interval [0, b[ and satisfying the initial conditions
(2), is said to be a solution of problem (1), (2).
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Definition 2. A solution u of equation (1) defined in some interval [t0, b[ is said to be blow-up if

lim
t→b

u(n−1)(t) = +∞.

A blow-up solution u : [t0, b[→ R+ is said to be strongly blow-up (weakly blow-up) if

lim
t→b

u(t) = +∞
(
lim
t→b

u(t) < +∞
)
.

Definition 3. A solution u : [t0, b[→ R+ of equation (1), having the finite limits lim
t→b

u(i−1)(t)

(i = 1, . . . , n), is said to be regular.
According to condition (3), there exists an increasing sequence of numbers ti ∈ ]0, b[ (i =

1, 2, . . . ) such that

τ(t) < 0 for 0 ≤ t < t1, τ(t1) = 0,

τ(t) < ti for ti ≤ t < ti+1, τ(ti+1) = ti (i = 1, 2, . . . ),

lim
i→+∞

ti = b.

From this fact it immediately follows
Lemma 1. For arbitrarily fixed continuous functions ci : [a, 0] → R+ (i = 1, 2, . . . , n), problem
(1), (2) in the interval [0, b[ has a unique solution u and for any natural number k the equality

u(t) = uk(t) for 0 ≤ t ≤ tk

is valid, where

u
(i−1)
1 (t) = ci(t) for a ≤ t ≤ 0 (i = 1, . . . , n), u1(t) =

n∑
i=1

ci(0)

(i− 1)!
ti−1

+
1

(n− 1)!

t∫
0

(t− s)n−1f
(
s, c1(τ(s)), . . . , cn(τ(s))

)
ds for 0 ≤ t ≤ t1,

u
(i−1)
k+1 (t) = ci(t) for a ≤ t ≤ 0 (i = 1, . . . , n), uk+1(t) =

n∑
i=1

ci(0)

(i− 1)!
ti−1

+
1

(n− 1)!

t∫
0

(t− s)n−1f
(
s, uk(τ(s)), . . . , u

(n−1)
k (τ(s))

)
ds for 0 ≤ t ≤ tk+1 (k = 1, 2, . . . ).

Theorem 1. Let along with (3) the condition

f(t, x1, . . . , xn) ≥ f0(t, x1, . . . , xn) for t0 ≤ t ≤ b, (x1, . . . , xn) ∈ Rn
+

be satisfied, where t0 ∈ ]0, b[ , and f0 : [0, b] × Rn
+ → R+ is a nondecreasing in the phase variables

continuous function such that the differential equation

v(n)(t) = f0
(
t, v(τ(t)), . . . , v(n−1)(τ(t))

)
in the interval [t0, b[ has a blow-up solution v. Then there exist numbers r > 0 and t∗ ∈ ]t0, b] such
that if

cn(0) > r, (4)
then the solution u of problem (1), (2) is blow-up as well and admits the estimates

u(i−1)(t) ≥ v(i−1)(t) for t∗ ≤ t < b (i = 1, . . . , n).
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Based on this comparison theorem, effective criteria for the existence of blow-up solutions of
problem (1), (2) are obtained. In particular, the following statement is true.

Corollary 1. Let the functions f and τ satisfy the inequalities

f(t, x1, . . . , xn) ≥ ℓ(b− t)µxλk for t0 ≤ t ≤ b, (x1, . . . , xn) ∈ Rn
+,

α(t− b) + b ≤ τ(t) < t for 0 ≤ t < b,

where k ∈ {1, . . . , n}, t0 ∈ ]0, b[ , ℓ > 0, µ ≥ 0, λ > 1, α > 1. Then for an arbitrary γ > 0 there
exists a positive number r = r(γ) such that if inequality (4) holds, then the solution u of problem
(1), (2) is strongly blow-up and admits the estimate

inf
{
(b− t)γu(t) : t0 ≤ t < b

}
> 0. (5)

An important particular case of (1) is the differential equation

u(n)(t) =
n−1∑
i=1

pi(t)
(
u(i−1)(α(t− b) + b)

)λi , (6)

where pi : R+ → R+ (i = 1, . . . , n) are continuous functions, λ > 1, α > 1.
For this equation we consider the Cauchy problem with the initial conditions (2), where a =

−(α− 1)b, and ci : [a, 0] → R+ (i = 1, . . . , n) are continuous functions.

Corollary 2. There exists ε > 0 such that if
n∑

i=1

ci(t) < ε for a ≤ t ≤ 0,

then the solution of problem (6), (2) is regular. And if

pk(t) ≥ ℓ(b− t)µ for 0 ≤ t ≤ b,

where k ∈ {1, . . . , n}, ℓ > 0, µ ≥ 0, then for an arbitrary γ > 0 there exists a positive number
r = r(γ) such that in the case where inequality (4) holds, the solution u of problem (6), (2) is
strongly blow-up and admits estimate (5).

The first part of the corollary can be easily obtained from Lemma 1, while the second part
follows from Corollary 1.

Example 1. Let n > 2, α > 1, λ > 2, ℓ0 = ((λ − 1)α
λ

1−α )
1

1−λ , b > 0, a = −(α − 1)b. We choose
positive numbers ρi (i = 1, . . . , n) so that the function, defined by the equality

u(t) =

n−1∑
i=1

(t− a)i−1

(i− 1)!
ρi + (−1)n−1ℓ0

n−1∏
i=1

(
n− i− 1

λ− 1

)−1
(b− t)n−1− 1

λ−1 for a ≤ t < b,

satisfies the conditions

u(i−1)(t) ≥ 0 for a ≤ t ≤ 0 (i = 1, . . . , n− 1).

Then the restriction of the function u to [0, b[ is a solution of the differential equation

u(n)(t) =
(
u(n−1)(α(t− b) + b)

)λ (7)
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with the initial functions

ci(t) = u(i−1)(t) for a ≤ t ≤ 0 (i = 1, . . . , n).

Moreover, it is clear that u(i−1) (i = 1, . . . , n− 1) have finite limits

u(i−1)(b− 0) (i = 1, . . . , n− 1),

and
lim
t→b

u(n−1)(t) = +∞.

Consequently, u is a weakly blow-up solution of equation (6).

On the other hand, by virtue of Corollary 2 equation (7) has infinite sets of strongly blow-up
and regular solutions.

The example constructed above shows that if the functions f and τ satisfy the conditions of
either Theorem 1 or one of its corollaries, then equation (7) can simultaneously have strongly
blow-up, weakly blow-up and regular solutions.

Example 2. Theorem 1 and its corollaries are specific for delay equations and they have no analogs
for equations without delay. To make sure of this, in the interval [0, b[ we consider the differential
equation

u(n)(t) = (u(n−1)(t))λ, (8)
where n ≥ 2, λ > 2. We choose positive numbers ρi (i = 1, . . . , n) so that the function, defined by
the equality

u0(t) =

n−1∑
i=1

ρi
(i− 1)!

ti−1 + (−1)n−1(λ−1)
1

1−λ

n−1∏
i=1

(
n−i− 1

λ− 1

)−1
(b− t)n−1− 1

1−λ for 0 ≤ t < b,

satisfies the conditions
u
(i−1)
0 (0) ≥ 0 (i = 1, . . . , n− 1).

Then every solution of equation (8), defined in the interval [0, b[ and blowing up at the point b,
has the form u(t) ≡ u0(t), and, consequently, it is weakly blow-up. On the other hand, no matter
how the number

r > u
(n−1)
0 (0)

is, equation (8) does not have a solution u : [0, b[→ R+, satisfying the inequalities

u(i−1)(0) ≥ 0 (i = 1, . . . , n− 1), u(n−1)(0) ≥ r.

Theorem 2. Let n ≥ 2,
τ(t) =

b(t− t0)

b− t0
for 0 ≤ t ≤ b,

and let the function f satisfy the inequality

f(t, x1, . . . , xn) ≥ ℓ(b− t)µω(xk) for t0 ≤ t ≤ b, (x1, . . . , xn) ∈ Rn
+,

where t0 ∈ ]0, b[ , k ∈ {1, . . . , n}, ℓ > 0, µ ≥ 0, and ω : R+ → R+ is a continuous function. Let,
moreover, there exist a number λ > 1 such that

x∫
0

ω(y) dy > xλ − 1 for x ≥ 0. (9)

Then for an arbitrary γ > 0 there exists a positive number r = r(γ) such that if inequality (4)
holds, then the solution u of problem (1), (2) is strongly blow-up and admits estimate (5).
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Example 3. Consider the differential equation

u(n)(t) = (b− y)µω
(
u
(b(t− t0)

b− t0

))
, (10)

where µ ≥ 0, t0 ∈ ]a, b[ , and ω : R+ → R+ is a continuous function which along with (9) satisfies
the condition

ω(xm) = 0 (m = 1, 2, . . . ). (11)

Here λ > 1, and xm ∈ R+ (m = 1, 2, . . . ) is an increasing sequence of numbers converging to +∞.
The example of such a function is constructed in [10, p. 44].

In view of (11), Theorem 1 and their corollaries leave open the question on the existence of
blow-up solutions of equation (10). On the other hand, by Theorem 2 this equation has an infinite
set of blow-up solutions.
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In the rectangle Ω = [0, ω1]× [0, ω2] consider the problem

uxy = P0(x, y)u+ P1(x, y)ux + P2(x, y)uy + q(x, y), (1)
ℓ(u( · , y)) = φ(y), h(ux(x, · )) = ψ(x), (2)

where Pj ∈ C(Ω;Rn×n) (j = 0, 1, 2), q ∈ C(Ω;Rn), φ ∈ C1([0, ω2];Rn), ψ ∈ C([0, ω1];Rn), and ℓ :
C([0, ω1];Rn) → Rn and h : C([0, ω2];Rn) → Rn are bounded linear operators that are commutative,
i.e., the operators ℓ and h satisfy the equality

ℓ ◦ h(z) = h ◦ ℓ(z) for z ∈ C(Ω;Rn). (3)

One may think that the boundary conditions

ℓ(u( · , y)) = φ(y), h(u(x, · )) = Ψ(x) (2̃)

are more natural than conditions (2). All the more so, conditions (2̃) obviously imply conditions
(2). The main reason for studying problem (1), (2) instead of problem (1), (2̃) is that problem
(1), (2̃) is ill-posed, since functions φ and ψ should satisfy certain compatibility conditions. Indeed,
if u ∈ C(Ω) is an arbitrary function satisfying conditions (2̃), then, in view of (3), we have

ℓ(ψ) = ℓ ◦ h(u) = h ◦ ℓ(u) = h(φ).

By a solution of problem (1), (2) we understand a classical solution, i.e., a function u ∈ C1,1(Ω)
satisfying equation (1) and boundary conditions (2) everywhere in Ω.

Along with problem (1), (2) consider its corresponding homogeneous problem

uxy = P0(x, y)u+ P1(x, y)ux + P2(x, y)uy, (10)
ℓ(u( · , y)) = 0, h(ux(x, · )) = 0, (20)

as well as the problems

v′ = P2(x, y
∗)v, (11)

ℓ(v) = 0 (21)

and

v′ = P2(x
∗, y)v, (12)

h(v) = 0. (22)

Problems (11), (21) are (12), (22) called associated problems of problem (1), (2). Notice that
problem (11), (21) (problem (12), (22)) is a boundary value problem for a linear ordinary differential
equation depending on a parameter y∗ (a parameter x∗).

The concept of σ-associated problems for n-dimensional periodic problems was introduced in [4],
and for two-dimensional Dirichlet type problems in [3].
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Definition 1. Problem (1), (2) is called well-posed, if it is uniquely solvable for arbitrary φ ∈
C1([0, ω2];Rn), ψ ∈ C([0, ω1];Rn) and q ∈ C(Ω), and its solution u admits the estimate

∥u∥C1,1(Ω) ≤M
(
∥φ∥C1([0,ω2]) + ∥ψ∥C([0,ω1]) + ∥q∥C(Ω)

)
,

where M is a positive constant independent of φ, ψ and q.

Theorem 1. Let problem (1), (2) be solvable for arbitrary φ ∈ C1([0, ω2];Rn) and ψ ∈ C([0, ω1];Rn).
Then the problem

z′ = 0, ℓ(z) = 0 (4)

has only the trivial solution.

Remark 1. If problem (4) has only the trivial solution, then problem (10), (20) is equivalent to
the homogeneous problem

uxy = P0(x, y)u+ P1(x, y)ux + P2(x, y)uy, (10)
ℓ(u( · , y)) = 0, h(u(x, · )) = 0. (2̃0)

Theorem 2. Let Pj (j = 1, 2) be constant matrices, let problem (11), (21) have a nontrivial solution,
and let the following conditions hold:

h(P0(x, · )z( · )) = h(P0(x, · ))h(z( · )) for every z ∈ C([0, ω2];Rn),

h(P1z( · )) = P1 h(z( · )) for every z ∈ C([0, ω2];Rn),

h(P2z( · )) = P2 h(z( · )) for every z ∈ C([0, ω2];Rn).

Then for solvability of problem (1), (2) it is necessary that the problem

v′ = P2v + (P0 + P2P1)Ψ(x) + h(q(x, · )),
ℓ(v) = h(φ′)− ℓ(P1Ψ)

is solvable, where Ψ is a solution of the problem

z′ = ψ(x), ℓ(z) = h(φ).

Theorem 3. Let Pj (j = 1, 2) be constant matrices, let problem (12), (22) have a nontrivial solution,
and let along with (4) the following conditions hold:

ℓ(P0( · , y)z( · )) = ℓ(P0( · , y)) ℓ(z( · )) for every z ∈ C([0, ω1];Rn),

ℓ(P1z( · )) = P1 ℓ(z( · )) for every z ∈ C([0, ω1];Rn),

ℓ(P2z( · )) = P2 ℓ(z( · )) for every z ∈ C([0, ω1];Rn).

Then for solvability of problem (1), (2) it is necessary that the problem

v′ = P1v + (P0 + P1P2)φ(y) + h(q( · , y)), (5)
h
(
v) = ℓ(ψ)− h(P2 φ) (6)

is solvable.



98 T. Kiguradze, A. Almutairi

Remark 2. Solvability of the ill-posed nonhomogenous problem (5), (6) means additional compa-
tibility conditions between the boundary values φ and ψ, matrices P0, P1 and P2, and the vector
function q. Indeed, consider the problem

uxy = P0(x, y)u+ q(x, y), (7)
u(0, y) = φ(y), ux(x, 0) = ux(x, ω2). (8)

Let u be a solution of problem (7), (8). Set v(y) = ux(0, y). Then v is a solution of the problem

v′ = P0(0, y)φ(y) + q(0, y), (9)
v(0) = v(ω2). (10)

In other words the solvability of (9), (10) is necessary for the solvability of problem (7), (8). Problem
(9), (10) itself is ill-posed. It is solvable if and only if the following equality holds

ω2∫
0

(
P0(0, t)φ(t) + q(0, t)

)
dt = 0.

Remark 3. Solvability of the ill-posed nonhomogenous problem (5), (6) is necessary for solvability
of problem (1), (2), but by no means sufficient. Indeed, consider the two-dimensional problem

v1xy = w − q1(x),

w2xy = −v + q2(x),
(11)

v(0, y) = 0, v(ω1, y) = 0,

vx(x, 0) = vx(x, ω2), wx(x, 0) = wx(x, ω2).
(12)

Let us show that the corresponding homogeneous problem has only the trivial solution. Let(
v(x, y)
w(x, y)

)
be an arbitrary solution of the homogeneous system

v1xy = w, (13)
w2xy = −v, (14)

satisfying conditions (12). Multiply (13) by w, integrate over Ω. After integrating by parts and
taking into account conditions (12), we arrive at the equality

−
ω1∫
0

ω2∫
0

vx(x, y)wy(x, y) dy dx =

ω1∫
0

ω2∫
0

w2(x, y) dy dx. (15)

Similarly, after multiplying (14) by v and integrating over Ω, we get

−
ω1∫
0

ω2∫
0

wy(x, y)vx(x, y) dy dx = −
ω1∫
0

ω2∫
0

v2(x, y) dy dx. (16)

After subtracting (16) from (15) we arrive at the equality
ω1∫
0

ω2∫
0

(v2(x, y) + w2(x, y)) dy dx = 0.
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Consequently the homogeneous problem (13), (14), (12) has only the trivial solution. Therefore,
problem (11), (12) has at most one solution. Hence, the only possible (ω2-periodic with respec to
the second variable) solution of problem (11), (12) should be independent of y. Consequently,(

v(x, y)
w(x, y)

)
=

(
q1(x)
q2(x)

)
is the only possible solution of problem (11), (12). It is clear that u is a weak solution but not a
classical one, if q1 and q2 are nowhere differentiable continuous functions.

Theorem 4. Let the following conditions hold:

(A0) problem (3) has only the trivial solution;

(A1) problem (11), (21) has only the trivial solution for every y∗ ∈ [0, ω2];

(A2) problem (12), (22) have only the trivial solution for every x∗ ∈ [0, ω1].

Then problem (1), (2) has the Fredholm property, i.e. the following assertions hold:

(i) problem (10), (20) has a finite dimensional space of solutions;

(ii) if problem (10), (20) has only the trivial solution, then problem (1), (2) is uniquely solvable,
and its solution u admits estimate

∥u∥C1,1(Ω) ≤M
(
∥q∥C(Ω) + ∥φ∥C1([0,ω2]) + ∥ψ∥C([0,ω1])

)
, (17)

where M is a positive constant independent of φ, ψ and q.

Definition 2. Problem (1), (2) is called well-posed, if it is uniquely solvable for arbitrary φ ∈
C1([0, ω2];Rn), ψ ∈ C([0, ω1];Rn) and q ∈ C(Ω;Rn), and its solution u admits the estimate (17),
where M is a positive constant independent of φ, ψ and q.

Theorem 5. Let problem (1), (2) be well-posed. Then conditions (A1) and (A2) of Theorem 4 hold.

Remark 4. Consider the problem

uxy = p(x)ux + p(x)uy − p2(x)u+ q(x, y), (18)
u(0, x) = 2u(ω1, y), ux(x, 0) = ux(x, 0), (19)

where p ∈ C∞([0, ω1]) is a nonnegative function and q ∈ C∞(Ω). Let

q(x, y) = p(x) q̃(x, y).

Set: Ip = {x ∈ [0, ω1] : p(x) = 0}. Then:

(i) problem (18), (19) is well-posed if and only if Ip = ∅. Moreover, if Ip = ∅, then a unique
solution of problem (18), (19) belongs to C∞(Ω);

(ii) if q̃ ∈ L∞([0, ω1]), then problem (18), (19) has a unique weak solution if and only if mes Ip = 0,
and has infinite dimensional set of nonclassical weak solutions otherwise. If q̃ ∈ C([0, ω2])
and mes Ip = 0, then that unique weak solution is a classical solution;

(iii) If q̃ ∈ C([0, ω2]), then problem (18), (19) has a unique classical solution if and only if Ip is
nowhere dense in [0, ω1], and has infinite dimensional set of classical solutions otherwise;
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(iv) problem (18), (19) has a unique classical solution and infinite dimensional set of weak solutions
if Ip is a nowhere dense set of a positive measure;

(v) if q(x, y) = 1 and Ip ̸= ∅, then problem (18), (19) has no classical solution despite the fact
that the coefficients of equation (18) belong to C∞(Ω).

Theorem 6. Let conditions (A0), (A1), (A2) of Theorem 4 hold, and let P2 ∈ C0,1(Ω) be such that

h(v) = 0 =⇒ h(P2( · , y)v( · )) = 0 for y ∈ [0, ω2]

for every function v ∈ C([0, ω2]). Then there exists ε > 0 such that if∥∥P (x, y) + P1(x, y)P2(x, y)− P2 y(x, y)
∥∥ ≤ ε for (x, y) ∈ Ω,

then problem (1), (2) is well-posed. In particular, if

P (x, y) + P1(x, y)P2(x, y)− P2 y(x, y) = O,

then the solution of problem (1), (20) admits the representation

u(x1, x2) =

ω1∫
0

ω2∫
0

G1(x, s, y)G2(y, t, s) q(s, t) dt ds,

where Gj is Green’s matrix of problem (1j), (2j) (j = 1, 2).

Let n = 2m, u = (v, w), and v, w ∈ Rm. For the system

vxy = A1(y)wx +B1(x)wy +Q1(x, y)w + q1(x, y),

wxy = A2(y)vx +B2(x)vy +Q2(x, y)v + q2(x, y, )
(20)

consider the following boundary conditions of Nicoletti type

w(0, y) = 0, v(ω1, y) = 0, wx(x, 0) = 0, vx(x, ω2) = 0, (21)

and the periodic boundary conditions

v(0, y) = v(ω1, y), w(0, y) = w(ω1, y),

vx(x, 0) = vx(x, ω2), wx(x, 0) = wx(x, ω2).
(22)

Corollary 1. Let A1 ∈ C([0, ω2];Rm×m), A2 ∈ C([0, ω2];Rm×m), B1 ∈ C([0, ω1];Rm×m) and
B2 ∈ C([0, ω1];Rm×m) be positive semi-definite symmetric matrix functions, and let there exist
δ > 0 such that the following conditions hold:

Q1(x, y)w · w ≥ δ∥w∥2 for (x, y, w) ∈ Ω× Rm, (23)
Q2(x, y) v · v ≤ −δ∥v∥2 for (x, y, w) ∈ Ω× Rm. (24)

Then problem (20), (21) is well-posed.

Corollary 2. Let A1 ∈ C([0, ω2];Rm×m), A2 ∈ C([0, ω2];Rm×m), B1 ∈ C([0, ω1];Rm×m) and
B2 ∈ C([0, ω1];Rm×m) be positive definite symmetric matrix functions, and let there exist δ > 0
such that conditions (23) and (24) hold. Then problem (20), (22) is well-posed.
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In the rectangle Ω consider the boundary value problem

uxy = f(x, y, ux, uy, u), (1)
ℓ
(
u( · , y)

)
= φ(y), h

(
ux(x, · )

)
= ψ(x), (2)

where φ ∈ C1([0, ω2];Rn), ψ ∈ C([0, ω1];Rn), ℓ : C([0, ω1];Rn) → Rn and h : C([0, ω2];Rn) → Rn

are bounded linear operators that are commutative, i.e., the operators ℓ and h satisfy the equality

ℓ ◦ h(z) = h ◦ ℓ(z) for z ∈ C(Ω;Rn).

By B1(z; r) denote the closed ball of radius r centered at z in space C1(Ω;Rn), i.e.,

B1(z; r) =
{
ζ ∈ C1(Ω) : ∥ζ − z∥C1(Ω) ≤ r

}
.

If f(x, y, v, w, z) is differentiable with respect to the phase variables, set:

F1(x, y, v, w, z) =
∂f(x, y, v, w, z)

∂v
, F2(x, y, v, w, z) =

∂f(x, y, v, w, z)

∂w
,

F0(x, y, v, w, z) =
∂f(x, y, v, w, z)

∂z
,

Pj [u](x, y) = Fj

(
x, y, ux(x, y), uy(x, y), u(x, y)

)
(j = 0, 1, 2).

A vector function (f̃ , φ̃, ψ̃) s called an admissible perturbation if f̃ ∈ C(Ω×R3n;Rn) is locally Lip-
schitz continuous with respect to the first 2n phase variables, φ̃ ∈ C1([0, ω2];Rn), ψ̃ ∈ C([0, ω1];Rn).
Set: F̃1(x, y, v, w, z) = f̃v(x, y, v, w, z) and F̃2(x, y, v, w, z) = f̃w(x, y, v, w, z).

Definition 1. Let u0 be a solution of problem (1), (2), and r > 0. Problem (1), (2) is said to be
(u0, r)-well-posed if:

(i) u0(x, y) is the unique solution of the problem in the ball B1(u0; r);

(ii) There exist a positive constant δ0 and an increasing continuous function ε : [0, δ0] → [0,+∞)
such that ε(0) = 0 and for any δ ∈ (0, δ0] and an arbitrary admissible perturbation (f̃ , φ̃, ψ̃)
satisfying the following conditions

∥F̃1(x, y, v, w, z)∥+ ∥F̃2(x, y, v, w, z)∥ ≤ δ0 for (x, y, v, w, z) ∈ Ω× R3n, (3)
∥f̃(x, y, v, w, z)∥ < δ for (x, y, v, w, z) ∈ Ω× R3n,

∥φ̃∥C1([0,ω2]) + ∥ψ̃∥C([0,ω1]) ≤ δ,
(4)
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the problem

uxy = f(x, y, ux, uy, u) + f̃(x, y, ux, uy, u), (1̃)
ℓ
(
u( · , y)

)
= φ(y) + φ̃(y), h

(
ux(x, · )

)
= ψ(x) + ψ̃(x) (2̃)

has at least one solution in the ball B1(u0; r), and each such solution belongs to the ball
B1(u0; ε(δ)).

Definition 2. Let u0 be a solution of problem (1), (2), and r > 0. Problem (1), (2) is said to be
strongly (u0, r)-well-posed if:

(i) Problem (1), (2) is (u0, r)-well-posed;

(ii) There exist positive numbers M0 and δ0 such that for arbitrary δ ∈ (0, δ0) an arbitrary
admissible perturbation (f̃ , φ̃, ψ̃) satisfying inequalities (3), (4), problem (1̃), (2̃) has at least
one solution in the ball B1(u0; r), and each such solution belongs to the ball B1(u0;M0 δ).

Definition 3. Problem (1), (2) is called well-posed if it is (u0, r)-well-posed for every r > 0.

Definition 4. A solution u0 of problem (1), (2) is called strongly isolated, if problem (1), (2) is
strongly (u0, r)-well-posed for some r > 0.

The concepts of strong well-posedness and a strongly isolated solution of a boundary value
problem for a nonlinear ordinary differential system were introduced in [1]. Definitions 2 and 4 are
adaptations of the idea of Definitions 3.1 and 3.2 from [1] to problem (1), (2).

The linear case of system (1), i.e. the system

uxy = P1(x, y)ux + P2(x, y)uy + P0(x, y)u+ q(x, y) (5)

was studied in [2].
Along with problem (5), (2) consider its corresponding homogeneous problem

uxy = P1(x, y)ux + P2(x, y)uy + P0(x, y)u, (50)
ℓ(u( · , y)) = 0, h(ux(x, · )) = 0. (20)

Definition 5. Problem (5), (2) is called well-posed, if it is uniquely solvable for arbitrary φ ∈
C1([0, ω2];Rn), ψ ∈ C([0, ω1];Rn) and q ∈ C(Ω), and its solution u admits the estimate

∥u∥C1,1(Ω) ≤M
(
∥φ∥C1([0,ω2]) + ∥ψ∥C([0,ω1]) + ∥q∥C(Ω)

)
,

where M is a positive constant independent of φ, ψ and q.

Remark 1. Notice that for the linear problem (5), (2) (u0, r)-well-posedness is equivalent to the
strong well-posedness. Furthermore, for problem (5), (2), Definitions 1, 2 and 3 are equivalent to
Definition 5.

Theorem 1. Let f be a continuously differentiable function with respect to the phase variables
v, w and z, and let problem (1), (2) be strongly (u0, r)-well-posed for some r > 0. Then problem
(50), (20) is well-posed, where Pj(x, y) = Pj [u0](x, y) (j = 0, 1, 2).

Theorem 2. Let f be a continuously differentiable function with respect to the phase variables v,
w and z, and let there exist matrix functions Pij ∈ C(Ω;Rn×n) (i = 1, 2; j = 0, 1, 2) such that
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(A0)

P1j(x, y) ≤ Fj(x, y, v, w, z) ≤ P2j(x, y) for (x, y, v, w, z) ∈ Ω× R3n (j = 0, 1, 2, );

(A1) for every x∗ ∈ [0, ω1] and arbitrary measurable matrix function P1 : [0, ω2] → Rn×n satisfying
the inequalities

P11(x
∗, y) ≤ P1(y) ≤ P21(x

∗, y) for y ∈ [0, ω2],

the homogeneous problem
v′ = P1(y)v, h(v) = 0

has only the trivial solution;

(A2) for every y∗ ∈ [0, ω2] and arbitrary measurable matrix function P2 : [0, ω1] → Rn×n satisfying
the inequalities

P12(x, y
∗) ≤ P2(x) ≤ P22(x, y

∗) for x ∈ [0, ω1],

the homogeneous problem
v′ = P2(x)v, ℓ(v) = 0

has only the trivial solution;

(A3) for arbitrary measurable matrix function Pj : Ω → Rn×n (j = 0, 1, 2) satisfying the inequalities

P1j(x, y) ≤ Pj(x, y) ≤ P2j(x, y) for (x, y) ∈ Ω (j = 0, 1, 2),

problem (50), (20) has only the trivial solution.

Then problem (1), (2) is strongly well-posed.

Remark 2. Conditions (A1) and (A2) of Theorem 2 are key and cannot be weakened. Violation
of either of conditions (A1) and (A2) may lead to additional compatibility conditions between the
boundary values (2) and the right-hand side of system (1).

Indeed, consider the problem

uxy = P2 uy + q(x, y, u), (6)
u(0, y) = φ(y), ux(x, 0)− ux(x, ω2) = 0, (7)

where P2 ∈ Rn×n is an arbitrary matrix, and φ ∈ C1([0, ω2];Rn) and q ∈ C(Ω× R;Rn) satisfy the
equalities

φ(0) = φ(ω2), q(x, 0, z) = q(x, ω2, z).

Let u be a solution of problem (6), (7). Set v(y) = ux(0, y)− P2 u(0, y). Then v is a solution of
the problem

v′ = q(0, y, φ(y)), (8)
v(0)− v(ω2) = 0. (9)

In other words the solvability of (8), (9) is necessary for the solvability of problem (6), (7). Problem
(8), (9) itself is ill-posed. It is solvable if and only if the following equality holds

ω2∫
0

q
(
0, t, φ(t)

)
dt = 0.
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Remark 3. The fulfillment of additional compatibility conditions is necessary for solvability of
problem (1), (2), but by no means sufficient. Indeed, consider the two-dimensional problem

u1xy = u32 − cosx,

u2xy = −u51 + sinx,
(10)

u1(0, y) = 0, u1(ω1, y) = 0,

u1x(x, 0) = u1x(x, ω2), u2x(x, 0) = u2x(x, ω2).
(11)

Let us show that problem (10), (11) has at most one solution. Indeed, let

u(x, y) =

(
u1(x, y)
u2(x, y)

)
and ũ(x, y) =

(
ũ1(x, y)
ũ2(x, y)

)
be arbitrary solutions of problem (10), (11). Then, in view of (10), we have(

u1(x, y)− ũ1(x, y)
)
xy

= u32(x, y)− ũ32(x, y), (12)(
u2(x, y)− ũ2(x, y)

)
xy

= −
(
u51(x, y)− ũ51(x, y)

)
. (13)

Multiply (12) by u2 − ũ2, integrate over Ω. After integrating by parts and taking into account
conditions (11), we arrive at the equality

−
ω1∫
0

ω2∫
0

(
u1(x, y)− ũ1(x, y)

)
x

(
u2(x, y)− ũ2(x, y)

)
y
dy dx

=

ω1∫
0

ω2∫
0

(
u32(x, y)− ũ32(x, y)

)(
u2(x, y)− ũ2(x, y)

)
dy dx. (14)

Similarly, after multiplying (13) by u1 − ũ1 and integrating over Ω, we get

−
ω1∫
0

ω2∫
0

(
u2(x, y)− ũ2(x, y)

)
y

(
u1(x, y)− ũ1(x, y)

)
x
dy dx

= −
ω1∫
0

ω2∫
0

(
u51(x, y)− ũ51(x, y)

)(
u1(x, y)− ũ1(x, y)

)
dy dx. (15)

After subtracting (15) from (14) we arrive at the equality

ω1∫
0

ω2∫
0

(
u32(x, y)− ũ32(x, y)

)(
u2(x, y)− ũ2(x, y)

)
dy dx

+

ω1∫
0

ω2∫
0

(
u51(x, y)− ũ51(x, y)

)(
u1(x, y)− ũ1(x, y)

)
dy dx = 0.

The latter equality implies uk(x, y) ≡ ũk(x, y) (k = 1, 2), i.e., u = ũ. In other words, problem
(10), (11) has at most one solution. Therefore, due to uniqueness, the only possible solution of
problem (10), (11) should be independent of y. Consequently,

u(x) =

(
cos

1
2 x

sin
1
5 x

)
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is the only possible solution of problem (10), (11). It is clear that u is a weak solution but not
a classical one since u is not differentiable at points x = π

2 m (m = 0, 1, 2, 3, 4). Thus problem
(10), (11) has no (classical) solution despite the fact that the right-hand side of system (10) and
the boundary values are analytic functions.

Consider the system
uxy = f(x, y, ux, uy, u) + q(x, y, u). (16)

Theorem 3. Let f satisfy all of the conditions of Theorem 2, and q(x, y, z) be an arbitrary
continuous function such that

lim
∥z∥→+∞

∥q(x, y, z)∥
∥z∥

= 0 (17)

uniformly on Ω. Then problem (16), (2) has at least one solution.

For the quasi-linear system

uxy = P1(x, y)ux + P2(x, y)uy + P0(x, y)u+ q(x, y, u) (18)

Theorem 2 immediately implies

Corollary 1. Let problem (50), (20) be well-posed, and let q(x, y, z) be an arbitrary continuous
function satisfying condition (17) uniformly on Ω. Then problem (18), (2) has at least one solution.

Let n = 2m, u = (v, w), and v, w ∈ Rm. For the system

vxy = A1(y)wx +B1(x)wy + f1(x, y, w) + q1
(
x, y, v, w

)
,

wxy = A2(y)vx +B2(x)vy + f2(x, y, v) + q2
(
x, y, v, w

) (19)

consider the boundary conditions of Nicoletti type

w(0, y) = 0, v(ω1, y) = 0, wx(x, 0) = 0, vx(x, ω2) = 0, (20)

and the periodic boundary conditions

v(0, y) = v(ω1, y), w(0, y) = w(ω1, y), vx(x, 0) = vx(x, ω2), wx(x, 0) = wx(x, ω2). (21)

Here fi =
(
fik
)m
k=1

∈ C(Ω × Rm;Rm) (i = 1, 2), qi ∈ C(Ω × R2m;Rm) (i = 1, 2), and Ai ∈
C([0, ω2];Rm×m) and Bi ∈ C([0, ω1];Rm×m) are symmetric matrix functions.

Corollary 2. Let A1 ∈ C([0, ω2];Rm×m), A2 ∈ C([0, ω2];Rm×m), B1 ∈ C([0, ω1];Rm×m) and
B2 ∈ C([0, ω1];Rm×m) be positive semi-definite symmetric matrix functions, and let there exist
δ > 0 such that the following conditions hold:

f1k(x, y, w1, . . . , wm)wk ≥ δ w2
kf1(x, y, w) · w ≥ δ∥w∥2 for (x, y, w1, . . . , wm) ∈ Ω× Rm, (22)

f2k(x, y, v1, . . . , vm) vk ≤ −δ v2kf2(x, y, v) · v ≤ −δ∥v∥2 for (x, y, v1, . . . , vm) ∈ Ω× Rm, (23)

lim
∥v∥, ∥w∥→+∞

∥q1(x, y, v, w)∥+ ∥q2(x, y, v, w)∥
∥v∥+ ∥w∥

= 0 uniformly on Ω. (24)

Then problem (19), (20) has at least one solution.

Corollary 3. Let A1 ∈ C([0, ω2];Rm×m), A2 ∈ C([0, ω2];Rm×m), B1 ∈ C([0, ω1];Rm×m) and
B2 ∈ C([0, ω1];Rm×m) be positive definite symmetric matrix functions, and let there exist δ > 0
such that conditions (22)–(24) hold. Then problem (19), (21) has at least one solution.
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Remark 4. In Theorem 2 it is assumed that the function f(x, y, v, w, z) has at most linear growth
with respect to the phase variables v, w and z. Corollaries 2 and 3 cover the case where the right-
hand side of system (19) has an arbitrary growth order in some phase variables. As an example,
consider the systems

vxy = y2wx + (1 + x2)wy + w + sinh(w) + sin(x2 y3)w
4
5 ,

wxy = sin2 x vy − 2v − sinh(v3) + ln(1 + x2y2 + v6 + w8
) (25)

and
vxy = (1 + y2)wx + (1 + x4)xyw + sinh(w) + sin(x2 y3)w

4
5 ,

wxy = ey vx + (1 + sin2 x) vy − 2v − sinh(v3) + ln(1 + x2y2 + v6 + w8
)
.

(26)

System (25) satisfies all of the conditions of Corollary 2, and system (26) satisfies all of the
conditions of Corollary 3. Therefore, by Corollaries 2 and 3, problems (25), (20) and (26), (21) are
solvable.
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Studying the propagation of an electromagnetic field into a substance, along with its math-
ematical modeling, investigation, and numerical solution, stands as one of the important tasks
in applied mathematics. Typically, this phenomenon is associated with the generation of ther-
mal energy, leading to alterations in the permeability of the medium and influencing the diffusion
process. The mathematical representation of this process, like numerous other applied problems,
results in the nonlinear partial differential and integro-differential equations and systems thereof. In
a quasistationary scenario, the corresponding system of Maxwell equations takes the form outlined
in [9]:

∂H

∂t
= −∇× (νm∇×H), (1)

cν
∂θ

∂t
= νm(∇×H)2, (2)

where H = (H1,H2,H3) is a vector of the magnetic field, θ is temperature, cν and νm characterize
the heat capacity and electrical conductivity of the medium which are functions of θ. As demon-
strated in [3], the system represented by equations (1) and (2) can be rewritten into the following
nonlinear parabolic-type integro-differential equation

∂H

∂t
= −∇×

[
a

( t∫
0

|∇ ×H|2 dτ
)
∇×H

]
, (3)

where the function a = a(S) is defined for S ∈ [0,∞).
Assuming that the magnetic field has the form H = (0, 0, U), and U = U(x, t), we get the

following nonlinear integro-differential equation:

∂U

∂t
− ∂

∂x

[
a

( t∫
0

(∂U
∂x

)2
dτ

)
∂U

∂x

]
= 0. (4)

The aim of the current note is to extend the investigation initiated in [8] and employ a Deep
Neural Network (DNN) for the nonlinear equation (4) featuring the diffusion coefficient a(S) =
(1 + S)p, 0 < p ≤ 1.

Thus, our goal is to apply DNN for the approximate solution of the following nonlinear initial-
boundary value problem

∂U(x, t)

∂t
− ∂

∂x

[(
1 +

t∫
0

(∂U(x, t)

∂x

)2
dτ

)p ∂U(x, t)

∂x

]
= f(x, t), (x, t) ∈ Ω,

U(0, t) = U(1, t) = 0, t ∈ [0, T ],

U(x, 0) = U0(x), x ∈ [0, 1],

(5)



REPORTS OF QUALITDE, Volume 2, 2023 109

where Ω = (0, 1)× (0, T ), T = const > 0, f and U0 are the given functions.
Qualitative and quantitative properties, as well as the numerical solution for the problem (5)

and its even more intricate nonlinear counterparts, have been extensively explored in the literature
(refer to, for instance, [1, 3–12, 14] and the references therein). As previously stated, our objective
is to investigate an alternative approach to solving partial differential equations (PDEs) through
Machine Learning methods. Specifically, we aim to train the DNN to serve as a surrogate model
capable of predicting the solution of the PDE at any given point (x, t) ∈ Ω. DNNs can consist
of multiple layers, including input and output layers, and may feature any number of inner layers
referred to as hidden layers (see, for example, Fig. 1). The deep of the network is determined by
the number of hidden layers (columns of yellow circles – neurons).

Figure 1. Example of the Neural Network architectures.

The DNN constructs approximation for the solution of problem (5) u(x, t, ρ) ≈ U(x, t), where
u(x, t, ρ) represents the function obtained from the DNN, and ρ is the variable encompassing all
DNN parameters that need for optimization during the training process. As highlighted in [8],the
training of the DNN necessitates a substantial amount of training data, serving as the DNN’s
input. Nevertheless, utilizing the DNN for approximating solutions to PDEs offers an advantage by
incorporating physics, thus reducing the size of the required training data (see, for example, [2,13]).

Figure 2. Exact and numerical solutions (p = 0).

Following the methodology outlined in [2, 8, 13], we can construct the residual of the nonlinear
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Figure 3. Exact and numerical solutions (p = 0.5).

problem (5) to be assessed at a designated set of training points

R(x, t, ρ) =
∂u(x, t, ρ)

∂t
− ∂

∂x

[(
1 +

t∫
0

(∂u(x, t, ρ)
∂x

)2
dτ

)p ∂u(x, t, ρ)

∂x

]
− f(x, t). (6)

Figure 4. Difference between exact and numerical solutions and learning rate (p = 0.5).

Additionally, a cost function F(x, t, ρ) encompassing the residual (6), along with initial and
boundary conditions can be built and minimized by a Deep Neural Network during the training.

In the test experiments, we adopted the same example and parameters as provided in [8]. The
right-hand side f(x, t) of the problem (5) was selected to yield an exact solution as follows U(x, t) =
x(1−x) exp(−x− t), accompanied by the corresponding initial solution U0(x) = x(1−x) exp(−x).
The training of the neural network was conducted using the NumPy library for scientific computing
and the TensorFlow library for machine learning.

In Fig. 2 we replicated results of the numerical experiment given in [8] that is for the case p = 0
in the problem (5).

The results of the numerical experiment for p = 0.5 is given on Fig. 3. The difference between
exact and numerical solutions is given in Fig. 4 (left). In the same figure, the DNN learning rate
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for 1500 epochs is given on the right.
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Consider a one-parameter family of two-dimensional linear differential systems

ẋ = Aµ(t)x, x ∈ R2, t ≥ 0 (1µ)

with the matrices

Aµ(t) :=

{
dk(µ) diag[1,−1], 2k − 2 ≤ t < 2k − 1,

(µ+ γ(µ) + bk)J, 2k − 1 ≤ t < 2k,

where k ∈ N and J =

(
0 1
−1 0

)
, and a real parameter µ; the conditions on the numbers bk ∈ R

and the functions dk( · ), γ( · ) : R → R will be indicated below.
It was proved in [2] that the upper Lyapunov exponent of system (1µ) considered as a function

of the parameter µ is positive on a set of positive Lebesgue measure for the case in which the
functions dk( · ) are independent of µ, positive, and separated from zero uniformly in k ∈ N (i.e.,
dk(µ) ≡ dk > d > 0, k ∈ N). Complex matrices of a special kind are substantially used in the
proof of this result. Another method for proving the theorem in [1] based on an application of the
Parseval equality for trigonometric sums can be found in [3].

Let αn ∈ R, n ∈ N be arbitrary numbers. Set

dk(µ) ≡ d(µ) > 0, b2n−1 = αn, k ∈ N, µ ∈ R. (2)

Denote the Cauchy matrix of system (1µ) by XAµ(t, s), t, s ≥ 0. For each φ ∈ R, the matrix of
clockwise rotation by the angle φ will be denoted by

U(φ) ≡
(

cosφ sinφ
− sinφ cosφ

)
.

One can readily verify that if the matrix Aµ( · ) is determined by conditions (2), then

XAµ(2
k+1, 0) = U(αk+1 − αk)X

2
Aµ

(2k, 0) for any k ∈ N.

Systems with coefficients chosen according to (2) have a number of properties that permit one
to construct one-parameter families with various asymptotic characteristics. In particular, if the
sequence {αn}∞n=1 converges, then the matrix Aµ( · ) is the limit of a sequence of periodic matrices
uniformly with respect to t ≥ 0. V. M. Millionshchikov used such systems in [5–7] (see also [1])
to prove the existence of Lyapunov improper linear differential systems with limit-periodic and
quasiperiodic coefficients.

In the paper [4], it was proved under conditions (2) in which γ( · ) ≡ 0 and in the case of
a continuous function d( · ) that there exists a parameter value µ ∈ R such that system (1µ) is
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unstable. In the present talk we show that the upper Lyapunov exponent of system (1µ) considered
as a function of the parameter µ is positive on a set of positive Lebesgue measure for the case in
which the functions dk( · ) and γ( · ) are differentiable and under the conditions

C̃ := inf
µ∈R

(1 + γ′(µ)) > 2|d′(µ)|e4d(µ), µ ∈ R, (3)
π∫

0

d(µ) dµ > 210(1 + C̃−1). (4)

For any k ∈ N and µ ∈ R we recursively define real numbers ηk = ηk(µ) ≥ 1 and ψk = ψk(µ) as
follows. Set

η1(µ) = ed(µ), ψ1(µ) :≡ 0,

ξk = ξk(µ) := 2ψk(µ) + αk + µ+ γ(µ), qk(µ) := 2π
[
2−1π−1ξk(µ)

]
(here [ · ] denotes the integer part of number). Since ηk ≥ 1 and hence sh(2 ln ηk) ≥ 0, it follows
that there exist unique 1 ≤ ηk+1 ∈ R and φk = φk(µ) ∈ [qk(µ)− 2−1π, qk(µ) + 2−1π) such that

sh ln ηk+1 = (sh(2 ln ηk))| cos ξk|,
ctgφk = (ch(2 ln ηk)) ctg ξk if sin ξk ̸=,

φk = ξk if sin ξk = 0.

Finally, we set
ψk+1(µ) := ψk(µ) + 2−1φk(µ) +

π

2
β(µ),

where
β(µ) = 0 if ξk(µ) ∈

⋃
n∈Z

[2πn− 2−1π, 2πn+ 2−1π),

β(µ) = 1 for all others µ ∈ R.
In what follows, we will assume that conditions (2) and (3) hold.

Lemma 1. For any n ∈ N and µ ∈ R the functions ηk and ψk are differentiable on µ and one has
the representation

XAµ(2
n − 1, 0) = U(ψn)

(
ηn 0
0 η−1

n

)
U(ψn).

Lemma 2. For any k ∈ N an equality holds

ψk(π)− ψk(0) = (2k−1 − 2−1)π.

Besides of that for all µ ∈ R we have the estimation

ψ′
k(µ) > 0.

Lemma 3. For any k ∈ N the inequality is true
π∫

0

ln | cos ξk(µ)| dµ ≥ −25k − 2π ln(1 + C̃−1).

Theorem. If conditions (2)–(4) are satisfied, then there exists a set J ⊂ R of positive Lebesgue
measure such that the upper Lyapunov exponent λ2(Aµ) of system (1µ) considered as a function of
the parameter µ is positive for all µ ∈ J .
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We consider the periodic problem

u′ = f(t, u, v), v′ = p(t) sinu+ q(t); u(0) = u(ω), v(0) = v(ω). (1)

Here we assume that p, q ∈ L([0, ω]), p ̸≡ 0, and f ∈ Car([0, ω]× R2) satisfies the conditions

f(t, x, y) sgn y ≥ 0, |f(t, x, y)| ≤ h(t, |y|) for t ∈ [0, ω], x, y ∈ R,

where h ∈ Car([0, ω]× R+) is non-decreasing in the second argument.
The theory of BVPs for non-autonomous and non-resonant systems is quite well developed

(see, [3]). However, (1) is a resonant type problem. Some particular cases of (1) are studied in the
literature, but usually under the assumption that

ω∫
0

q(s) ds = 0 (see, e.g., [2, 4]). As for the case
ω∫
0

q(s) ds ̸= 0, there are only a few results available in the existing literature (see, [1,5]). Below we

present new results concerning the existence, multiplicity, and localization of solutions of (1).
We use the following notation:

[x]± =
1

2
(|x| ± x),

q0(t) = max
{
∥[q]+∥L , ∥[q]−∥L

}
, H(y) =

ω∫
0

h(s, |y|) ds,

a(ℓ) =
π

2
+

1

4
H(ℓ), b(ℓ) =

π

2
− 1

4
H(ℓ),

Iak(ℓ) = ]− a(ℓ) + 2kπ, a(ℓ) + 2kπ[ , Ibk(ℓ) = ]− b(ℓ) + 2kπ, b(ℓ) + 2kπ[ ,

Jak(ℓ) = ]− a(ℓ) + (2k + 1)π, a(ℓ) + (2k + 1)π[ , Ibk(ℓ) = ]− b(ℓ) + (2k + 1)π, b(ℓ) + (2k + 1)π[ ,

B(ℓ) =
{
v ∈ C([0, ω]) : ∥v∥C ≤ ℓ, v(t0) = 0 for some t0 ∈ [0, ω]

}
.

Theorem 1. Let σ ∈ {−1, 1}, ℓ def
= ∥[σp]−∥L + q0, and the conditions

H(ℓ) < 2π, (2)

∥[σp]−∥L +

∣∣∣∣
ω∫

0

q(s) ds

∣∣∣∣ ≤ ∥[σp]+∥L cos
H(ℓ)

4
(3)

hold. Then, for any k ∈ Z, problem (1) possesses a solution (uk, vk) such that vk ∈ B(ℓ), and

Rangeuk ⊆ Iak(ℓ), Ibk(ℓ) ∩ Rangeuk ̸= ∅ if σ = 1,

and
Rangeuk ⊆ Jak(ℓ), Jbk(ℓ) ∩ Rangeuk ̸= ∅ if σ = −1.
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Remark 1. Inequality (3) is optimal for the solvablity of (1) and cannot be replaced by

∥[σp]−∥L +

∣∣∣∣
ω∫

0

q(s) ds

∣∣∣∣ ≤ (1 + ε)∥[σp]+∥L cos
H(ℓ)

4
,

no matter how small ε > 0 is.

Theorem 1 guarantees that problem (1) possesses infinitely many solutions (uk, vk). However,
it may happen that uk+1 ≡ uk + 2π (for example, if f(t, x + 2π, y) ≡ f(t, x, y)). Introduce the
following definition.

Definition 1. Solutions (u1, v1) and (u2, v2) of (1) are said to be geometrically distinct (g.d.) if
u1 − u2 ̸≡ 2πn for n ∈ Z.

Theorem 2. Let σ ∈ {−1, 1}, ℓ def
= 1

2 (∥p]∥L + ∥q]∥L), inequality (2) hold, and

∥[σp]−∥L +

∣∣∣∣
ω∫

0

q(s) ds

∣∣∣∣ < ∥[σp]+∥L cos
H(ℓ)

4
.

Then, for any k ∈ Z, problem (1) possesses a pair of g.d. solutions (u1k, v1k) and (u2k, v2k) such
that vik ∈ B(ℓ) for i = 1, 2, and

Rangeu1k ⊂ Iak(ℓ), Ibk(ℓ) ∩ Rangeu1k ̸= ∅, and Rangeu2k ⊂ Jak(ℓ), Jbk(ℓ) ∩ Rangeu2k ̸= ∅.

Definition 2. Solutions (u1, v1) and (u2, v2) of (1) are said to be consecutive if u1(t) ≤ u2(t) for
t ∈ [0, ω], u1 ̸≡ u2, and problem (1) has no solution (u, v) satisfying u1(t) ≤ u(t) ≤ u2(t) for
t ∈ [0, ω], u ̸≡ u1, and u ̸≡ u2.

It is worth mentioning that a pair of consecutive solutions may not be geometrically distinct
and vice versa.

In order to formulate the next theorem, we need to introduce the following hypothesis:

the function f(t, x, ·) : R → R is non-decreasing for a. e. t ∈ [0, ω] and all x ∈ R,
mes

{
t ∈ [0, ω] : f(t, x, y) ̸= 0

}
> 0 for x, y ∈ R, y ̸= 0,

for every ε > 0 and r > 0 there exists fεr ∈ L([0, ω]) such that
|f(t, x2, y)− f(t, x1, y)| ≤ fεr(t) for t ∈ [0, ω], |x2 − x1| ≤ ε, |y| ≤ r.

 (A)

Theorem 3. Let σ ∈ {−1, 1}, ℓ def
= ∥[σp]−∥L + q0, ℓ∗

def
= 1

2 (∥p]∥L +∥q]∥L), and hypothesis (A) hold.
Let, moreover, H(ℓ∗) < π and

∥[σp]−∥L − ∥[σp]+∥L cos
H(ℓ∗)

2
<

∣∣∣∣
ω∫

0

q(s) ds

∣∣∣∣ ≤ ∥[σp]+∥L cos
H(ℓ)

4
− ∥[σp]−∥L .

Then, for any k ∈ Z, problem (1) possesses a pair of consecutive solutions (u1k, v1k) and (u2k, v2k)
such that either (u1k, v1k) or (u2k, v2k) is Lyapunov unstable, vik ∈ B(ℓ) for i = 1, 2, and

Range(u1k − 2kπ) ⊆
[
− a(ℓ),

π

2

[
, Range(u2k − 2kπ) ⊂

]π
2
,
5π

2

[
if σ

ω∫
0

q(s) ds ≥ 0,
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and

Range(u1k − 2kπ) ⊂
]
− 5π

2
,−π

2

[
, Range(u2k − 2kπ) ⊆

]
− π

2
, a(ℓ)

]
if σ

ω∫
0

q(s) ds ≤ 0.

Moreover, if, for i ∈ {1, 2}, the inequality (−1)iσ
ω∫
0

q(s) ds ≥ 0 holds, then, for every solution (u, v)

of problem (1), the condition{
(−1)i

π

2
+ 2πn : n ∈ Z

}
∩ Rangeu ̸= ∅

is satisfied.

Now, we consider a particular case of (1), namely, the problem

u′ = h(t)φ(v), v′ = p(t) sinu+ q(t); u(0) = u(ω), v(0) = v(ω), (4)

where φ : R → R is an increasing continuous function satisfying the conditions φ(−y) = −φ(y) and
φ(y) > 0 for y > 0, and h ∈ L([0, ω]) is a non-trivial non-negative function. Moreover, we assume
that

φ∗(x, y)
def
=

φ(x)− φ(y)

x− y
is continuous

and we put
φ∗
r
def
= max

{
φ∗(x, y) : x, y ∈ [−r, r]

}
.

Definition 3. A pair of solutions (u1, v1) and (u2, v2) of (4) is called a fundamental system of
solutions if, for any solution (u, v) of (4), there exists k ∈ Z such that either u ≡ u1 + 2kπ or
u ≡ u2 + 2kπ.

Theorem 4. Let σ ∈ {−1, 1}, ℓ∗ def
= 1

2 (∥p]∥L + ∥q]∥L), and

σp(t) ≥ 0 for t ∈ [0, ω]. (5)

Let, moreover,

∥h∥Lφ(ℓ
∗) < π, φ∗

ℓ∗∥h∥L∥p∥L ≤ 16, and
∣∣∣∣

ω∫
0

q(s) ds

∣∣∣∣ < ∥p∥L cos
∥h∥Lφ(ℓ

∗)

2
.

Then, problem (4) possesses a fundamental system of solutions (u1, v1) and (u2, v2) such that
v1, v2 ∈ B(ℓ∗), and

Rangeu1 ⊂
]
− π

2
,
π

2

[
and Rangeu2 ⊂

]π
2
,
3π

2

[
.

Moreover, for σ = 1, (u1, v1) is unstable, while for σ = −1, (u2, v2) is unstable.

As an example, we consider the so-called relativistic problem

u′ = h(t)
v√

1 + v2
, v′ = p(t) sinu+ q(t); u(0) = u(ω), v(0) = v(ω). (6)

It is clear that H(y) = ∥h∥L

|y|√
1+y2

in this case. Therefore, taking into account that H(y) < ∥h∥L

and the monotonicity of the cosine function, we get from Theorem 3 the following corollary.
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Corollary 1. Let σ ∈ {−1, 1}, ∥h∥L ≤ 2π, and

∣∣∣∣
ω∫

0

q(s) ds

∣∣∣∣ ≤ ∥[σp]+∥L cos
∥h∥L

4
− ∥[σp]−∥L .

Then, problem (6) possesses a pair of g.d. solutions (u1, v1) and (u2, v2). If, moreover, ∥h∥L < π
and ∣∣∣∣

ω∫
0

q(s) ds

∣∣∣∣ ≥ ∥[σp]−∥L − ∥[σp]+∥L cos
∥h∥L

4
,

then (u1, v1) and (u2, v2) are consecutive solutions and at least one of them is unstable.

Theorem 4 implies the following corollary.

Corollary 2. Let σ ∈ {−1, 1} and (5) be fulfilled. Let, moreover,

∥h∥L ≤ π, ∥h∥L∥p∥L ≤ 16, and
∣∣∣∣

ω∫
0

q(s) ds

∣∣∣∣ ≤ ∥p∥L cos
∥h∥L

2
.

Then, the conclusions of Theorem 4 hold for problem (6).

At last we mention that the above theorems also guarantee a localization of the second compo-
nent of solutions (see, the conditions like v ∈ B(ℓ)). Therefore, our results can be applied to some
singular problems as well. For example, let us consider the so-called mean curvature problem

u′ = f(t, u)
v√

1− v2
, v′ = p(t) sinu+ q(t); u(0) = u(ω), v(0) = v(ω),

where f ∈ Car([0, ω] × R) and 0 ≤ f(t, x) ≤ h(t) for t ∈ [0, ω], x ∈ R. Theorem 1 yields the
following corollary.

Corollary 3. Let σ ∈ {−1, 1}, ℓ def
= ∥[σp]−∥L + q0, ℓ < 1, and inequalities (2) and (3) be satisfied

with H(ℓ)
def
=

∥h∥
L
ℓ√

1−ℓ2
. Then, problem (6) possesses infinitely many solutions.
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1 The result
This contribution is based on our recent paper [4] where we analyzed the set of positive regular
solutions of the quasilinear Neumann problem−

(
u′√

1 + (u′)2

)′
= λa(x)f(u), 0 < x < 1,

u′(0) = u′(1) = 0.

(1.1)

Here, λ ∈ R is a parameter and the functions a and f satisfy:

(a1) a ∈ L∞(0, 1),
1∫
0

a(x) dx < 0, and there is z ∈ (0, 1) such that a(x) > 0 almost everywhere in

(0, z) and a(x) < 0 almost everywhere in (z, 1);

(f1) f ∈ C0[0,+∞), f(s) > 0 if s > 0, and, for some constant p > 1, lim
s→0+

f(s)
sp = 1.

As a is sign indefinite and f is superlinear at zero, (1.1) is a superlinear indefinite elliptic problem.
These problems have attracted a huge amount of attention during the last few decades.

The problem (1.1) can be regarded as a simple prototype of its more sophisticated multidi-
mensional counterpart, which plays a central role in the mathematical analysis of a number of
important geometrical and physical issues, ranging from prescribed mean curvature problems for
cartesian surfaces in the Euclidean space, to the study of capillarity phenomena for compressible
or incompressible fluids, as well as to the analysis of reaction-diffusion processes where the flux
features saturation at high regimes.

Although the study of (1.1) is often settled in the space of bounded variation functions (see,
e.g., [5–8]), here we will be instead concerned with the regular solutions of (1.1), that is, functions
u ∈ W 2,1(0, 1) which fulfill the differential equation almost everywhere in (0, 1), as well as the
boundary conditions.

A function u ∈ C0[0, 1] is said to be positive if min
[0,1]

u ≥ 0 and max
[0,1]

u > 0, whereas it is said strictly

positive if min
[0,1]

u > 0. Here, the positive solutions of (1.1) are regarded as couples (λ, u). Naturally,
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for any given λ ≥ 0, a couple (λ, u) is said to be a positive, or strictly positive, solution of (1.1) if
u is a positive, or strictly positive, solution of (1.1), respectively. Note that, under conditions (a1)
and (f1), the strong maximum principle (see, e.g., [5, Theorem 2.1]) yields the strict positivity of
any positive regular solution of (1.1).

Subsequently, we denote by S + the set of all couples (λ, u) ∈ [0,∞)×C1[0, 1] such that (λ, u)
is a positive, and hence strictly positive, regular solution of (1.1).

The following result establishes the existence of an unbounded closed connected subset C+ of
S +, bifurcating from u = 0 as λ → +∞, and provides simultaneously some sharp information on
its localization. The existence of unstable solutions, however not necessarily belonging to C+, is
also detected.

Theorem 1.1. Assume (a1) and (f1). Then, there exists an unbounded closed connected subset
C+ of S + for which the following properties hold:

(i) there is λ∗ > 0 such that [λ∗,∞) ⊆ projR(C
+);

(ii) there are functions α and β, explicitly defined by (2.6) and (2.7) respectively, such that, for
every (λ, uλ) ∈ C+, one has

uλ(xλ) < λ
1

1−pα(xλ), for some xλ ∈ [0, z),

and
uλ(yλ) > λ

1
1−pβ(yλ), for some yλ ∈ [0, 1];

(iii) there is C > 0 such that, for every (λ, uλ) ∈ C+,

∥u′λ∥L∞(0,1) < Cλ
1

1−p .

Moreover, for every λ ∈ [λ∗,∞), there exists at least one Lyapunov unstable solution u ∈ S + of
(1.1) satisfying the conditions expressed by properties (ii) and (iii).

Theorem 1.1 is a substantial sharpening of some previous results obtained in [6–8]. Unlike in
these papers, here the proof exploits an alternative method based on viewing (1.1) as a perturbation
of a semilinear problem, on constructing some non-ordered lower and upper solutions, and on using
the Leray–Schauder degree. This approach, which appears of interest in its own, yields, in addition,
the localization and the instability information established by Theorem 1.1, which is a novel result
in the context of the problem (1.1).

2 The proof
2.1 Reformulation of (1.1) as a perturbation of a semilinear problem
Since f(0) = 0 and we are focusing attention on the positive solutions of (1.1), without loss of
generality we can extend f to the whole of R as an even function. By performing the change of
variable

u = εv, ε = λ
1

1−p , (2.1)

and setting

h(s) =


f(s)

|s|p
if s ̸= 0,

1 if s = 0,
(2.2)
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the problem (1.1) can be equivalently written in the form{
−v′′ = a(x)|v|p h(εv) (1 + (εv′)2)

3
2 , 0 < x < 1,

v′(0) = v′(1) = 0.
(2.3)

Throughout the rest of this proof, for every r > 0, we consider the auxiliary function

ℓr(x, s) =


|s|p if s ≤ 0,

a(x) sp if 0 < s ≤ r,

a(x) sp (r + 1− s) if r < s ≤ r + 1,

−s+ r + 1 if s > r + 1,

as well as the associated problem{
−v′′ = ℓr(x, v)h(εv) (1 + (εv′)2)

3
2 , 0 < x < 1,

v′(0) = v′(1) = 0.
(2.4)

It is obvious that any solution v of (2.4), with 0 ≤ v ≤ r in [0, 1], solves (2.3). Moreover, due to
(2.2), the problem (2.4) perturbs, as ε > 0 separates away from 0, from the semilinear x problem{

−v′′ = ℓr(x, v), 0 < x < 1,

v′(0) = v′(1) = 0.
(2.5)

2.2 Existence of non-ordered strict lower and upper solutions of (2.5)
Construction of a lower solution α

Let µ1 > 0 be the principal eigenvalue of the linear weighted eigenvalue problemll − φ′′ = µa(x)φ, 0 < x <
z

2
,

φ′(0) = 0, φ
(z
2

)
= 0.

Denote by φ1 any positive eigenfunction associated to µ1 and let x ∈ (0, z2) be such that

φ1(x) + φ′
1(x)(x− x) = 0.

Then, we define, for c > 0,

α(x) =


cφ1(x) if 0 ≤ x < x,

cφ1(x) + cφ′
1(x)(x− x) if x ≤ x < z,

0 if z ≤ x ≤ 1.

(2.6)

Construction of an upper solution β

For every κ > 0, let us denote by zκ the unique solution of the linear problem
−z′′ =

(
a(x)−

1∫
0

a(t) dt

)
κp, 0 < x < 1,

z′(0) = z′(1) = 0,

1∫
0

z(t) dt = 0.
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Then, we define
β = zκ + κ. (2.7)

By making a suitable choice of c and �the following conclusions about α and β can be inferred.

Proposition 2.1. There exists a constant r0 > 0 such that, for all r ≥ r0, the problem (2.5) admits
a lower solution α and an upper solution β, respectively defined by (2.6) and (2.7), such that:

(i) β − α changes sign in [0, 1];

(ii) any solution v of (2.5) such that α ≤ v in [0, 1], satisfies α(x) < v(x) for all x ∈ [0, 1];

(iii) any solution v of (2.5) such that v ≤ β in [0, 1], satisfies v(x) < β(x) for all x ∈ [0, 1].

2.3 Positivity and a priori bounds for the solutions of (2.5)
Proposition 2.2. Fix any r > 0. Then, the following assertions hold:

(i) every solution of (2.5) is non-negative;

(ii) every positive solution of (2.5) is strictly positive.

Proposition 2.3. The following assertions hold:

(i) for every r > 0, any solution v of (2.5) satisfies

0 ≤ v(x) ≤ r + 1, for all x ∈ [0, 1],

and
∥v′∥L∞(0,1) < C = ∥a∥L1(0,1)(r + 1)p+1; (2.8)

(ii) for every r ≥ r0, any solution v of (2.5), with v(x0) ≤ α(x0) for some x0 ∈ [0, 1], satisfies

max
[0,1]

v < R = ∥α∥L∞(0,1) + ∥α′∥L∞(0,1). (2.9)

2.4 Existence of ordered strict lower and upper solutions of (2.5)
Proposition 2.4. Fix any r ≥ r0. The constants α1 = −1 and β1 = r + 2 are, respectively, a
lower solution and an upper solution of (2.5) satisfying

α1 < 0 ≤ α(x), β(x) ≤ r0 < β1, for all x ∈ [0, 1]. (2.10)

Moreover, every solution v of (2.5) is such that α1 < v(x) < β1, for all x ∈ [0, 1].

2.5 Degree computations
Fix any r ≥ max{r0, R}, where R is the constant defined in (2.9). Then, C being the constant
introduced in (2.8), define the following open bounded subsets of C1[0, 1]:

Ω1 =
{
v ∈ C1[0, 1] : α1 < v(x) < β1 for all x ∈ [0, 1], ∥v′∥∞ < C

}
,

Ω2 =
{
v ∈ C1[0, 1] : α1 < v(x) < β(x) for all x ∈ [0, 1], ∥v′∥∞ < C

}
,

Ω3 =
{
v ∈ C1[0, 1] : α(x) < v(x) < β1 for all x ∈ [0, 1], ∥v′∥∞ < C

}
,

Ω = Ω1 \ Ω2 ∪ Ω3 =
{
v ∈ Ω1 : v(x0) < α(x0) and β(y0) < v(y0) for some x0, y0 ∈ [0, 1]

}
.
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From (2.10), it follows that Ω2∪Ω3 ⊂ Ω1. Moreover, we have that Ω2∩Ω3 = ∅ by Proposition 2.1.
Let us denote by T : [0,∞)×C1[0, 1] → C1[0, 1] the operator sending each (ε, v) ∈ [0,∞)×C1[0, 1]

to the unique solution w ∈ W 2,∞(0, 1) of the linear problem−w′′ + w = ℓr(x, v)h(εv) (1 + (εv′)2)
3
2 + v, 0 < x < 1,

w′(0) = w′(1) = 0.

It is clear that T is completely continuous and that its fixed points are the solutions of the problem
(2.4). Moreover, by Propositions 2.1 and 2.3 and our choice of C, the operator T (0, · ) cannot have
fixed points on ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3. Thus, by the additivity property of the degree, we infer that

degLS
(
I − T (0, · ),O

)
= degLS

(
I − T (0, · ),Ω1

)
− degLS

(
I − T (0, · ),Ω2

)
− degLS

(
I − T (0, · ),Ω3

)
.

As, from, e.g., [1, Chapter III], we know that degLS(I − T (0, · ),Ωi) = 1, for i = 1, 2, 3, we can
conclude that degLS(I − T (0, · ),Ω) = −1. Therefore, by the existence property of the degree, the
problem (2.5) possesses a solution v ∈ Ω, where necessarily x0 ∈ [0, z), because α(x0) > v(x0) > 0
and α = 0 on [z, 1]. In addition, having chosen r > R, Proposition 2.3 guarantees that v(x) < r
for all x ∈ [0, 1] and therefore v is a solution of the problem (2.3) for ε = 0. Hence, if we define

O =
{
v ∈ Ω : min

[0,1]
v > 0, max

[0,1]
v < r

}
,

then every solution v ∈ Ω must belong to O. Thus, the excision property of the degree yields

degLS
(
I − T (0, · ),O

)
= −1.

2.6 Existence of a continuum and conclusion of the proof
The boundedness of ∂O in C1[0, 1] and the complete continuity of the operator T guarantee the
existence of some ε∗ > 0 such that T (ε, · ) has no fixed points on ∂O for all ε ∈ [0, ε∗]. Consequently,
the homotopy property of the degree implies that degLS(I − T (0, ε),O) = −1 for all ε ∈ [0, ε∗],
and hence the existence of at least one solution v = vε ∈ O of the problem (2.3) for all ε ∈ [0, ε∗].
Actually, the Leray–Schauder continuation theorem [3, p. 63] provides us with a continuum K + of
solutions (ε, vε) of (2.3) with ε ∈ [0, ε∗] and vε ∈ O.

The change of variables (2.1) then implies the existence of a closed connected set C+ of solutions
(λ, uλ) of (1.1), where λ = ε1−p ∈ [λ∗,∞), with λ∗ = (ε∗)1−p, and

uλ = εvε = λ
1

1−p vε.

It is apparent that every (λ, uλ) ∈ C+ is strictly positive and satisfies conditions (ii) and (iii).
Finally, adapting the results in [2], we can prove the existence, for each ε ∈ [0, ε∗], of a Lyapunov

unstable solution v ∈ O of (2.4). Consequently, for every λ ∈ [λ∗,∞) there is at least one unstable
solution uλ of (1.1) which is strictly positive and satisfies (ii) and (iii). This concludes the proof of
Theorem 1.1.
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Consider a linear differential system

ẋ = A(t)x, x ∈ R2, t ∈ R, (1)

with piecewise continuous and bounded coefficient matrix A of the form

A(t) =

+∞∑
k=0

Ak(t), (2)

where Ak, k = 0, . . . ,+∞, are periodic matrices with the periods Tk. If each matrix Ak is every-
where continuous and series (2) converges uniformly on the entire time axis R, then the matrix A
is limit-periodic [1, p. 32] and, therefore, almost periodic. The problem on Lyapunov regularity
of linear systems with almost periodic coefficients was posed by N. P. Erugin at a mathematical
seminar at the Institute of Physics and Mathematics of Byelorussian Academy of Sciences in 1956.
The formulation of this problem was published in [3, pp. 121, 137], see also [4].

In [6], using some results of [5] V. M. Millionshchikov has proved the existence of some Lyapunov-
irregular linear system with limit periodic coefficients. To this end V. M. Millionshchikov has intro-
duced some special class of linear systems. A comprehensive study of systems from Millionshchikov
class was made by A. V. Lipntskii in [7–14]. In particular, an explicit example of Lyapunov-irregular
system from the Millionshchikov class is given in [7], see also [17].

On the other hand, it is well known [5,15,16], that the set of Lyapunov-regular (and even almost
reducible, for the definition of almost reducibility see [2]) systems with almost periodic coefficients
is large in some natural sense. However no effective tools to recognize these properties are known.

Our aim here is to give some sufficient conditions for linear systems from Millionshchikov class
to be Lyapunov regular or almost reducible. The conditions of regularity and almost reducibility
provided by Theorem 1 below are not coefficient, but may be useful in constructing systems from
Millionshchikov class with prescribed asymptotic properties.

In what follows we suppose that T0 = 2, Tk ∈ N, and Tk+1/Tk = mi ∈ N for all k = 0, . . . ,+∞.
We also suppose that mk > 1, k = 0, . . . ,+∞. Let

J =

(
0 −1
1 0

)
, D =

(
−1 0
0 1

)
.

Take some continuous function ω : [0, 1] → R such that ω(0) = ω(1) = 0 and
1∫
0

ω(t) dt = 1. Take

also a sequence φ : N → [0, π/2[ . As usually, the values of the sequence φ we denote by φk, k ∈ N.
Now let us define the matrices Ak by the following equalities:

A0(t) =

{
ω(t)D, for t ∈ [0, 1[ ,

0, for t ∈ [1, 2[ ,
(3)
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for k = 0 and

Ak(t) =

{
−φkω(t)J, for t ∈ [0, 1[ ,

0, for t ∈ [1, Ti[ ,
(4)

for all k = 1, . . . ,+∞.

Lemma 1. If
∞∑
k=1

φk < +∞, then system (1) with the coefficient matrix A defined by (3) and (4)

is limit periodic.

Let Sm(t) =
m∑
k=0

Ak(t), m = 1, . . . ,+∞, where Ak are defined by (3) and (4). It can be easily

seen that each matrix Sm is Tm-periodic. Now for arbitrary m ∈ N consider a periodic linear system

ż = Sm(t)z, z ∈ R2, t ∈ R. (5)

Denote the Cauchy matrix of system (5) by Zm. Then the monodromy matrix of system (5) can be
written as Zm(Tm, 0). Hence the eigenvalues of Zm(Tm, 0) are the Floquet multipliers of system (5).

Definition. We say that system (1) with the coefficient matrix A defined by (3) and (4) is a
real-type system if all Floquet multipliers of each corresponding system (5) with m ∈ N are real.

Remark. Note that the condition φk ∈ [0, π/2[ guarantees that the Floquet multipliers of system
(5) are positive.

Lemma 2. If system (1) with the coefficient matrix A defined by (3) and (4) is a real-type system,
then all eigenvectors of matrices Zm(Tm, 0), m ∈ N lie in the first quadrant, i.e. have positive
coordinates.

Suppose that system (1) with the coefficient matrix A defined by (3) and (4) is a real-type
system. Let ζm1 and ζm2 be some eigenvectors of Zm(Tm, 0), where each vector ζm2 corresponds to
greater eigenvalue of Zm(Tm, 0). Denote the angle between ζm1 and ζm2 by βm.

Theorem 1. The following statements are valid:

(i) If the angle βk is separated from zero, then system (1) is almost reducible.

(ii) If lim
k→∞

T−1
k lnβk = 0, then system (1) is Lyapunov regular.

To prove the first statement we use the fact that system (1) lies in the closure of the set of
reducible systems. The second statement is based on the following lemma.

Lemma 3. Let xmj be the solution of system (1) satisfying the condition xmj(jTm) = ζm2 for some
j ∈ N. Then the vectors xmj(t) lie between ζm1 and ζm2 for all t = (j + l)Tm, l ∈ N.
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1 Introduction
A linear control system with continuous and discrete times and discrete memory is considered.
The model includes an uncertainty in the description of operators implementing control actions.
This uncertainty is a consequence of random disturbances under the assumption of their uniform
distribution over known intervals.

With each implementation a corresponding trajectory arises from random perturbations, and in
the aggregate – an ensemble of trajectories. Thus, there arises a set of values of target functionals
in the control problem. For each functional, the probabilistic description is given in the form of
corresponding probability density functions. To construct these functions, the previously obtained
representation of the Cauchy operator of the system under consideration is used. The proposed
probabilistic description allows one to find their standard characteristics, including expectation and
variance, as well as the entire possible range of values. The results are constructive in nature and
allow for effective computer implementation.

2 Description of the problem
Fix a finite segment [0, T ] ⊂ R. Denote by Ln = Ln[0, T ] the space of summable functions v :

[0, T ] → Rn with the norm ∥v∥Ln =
T∫
0

|v(s)|n ds, where | · |n stands for a norm in Rn; Lr
2 = Lr

2[0, T ]

is the space of square summable functions v : [0, T ] → Rr with the inner product ⟨u, v⟩ =
T∫
0

u′(s) ·

v(s) ds (( · )′ stands for transposition); ACn = ACn[0, T ] is the space of absolutely continuous
functions x : [0, T ] → Rn with the norm ∥x∥ACn = |x(0)|n + ∥ẋ∥Ln . Next we fix the set J =
{t0, t1, . . . , tµ}, 0 = t0 < t1 < · · · < tµ = T and denote by FDν(µ) = FDν{t0, t1, . . . , tµ} the space
of functions of discrete argument z : J → Rν with the norm

∥z∥FDν(µ) =

µ∑
i=0

|z(ti)|ν .

We consider the continuous-discrete system with discrete memory

ẋ(t) =
∑

j: tj<t

Aj(t)x(tj) +
∑

j: tj<t

Bj(t)z(tj) + (Fu)(t), t ∈ [0, T ], (2.1)

z(ti) =
∑
j<i

Dijx(tj) +
∑
j<i

Hijz(tj) + (Gu)(ti), i = 1, . . . , µ. (2.2)
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Here the columns of (n × n)-matrix Aj and (n × ν)-matrix Bj belong to Ln; Dij and Hij are
constant matrices of dimension (ν × n) and (ν × ν), respectively; F : Lr

2 → Ln, G : Lr
2 → FDν(µ)

are linear bounded Volterra [1] operators. Discreteness of the memory to all operators acting onto
the state variable in (2.1), (2.2) is defined by their construction.

For the system under control (2.1), (2.2) with a given initial state

x(0) = α, z(0) = δ (2.3)

we consider the control problem with the aim of control given by the equality

ℓ(x, z) = β ∈ RN , (2.4)

where ℓ : ACn × FDν(µ) → RN is a linear bounded vector-functional.
Conditions of the solvability to the problem (2.1), (2.2) within the class of programmed control

are obtained for the case of unconstrained control and for the case of point-wise polyhedral con-
straints [2,4,7,8]. Here we study the question on the impact of random disturbances of operators F
and G onto the values of the target vector-functional ℓ(x, z) when the control is known. Without
loss of generality we suppose the initial position of the system (2.1), (2.2) to be zero: α = 0, δ = 0.

Define the form of disturbances in the action of the operators F and G:

(Fu)(t) = (F0u)(t) + ∆F · u(t), t ∈ [0, T ],

(Gu)(tj) = (G0u)(tj) + ∆Gj ·
tj∫
0

u(s) ds, j = 1, . . . , µ.

Here ∆F and ∆Gj are matrices of dimension n × r and ν × r, respectively, with the elements
∆F ik and ∆Gik

j being random values distributed uniformly on the segments [aik, bik] and [aikj , b
ik
j ],

respectively (we write for short ∆F ik ∼ U ik and ∆Gik
j ∼ U ik

j ). The operators F0 and G0 are
assumed to be acting with no disturbances.

In [9], a component-by-component probabilistic description is obtained for the components of
x(t) and z(tj). This description is given in the form of a set of probability density functions
parametrized by the current time. To construct these functions, the previously obtained represen-
tation of the Cauchy operator of the system under consideration is used.

The system (2.1), (2.2) is a particular case of the general continuous-discrete system considered
in [5]. Theorem 1 [5] gives the presentation to solution of (2.1), (2.2) with zero initial values:(

x
z

)
= C

(
Fu
Gu

)
=

(
C11 C12
C21 C22

)(
Fu
Gu

)
, (2.5)

where z = col (z(t1), . . . , z(tµ), C is the Cauchy operator with block components Cij , i, j = 1, 2.
As applied to the case under consideration, the explicit representation of Cij in the terms of

matrix parameters of (2.1), (2.2) is obtained in [6]. In the sequel, we use the components

(C11f)(t) =
t∫

0

C11(t, s)f(s) ds, (C12g)(t) =
t∫

0

∑
j: tj<t

C12(tj , s)g(tj) ds, t ∈ [0, T ],

Ci
21f =

ti∫
0

∑
j<i

Ci
21(tj , s)f(s) ds, Ci

22g =
∑
j≤i

Ci
22(j)g(tj), i = 1, . . . , µ.

Here the upper index in notations Ci
22 and Ci

22 stands for the number of a ν-column in a column
from Rνµ.
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Each component of the solution (x, z) includes the determined term x0i (t), z0i (tj) correspondingly
to operators F0 and G0 and the random term ξi(t), ηi(tj) that corresponds to matrices ∆F and
∆Gj :

xi(t) = x0i (t) + ξi(t), zi(tj) = z0i (tj) + ηi(tj).

Thus for ℓx = col (ℓ1(x, z), . . . , ℓN (x, z)) we have

ℓi(x, z) = ℓi(x
0, z0) + ℓi(ξ, η),

and we are aimed at the description of the distribution to random values λi ≡ ℓi(ξ, η).
Let us recall the general form of ℓ : ACn × FDν(µ) → RN :

ℓ(x, z) = Ψx(0) +

T∫
0

Φ(s)ẋ(s) ds+

µ∑
j=0

Γjz(tj),

covering various special cases of target vector-functionals such as multipoint, integral and many
others.

Due to (2.5), we have

ξi(t) =
n∑

ℓ=1

r∑
k=1

11θiℓk(t)∆F
ℓk +

∑
j: tj<t

ν∑
ℓ=1

r∑
k=1

12θijℓk(t)∆G
ℓk
j (2.6)

and

ηi(tj) =

n∑
m=1

r∑
k=1

21θijmk∆F
mk +

ν∑
m=1

r∑
k=1

µ∑
ℓ=1

22θijℓmk∆G
mk
ℓ , (2.7)

where matrices 11θij , 12θij , 21θij , 22θij are defined in [9].
In the way described in [9] we rewrite (2.6), (2.7) in the form

ξi(t) =
N∑
q=1

φi
q(t) · (bq − aq) · cq + σi(t), σi(t) =

N∑
q=1

φi
q(t) · aq

and

ηi(tj) =
N∑
q=1

ψi
q(tj) · (bq − aq) · cq + ωi(tj), ωi(tj) =

N∑
q=1

ψi
q(tj) · aq,

where N = n · r + ν · µ · r.
In the sequel, we will use the component-wise representation of the target vector-functional ℓ:

ℓi(x, z) =
1ℓi(x) +

2ℓi(z) =

n∑
j=1

1ℓji (xj) +

ν∑
j=1

µ∑
k=0

2ℓji (zj(tk)).

Hence it follows that

λi = ℓi(ξ, η) =
N∑
q=1

κq
i · (bq − aq) · cq + γi, (2.8)

where

κq
i =

n∑
j=1

1ℓji (φ
j
q) +

ν∑
j=1

µ∑
k=0

2ℓjki (ψj
q(tk)), γi =

n∑
j=1

1ℓji (σj) +
ν∑

j=1

µ∑
k=0

2ℓjki (ωi
j(tk)). (2.9)
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3 Main result
For any y1 ∈ R, we define in RN−1 the polyhedral set Mi(y1):

Mi(y1) =
{
(y2, . . . , yN )′ ∈ RN−1 : 0 ≤ yq ≤ 1, q = 2, . . . , N ;

1

κ1
i · (b1 − a1)

· y1 − 1 ≤
N∑
q=2

κq
i · (bq − aq)

κ1
i · (b1 − a1)

· yq ≤
1

κ1
i · (b1 − a1)

· y1
}
.

Theorem. Let κq
i , i = 1, . . . , n, q = 1, . . . , N , and γi, i = 1, . . . , n, be defined by equalities (2.9),

and κ1
i ̸= 0. Then the probability density function fλi

(y1) of the random variable (2.8) is defined
by the equality

fλi
(y1) =

VN−1[Mi(y1 − γ1)]

|κ1
i | · (b1 − a1)

,

where VN−1[M] is the Lebesgue measure of a set M ⊂ RN−1.
Emphasize in conclusion that this result allows to find a segment Ii of all possible values for

each component of the target vector-functional and calculate the probability P (λi ∈ Ji) for any
subset Ji ⊂ Ii. This can be useful when studying control problems with a given target set (see, for
instance, [3] and the references therein).
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We study the stability of the invariant toroidal manifold of one class, the linear extension of
a dynamical system on a torus. The result is used to study the question of the existence of an
invariant manifold of a nonlinear system of differential equations.

In the direct product of an m-dimensional torus Tm and Euclidean space Rn we consider a
system of differential equations

dφ

dt
= a(φ),

dx

dt
= P (φ)x, (1)

where φ = col(φ1, . . . , φm), x = col(x1, . . . , xn), a(φ), P (φ) are, respectively, vector and matrix
functions continuous and 2π-periodic in each component φj (j = 1, . . . ,m) and defined on the m-
dimensional torus Tm. Assume that the function a(φ) satisfies the Lipschitz condition with respect
to φ, a constant L, i.e. for any two points φ′, φ′′ ∈ Tm we have

∥a(φ′)− a(φ′′)∥ ≤ L∥φ′ − φ′′∥. (2)

We establish sufficient conditions for the asymptotic stability of the trivial torus of system
(1) and use these results for the investigation of nonlinear system of differential equations more
complicated than system (1) and defined in the direct product Tm ×Rn.

In what follows, we need a generalization of the Wazewski inequality [2]. By φt(φ) we denote
the solution of the first equation in system (1) and consider a system of equation

dx

dt
= P (φt(φ))x (2)

for x. According to the Wazewski theorem [2], any solution xt(t0, φ, x0), xt0(t0, φ, x0) = x0 of this
system admits

∥x0∥e

t∫
t0

λ(φs(φ)) ds

≤ ∥xt(t0, φ, x0)∥ ≤ ∥x0∥e

t∫
t0

Λ(φs(φ)) ds

, (3)

where λ(φ) and Λ(φ) are, respectively, the maximum and minimum eigenvalues of the symmetric
matrix

P̂ (φ) =
1

2

(
P (φ) + P T (φ)

)
,

P T (φ) is the matrix transposed with respect to the matrix P (φ).
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Inequality (3) yields the estimate

∥x0∥eλ(t−t0) ≤ ∥xt(t0, φ, x0)∥ ≤ ∥x0∥eΛ(t−t0), t ≥ t0,

where
λ = min

φ∈Tm

λ(φ), Λ = max
φ∈Tm

Λ(φ).

On the basic of this estimate, we can make the following conclusion: If the matrix P (φ) in
system (1) is such that Λ < 0, than the nontrivial torus of this system is exponentially stable
because the matricant Ωt

t0(φ) of system (2) admits the estimate

∥Ωt
t0(φ)∥ ≤ Ke−γ(t−t0), t ≥ t0, (4)

φ ∈ Tm, K ≥ 1, γ > 0.
We now show that a similar conclusion concerning the exponential stability of the trivial torus

of the system of equations (1) can be made under weaker conditions imposed on the matrix P (φ).
Recall [5] that a point φ ∈ Tm of the dynamical system on a torus

dφ

dt
= a(φ) (5)

is called wandering if there exist its neighborhood U(φ) and a positive number T such that

U(φ) ∩ φt(U(φ)) = ∅ for t ≥ T.

By W we denote the set of wandering points and by Ω = Tm \W we denote the set of nonwan-
dering points. The set W of wandering points is invariant and open because, together with φ, all
points of the neighborhood U(φ) are wandering.

In view of the compactness of the torus Tm, the set of nonwandering point Ω is a nonempty
closed invariant set.

It is clear that Ω is also a compact set as a closed set on the torus.
As shown in [5], any solution of system (5) eventually approaches the set of nonwandering

points. More precisely, for any ε > 0, every phase point φt(φ) lies outside the ε-neihghborhood
Uε(Ω) of the set Ω only for a finite time interval not larger than T (ε).

To prove the theorem presented below, we use the property of nonwandering points.

Theorem 1. If the matrix P (φ) in the system of equations (1) such that the maximum eigenvalue
Λ(φ) of the symetric matrix P̂ (φ) is negative on the set Ω of nonwandering points of the dynamical
system (5), then the trivial torus of system (1) is exponentially stable.

Proof. We fix sufficiently small ε-neighborhood Uε(Ω) of the set Ω. Since Λ(φ) < 0 for all φ ∈ Ω and
Ω is closed compact set, one can find a sufficiently small positive number ε0 such that Λ(φ) < −γ(ε)
for any 0 ≤ ε ≤ ε0, Λ(φ) < −γ(ε) and all φ ∈ Uε(Ω), where γ(ε) is a positive monotonically
nonincreasing function of the parameter ε such that γ(ε) → γ(0) as ε → 0, where

−γ(0) = max
φ∈Ω

Λ(φ).

If φt(φ) is nonwandering trajectory, then, for any solution from inequality (3), we get the
following estimate:

∥xt(t0, φ, x0)∥ ≤ ∥x0∥e−γ(0)(t−t0), t ≥ t0, φ ∈ Ω.
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If φt(φ) is a wandering trajectory, then one can find a positive number T (ε) such that the time
of stay of this trajectory outside the set Uε(Ω) is not greater than T (ε). By using inequality (3),
we obtain

∥xt(t0, φ, x0)∥ ≤ ∥x0∥eΛT (ε) · e−γ(ε)(t−t0), t ≥ t0, φ ∈ W.

Hence, under the conditions of the theorem, any solution xt(t0, φ, x0) of system (2) exponentially
approaches zero as t → ∞ for any φ ∈ Tm. Therefore, the matricant Ωt

t0(φ) of the system admits
an estimate of the form (4), which completes the proof of the theorem.

We now present one more class of system (1) for which the trivial torus is asymptotically stable.

Theorem 2. If the matrix function P (φ) in the system of equations (1) satisfies the condition

⟨P (φ)x, x⟩ ≤ γ(φ)⟨x, x⟩

for all φ ∈ Tm and x ∈ Rn, where γ(φ) is a function continuous and 2π-periodic in each component
φj (j = 1, . . . , n) and negative on the set Ω of nonwandering points of the dynamical system (5),
then the trivial torus of the original system (1) is asymptotically stable.

Proof. For any solution xt(t0, φ, x0) of system (2), we obtain:

d

dt
∥xt(t0, φ, x0)∥2 =

d

dt

〈
xt(t0, φ, x0), xt(t0, φ, x0)

〉
= 2

〈
P (φt(φ))xt(t0, φ, x0), xt(t0, φ, x0)

〉
≤ 2γ(φt(φ))∥xt(t0, φ, x0)∥2.

Integrating the last inequality, we find

∥xt(t0, φ, x0)∥ ≤ e

t∫
t0

γ(φS(φ)) dS

∥x0∥, t ≥ t0, φ ∈ Tm.

Reasoning as in the proof of the previous theorem, we conclude that the exponential stability
of the trivial torus of the original system follows from the last inequality.

To prove that the invariant torus is stable (unstable), we can use the direct Lyapunov method.
We now present a theorem that partially supplements the result of classical investigations in this
field presented in the monographs [3, 7].

Theorem 3. Suppose that, for the system of equations (1), there exists a positive-definite quadratic
form

V (φ, x) = ⟨S(φ)x, x⟩

with symmetric matrix S(φ) such that its total derivative composed with the use of the original
system (1), i.e., the quadratic form

d

dt
V (φ, x) = ⟨Ŝ(φ)x, x⟩,

where
Ŝ(φ) =

∂S(φ)

∂φ
· a(φ) + S(φ)P (φ) + P T (φ)S(φ),

is negative-definite of the set Ω of nonwandering points of system (5). Then the trivial torus of the
system of equations (1) is exponentially stable.
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It is natural to study the problem of existence of the quadratic form V (φ, x), atisfying the
conditions of Theorem 3.

We now present an example in which this form exists and makes it possible to state that the
trivial torus of system (1) is exponentially stable.

Theorem 4. Suppose that P (φ) in system (1) is a constant matrix P (φ) = P0 on the set Ω. If the
real parts of the eigenvalues Reλj(P0) of the matrix P0 are negative, then there exists a positive-
definite quadratic form v(φ, x) = ⟨S(φ)x, x⟩ with symmetric matrix S(φ) such that its derivative,
according to system (1), is a negative-definite quadratic form on the set Ω, and, hence, the trivial
torus of system (1) is asymptotically stable.
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1 Introduction

The contribution is a continuation of the research started in [7] and [2]. We deal with periodic prob-
lems for nonlinear distributional (measure) differential equations with a parameter. In particular,
we are interested in the existence of the bifurcation points for such problems.

The concept of distributional differential equations arose more or less together with the concept
of systems with impulses. In general, they can describe some physical or biological problems, such
as heartbeat, blood flow, pulse/frequency modulated systems, biological neural networks and/or
models arising in control theory in which measures can be suitable controls, cf. e.g. [10]. Of
course, differential equations with measures appear also in non-smooth mechanics. In these models,
derivatives are understood in the sense of distributions and the solutions are generally discontinuous,
but not too bad from another point of view, i.e. they are usually regulated or have bounded
variation. For some early results, see e.g. [1] and references therein.

In this article we consider distributional differential systems of the form

Dx = f(λ, x, t) + g(x, t) · Dh, (1.1)

where D stands for the distributional derivatives and λ is a parameter. To this end, a handful tool
are generalized ordinary differential equations (we write simply GODEs) introduced by Kurzweil
in [3,4] in the middle of 1950’s. Since then, many authors have dealt with the potentialities of this
theory (see e.g. [5,9,11] and references therein). In particular, measure differential equations of the
form (1.1) as well as equations with impulses acting in fixed times are their special cases.

Throughout G[0, T ] is the Banach space of regulated functions (functions having all onesided
limits) with values in Rn and equipped with the supremal norm and BV [0, T ] ⊂ G[0, T ] is the space
of functions with bounded variation on [0, T ]. As usual, we denote ∆+x(s) = x(s+) − x(s) and
∆−x(t) = x(t)− x(t−) for x ∈ G[0, T ]. Our basic assumptions are the following:

Assumptions 1.1. T ∈ (0,∞), Ω ⊂ Rn and Λ ⊂ R are open sets, f : Λ × Ω × [0, T ] → Rn,
g : Ω × [0, T ] → Rn, h : R → R has a bounded variation on [0, T ] and is left-continuous on [0, T ],
while h(0−) = h(0) and h(T+) = h(T ).
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2 Distributional differential equations

By distributions we understand linear continuous n-vector functionals on the topological vector
space Dn of functions φ : R → Rn possessing for any j ∈ N ∪ {0} a derivative φ(j) of the order j
which is continuous on R and such that φ(j)(t) = 0 if t ̸∈ (0, T ). The space Dn is endowed by the
topology in which the sequence φk ∈ D tends to φ0 ∈ D in D if and only if lim

k
∥φ(j)

k − φ
(j)
0 ∥∞ = 0

for all non negative integers j.
The space of n-vector distributions on [0, T ] (dual of Dn) is denoted by Dn∗. Instead of D1∗

we write D∗. Given a distribution f ∈ Dn∗ and a test function φ ∈ Dn, ⟨f, φ⟩ is the value of
the functional f on φ. Of course, reasonable real valued point functions are naturally included
into distributions. The zero distribution 0 ∈ Dn∗ on [0, T ] can be identified with an arbitrary
measurable function vanishing a.e. on [0, T ]. Obviously, if f ∈ G[0, T ] is left-continuous on (0, T ],
then f = 0 ∈ D∗n if and only if f(t) ≡ 0.

For h ∈ D∗, the symbol Dh stands for its distributional derivative, i.e.

Dh : φ ∈ D → ⟨Dh,φ⟩ = −⟨h, φ′⟩ for all φ ∈ D.

If f ∈ AC[0, T ], then Df = f ′, of course.
The term g(t, x) · Dh on the right hand side of (1.1) is a symbol for the distributional product

of the function g̃x : t ∈ [0, T ] → g(x(t), t) and the derivative Dh of h. As in the Schwartz setting no
general rule how to define a product of an arbitrary couple of distributions is available, some more
explanation is desirable. In text-books one can find the trivial examples. However, the product
occurring in (1.1) is not covered by these cases. Fortunately, it turned out that, for this aim, a good
tool is provided by the Kurzweil–Stieltjes integral. The following definition has been introduced
in [12] and was used in [9, Section 8.4], as well.

Definition 2.1. If g : [0, T ] → Rn and h : [0, T ] → R are such that the Kurzweil–Stieltjes integral
T∫
0

g dh exists, then the product g · Dh is the distributional derivative of the indefinite integral

H(t) =
t∫
0

g dh, i.e. g · Dh = DH.

The multiplication operation given by Definition 2.1 has all the usual properties excepting that
(cf. [12, Remark 4.1] and [9, Theorem 6.4.2]) the expected formula D(f · g) = Df · g + f · Dg
does not hold, in general. More precisely, if f and g are regulated and at least one of them has a
bounded variation, then

D(f · g) = Df · g + f · Dg +Df · ∆+g̃ −∆−f̃ · Dg,

where

∆+g̃(t) =

{
∆+g(t) if t < T,

0 if t = T
and ∆−f̃(t) =

{
0 if t = 0,

∆−f(t) if t > 0.

Now, we can define solutions of (1.1) as follows:

Definition 2.2. A couple (x, λ) ∈ G[0, T ]×Λ is a solution of (1.1) if x is left-continuous on (0, T ],
x(t) ∈ Ω for all t ∈ [0, T ], the distributional product g̃x · Dh of the function g̃x : t ∈ [0, T ] →
g(x(t), t) ∈ Rn with Dh has a sense and the equality (1.1) is satisfied in the distributional sense,
i.e. ⟨Dx,φ⟩ = ⟨f̃λ,x, φ⟩+ ⟨g̃x · Dh,φ⟩ for all φ ∈ Dn, where f̃λ,x : t ∈ [0, T ] → f(λ, x(t), t) ∈ Rn.
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Together with (1.1) let us consider two related equations

x(t) = x(0) +

t∫
0

f(λ, x(s), s) ds+

t∫
0

g(x(s), s) dh(s) for t ∈ [0, T ] (2.1)

and (GODE)

x(t) = x(0) +

t∫
t0

DF (x(τ), t)
(

i.e. dx

dτ
= DF (x, t)

)
. (2.2)

We have

Theorem 2.1. Let Assumptions 1.1 and

f(λ, · , · ) is Carathéodory on Ω×[0, T ] for any λ ∈ Λ,

g( · , t) is continuous on Ω for t∈ [0, T ] and there is mh such that:
T∫
0

mh(s) d[var
s
0h] < ∞ and ∥g(x, t)∥≤mh(t) for (λ, x, t) ∈ Λ×Ω×[0, T ].

hold and let

F (λ, x, t) =

t∫
0

f(λ, x, s) ds+

t∫
0

g(x, s) dh(s) for (λ, x, t) ∈ Λ× Ω× [0, T ].

Then the equations (1.1), (2.1) and (2.2) are equivalent.

3 Bifurcations
In the rest we assume that the assumptions of Theorem 2.1 are satisfied. Let us consider the
equivalent periodic problems

Dx = f(λ, x, t) + g(x, t) · Dh, x(0) = x(T ) (3.1)

and

x(t) = x(T ) +

t∫
0

f(λ, x(s), s) ds+

t∫
0

g(x(s), s) dh(s).

Put

Φ(λ, x)(t) = x(T ) +

t∫
0

f(λ, x(s), s) ds+

t∫
0

g(x(s), s) dh(s) for λ ∈ λ, x ∈ B(x0, ρ), t ∈ [0, T ].

Then Φ(λ, · ) maps B(x0, ρ) into G[0, T ] for any λ∈Λ and (3.1) is equivalent to finding couples
(x, λ) such that x = Φ(λ, x).

Definition 3.1. Let x0 be a solution of (3.1) for all λ ∈ Λ and let ρ > 0 be such that x(t) ∈ Ω
for all t ∈ [0, T ] whenever ∥x − x0∥ < ρ. Then (λ0, x0) a bifurcation point of (3.1) if every its
neighborhood in Λ×G[0, T ] contains a solution (λ, x) such that x ̸= x0.
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Next result is taken from [2].

Theorem 3.1. In addition to the assumptions of Theorem 2.1, let x0 and ρ be as in Defini-
tion 3.1 and

there is a γ : [0, T ] → R nondecreasing and such that for any ε > 0 there is a δ > 0

such that
∥∥∥∥

t∫
s

[
f(λ2, x, r)− f(λ1, x, r)

]
dr

∥∥∥∥ < ε|γ(t)− γ(s)|

for x ∈ Ω, t, s ∈ [0, T ] and λ1, λ2 ∈ Λ such that |λ1 − λ2| < δ

and let [λ∗
1, λ

∗
2] ⊂ Λ be such that x0 is an isolated fixed point of both Φ(λ∗

1, · ) and Φ(λ∗
2, · ) and

degLS
(
Id− Φ(λ∗

1, · ), B(x0, ρ), 0
)
̸= degLS

(
Id− Φ(λ∗

2, · ), B(x0, ρ), 0
)
.

Then there is λ0 ∈ [λ∗
1, λ

∗
2] such that (x0, λ0) is a bifurcation point of (3.1).

The conditions necessary for the pair (λ0, x9) ∈ Λ × Ω to be a bifurcation point of (3.1) are
presented in our upcoming paper [8]. One of the equivalent formulations of the main result reads
as follows:

Theorem 3.2. Besides the assumptions of Theorem 3.1, let us assume also

• f has a total differential f ′
x(λ, x, t) for (λ, x, t) ∈ Λ×Ω×[0, T ] fulfilling Carathéodory conditions

withe respect to (x, t);

• g has a total differential g′x(x, t) for (x, t) ∈ Ω × [0, T ] which is bounded on Ω × [0, T ] and
continuous with respect to x ∈ Ω for each t ∈ [0, T ] and there is Θh : [0, T ] → R such that

T∫
0

Θh(s) d [var
s
0 h] < ∞ and ∥g′x(x, t)∥ ≤ Θh(t);

• there is a nondecreasing function γ : [0, T ] → R such that for any ε > 0 there is a δ > 0 such
that ∥∥∥∥

t∫
s

[
f ′
x(λ1, x, r)− f ′

x(λ2, y, r)
]
dr +

t∫
s

[
g′x(x, r)− g′x(y, r)

]
dh(r)

∥∥∥∥ < ε|γ(t)− γ(s)|,

whenever |λ1−λ2|+ ∥x− y∥ < δ.

Then the couple (λ0, x9) ∈ Λ × Ω is not a bifurcation point for (3.1) whenever the homogeneous
system

z(r) = z(T )−
t∫

0

f ′
x(λ0, x0, τ)z(τ) dτ −

t∫
0

g′x(x0, τ)z(τ) dh(τ), r ∈ [0, T ]

have only trivial solutions.

Remark. It is worth noting that in the proofs of theorems 3.1 and 3.2, reformulating the given
problem to GODEs proved useful.
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Example 3.1. Consider the periodic impulse problem x′ = λ b(t)x + c(t)x2, ∆+x(12) = x2(12),

x(0) = x(1) with b, c ∈ L1[0, 1] and
1∫
0

b ds ̸= 0. One can verify that, by Theorem 3.1, the couple

(0, 0) is its bifurcation point, while by Theorem 3.2 the couple (λ, 0) can not be a bifurcation point
whenever λ ̸= 0.
Example 3.2. One can verify that u0(t) = (2 + cos t)3 solves for all λ ∈ R the impulsive problem
related to the Liebau valveless pumping phenomena

u′′ = λ
(
(2 + cos t)u′ + 3(sin t)u

)
+ (6.6− 5.7 cos t− 9 cos2 t)u1/3 − 0.3u2/3,

∆+u′
(π
2

)
=

(
64− u2

(π
2

))
, u(0) = u(2π), u′(0) = u′(2π).

By Theorem 3.2 and using the result by A. Lomtatidze (cf. [6, Theorem 11.1 and Remark 0.5]) and
with some help of the software system Mathematica we can conclude that the couple (x0, 0) can
not be its bifurcation point.
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The problem of symmetric operators being self-adjoint is one of the main problems in theory
of differential operators and serves as the basis for the analysis of their spectral properties and
scattering problems. Investigation of this problem for Sturm–Liouville and Schrödinger operators in
the space L2(R) is inspired by the problems of mathematical physics and has numerous applications.
The results of that obtained for this problem in the case of regular coefficients are rather complete.

We introduce and investigate symmetric operators L0 associated in the complex Hilbert space
L2(R) with a formal differential expression

l[u] := −(pu′)′ + qu+ i((ru)′ + ru′) (1)

under minimal conditions on the regularity of the coefficients. They are assumed to satisfy condi-
tions

q = Q′ + s;
1√
|p|

,
Q√
|p|

,
r√
|p|

∈ L2
loc(R), s ∈ L1

loc(R), (2)

where the derivative of the function Q is understood in the sense of distributions, and all functions
p, Q, r, s are real-valued. In particular, the coefficients q and r′ may be Radon measures on R,
while function p may be discontinuous. Our main results are two sufficient conditions on coefficients
p which provide that the operator L0 being semi-bounded implies it being self-adjoint.

If these coefficients of (1) are regular enough, then the mapping

L00 : u 7→ l[u], u ∈ C∞
0 (R)

defines a densely defined in the complex Hilbert space L2(R) preminimal symmetric operator L00.
Here naturally arises question whether the closure of this operator L0 := (L00)

∼ is self-adjoint. A
large number of papers are devoted to this problem (see, e.g. the references in [12]). For instance,
Hartman [5] and Rellich [10] established that if operator L00 is bounded from below and

r ≡ 0, 0 < p ∈ C2(R), q is piecewise continuous on R,

and function p satisfies the condition

∞∫
0

p−1/2(t) dt =

0∫
−∞

p−1/2(t) dt = ∞, (3)

then the minimal operator L0 corresponding to l is self-adjoint. In the paper [11], the conditions
on the regularity of the coefficients of l were weakened:

r ≡ 0, 0 < p is locally Lipschitz, q ∈ L2
loc(R).
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Another sufficient condition for the operator L0 to be self-adjoint was obtained in [1]. It may be
written in the form

‖p‖L∞(−ρ,−ρ/2), ‖p‖L∞(ρ/2,ρ) = O(ρ2), ρ → ∞. (4)

Here the coefficients of (1) satisfy the conditions

r ≡ 0, 0 < p ∈ W 1
2,loc(R), q ∈ L1

loc(R).

Examples show that conditions (3) and (4) are independent (see [1]).
We propose to consider the operators generated by the formal differential expression (1) as

quasi-differential operators, which are defined applying compositions of differential operators with
locally summable coefficients. These operators are defined using the Shin–Zettl matrix function
specifically chosen to correspond to the coefficients of l (see [2–4,13]).

In our case it has the form

A(x) =


Q+ ir

p

1

p

−Q2 + r2

p
+ s −Q− ir

p


and, due to our assumptions, belongs to the class L1

loc(R,C2).
It can be used to define corresponding quasi-derivatives as follows:

u[0] := u,

u[1] := pu′ − (Q+ ir)u,

u[2] := (u[1])′ +
Q− ir

p
u[1] +

(Q2 + r2

p
− s

)
u.

A formal differential expression (1) may now be defined as quasi-differential:

l[u] := −u[2], Dom(l) :=
{
u : R → C | u, u[1] ∈ ACloc(R)

}
.

This definition is motivated by the fact that

〈−u[2], φ〉 =
⟨
− (pu′)′ + qu+ i((ru)′ + ru′), φ

⟩
∀φ ∈ C∞

0 (R)

in the sense of distributions.
We define for the quasi-differential expression l the operators L and L00 as:

Lu := l[u], Dom(L) :=
{
u ∈ L2(R) | u, u[1] ∈ ACloc(R), l[u] ∈ L2(R)

}
,

L00u := Lu, Dom(L00) :=
{
u ∈ Dom(L) | suppu b R

}
.

The operators L and L00 are maximal and preminimal operators for expression l, respectively.
Their definitions coincide with the classical ones if the coefficients l are sufficiently smooth. It can
be shown that the operator L00 is densely defined in L2(R) and is symmetric.

Let us formulate the main results of the paper in the form of two theorems. The first of them
is a natural generalization of the above-mentioned result of Hartman and Rellich.

Theorem 1. Let the coefficients of the formal differential expression (1) satisfy the assumptions
(2) and also

(i) p ∈ W 1
2,loc(R), p > 0,
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(ii)
0∫

−∞

p−1/2(t) dt =

∞∫
0

p−1/2(t) dt = ∞.

Then, if operator L00 is bounded from below, then it is essentially self-adjoint and L∗
00 = L = L∗.

For the case p ≡ 1, r ≡ 0, Theorem 1 was previously established in [6].
In the second theorem, additional conditions on the coefficient p are imposed not on the entire

axis, but only on a sequence of finite intervals. However, outside of these intervals the function p
may vanish and be discontinuous.

Theorem 2. Suppose the assumptions (2) are satisfied and the operator L00 is bounded from below.
Suppose the sequence of intervals ∆n := [an, bn] exists such that

−∞ < an < bn < ∞, bn → −∞, n → −∞, an → ∞, n → ∞,

where the coefficients p satisfy the additional conditions:

(i) pn := p|∆n ∈ W 1
2 (∆n), pn > 0;

(ii) ∃C > 0 : pn(x) ≤ C|∆n|2, n ∈ Z, where |∆n| is the length of interval ∆n.

Then operator L00 is essentially self-adjoint and L∗
00 = L = L∗.

For the case p ≡ 1, r ≡ 0, necessary and sufficient conditions for semi-boundedness of operator
L00 were obtained in [8].

The proofs of Theorem 1 and Theorem 2 can be found in [9].

References
[1] S. Clark and F. Gesztesy, On Povzner–Wienholtz-type self-adjointness results for matrix-valued

Sturm-Liouville operators. Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 4, 747–758.
[2] J. Eckhardt, F. Gesztesy, R. Nichols and G. Teschl, Weyl–Titchmarsh theory for Sturm–

Liouville operators with distributional potentials. Opuscula Math. 33 (2013), no. 3, 467–563.
[3] A. Goriunov and V. Mikhailets, Regularization of singular Sturm–Liouville equations. Methods

Funct. Anal. Topology 16 (2010), no. 2, 120–130.
[4] A. Goriunov, V. Mikhailets and K. Pankrashkin, Formally self-adjoint quasi-differential ope-

rators and boundary-value problems. Electron. J. Differential Equations 2013, no. 101, 16 pp.
[5] Ph. Hartman, Differential equations with non-oscillatory eigenfunctions. Duke Math. J. 15

(1948), 697–709.
[6] V. Mikhailets and V. Molyboga, Remarks on Schrödinger operators with singular matrix

potentials. Methods Funct. Anal. Topology 19 (2013), no. 2, 161–167.
[7] V. Mikhailets and V. Molyboga, Schrödinger operators with measure-valued potentials: semi-

boundedness and spectrum. Methods Funct. Anal. Topology 24 (2018), no. 3, 240–254.
[8] V. Mikhailets, A. Murach and V. Novikov, Localization principles for Schrödinger operator

with a singular matrix potential. Methods Funct. Anal. Topology 23 (2017), no. 4, 367–377.
[9] V. Mikhailets, A. Goriunov and V. Molyboga, Povzner–Wienholtz-type theorems for Sturm–

Liouville operators with singular coefficients. Complex Anal. Oper. Theory 16 (2022), no. 8,
Paper no. 113, 13 pp.



REPORTS OF QUALITDE, Volume 2, 2023 145

[10] F. Rellich, Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung. (German)
Math. Ann. 122 (1951), 343–368.

[11] H. Stetkaer-Hansen, A generalization of a theorem of Wienholtz concerning essential selfad-
jointness of singular elliptic operators. Math. Scand. 19 (1966), 108–112.

[12] A. Zettl, Sturm–Liouville Theory. Mathematical Surveys and Monographs, 121. American
Mathematical Society, Providence, RI, 2005.

[13] A. Zettl, Formally self-adjoint quasi-differential operators. Rocky Mountain J. Math. 5 (1975),
453–474.



146 S. Mukhigulashvili

Pointwise Conditions of Solvability of a Periodic Problem
for Higher Order Functional Differential Equations

Sulkhan Mukhigulashvili
Institute of Mathematics, Academy of Sciences of the Czech Republic

Brno, Czech Republic
E-mail: smukhig@gmail.com

Abstract
On the interval I := [a, b], we study the higher order linear functional-differential equation

u(n)(t) = ℓ(u)(t) + q(t), (1)

where q ∈ L(I;R), ℓ : C(I;R) → L∞(I;R) is a linear bounded operator, under the periodic type boundary
conditions

u(i)(ω)− u(i)(0) = ci (i = 0, . . . , n− 1). (2)

The obtained pointwise efficient sufficient conditions of unique solvability of our problem are non-impro-
vable and moreover, for such important classes of functional-differential equations as differential or integro-
differential equations with deviated argument are these conditions take into account the effect of argument
deviation and generalize some previously known results (see, for example, [1–3]). Also on the basis of the
mentioned results for the linear problem, there are proved non-improvable efficient sufficient conditions of
solvability of the periodic type problem for the nonlinear functional differential equation

u(n)(t) = F (u)(t) + f0(t) for t ∈ [0, ω], (3)

where F : C(I;R) → L(I;R) is a Carathéodory’s local class operator and f0 ∈ L(I,R).

Main results

Let m ∈ N , σ ∈ {−1, 1}, and consider the numbers defined by the following equations

γn,σ =


1 for n = 2m, σ = (−1)m,

0 for n = 2m, σ = (−1)m+1,

0 for n = 2m+ 1, σ ∈ {−1, 1}.

Let also for an arbitrary x ∈ I = [0, ω] and a monotone linear operator ℓ, the nonnegative functions
∆x ∈ C(I;R+

0 ), and ρℓ ∈ L∞(I;R+
0 ) be defined by the equalities

∆x(t) = |t− x|, ρℓ(t) =
2π

ω

(
ℓ(1)(t)

ω∫
0

ℓ(∆s)(s) ds
)1/2

.

Then the following theorem is true.
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Theorem 1. Let σ ∈ {−1, 1}, and the monotone linear operator ℓ : C(I;R) → L∞(I;R) satisfy
the conditions

σ

ω∫
0

ℓ(1)(s) ds > 0,

and
γn,σ|ℓ(1)(t)|+ ρℓ(t) <

(2π
ω

)n
for t ∈ I.

Then problem (1), (2) is uniquely solvable.

Due to the definition of the constant γn,σ from our theorem it immediately follows

Corollary 1. Let m ∈ N , ℓ : C(I;R) → L∞(I;R) be the monotone linear operator, and

n = 2m+ 1 and
ω∫

0

ℓ(1)(s) ds ̸= 0,

or

n = 2m and (−1)m+1

ω∫
0

ℓ(1)(s) ds > 0.

Then the condition

ℓ(1)(t)

ω∫
0

ℓ(∆s)(s) ds <
(2π
ω

)2(n−1)
for t ∈ I

guarantees the unique solvability of problem (1), (2).

Now assume that ℓ(u)(t) = p(t)u(t), where p ∈ L∞(I;R), i.e. we assume that (1) is the ordinary
differential equation

u(n)(t) = p(t)u(t) + q(t) for t ∈ I. (4)

Then it is clear that ℓ(∆t)(t) = p(t)|t− t| ≡ 0, and therefore from our theorem it follows:

Corollary 2. Let σ ∈ {−1, 1}, and a constant sign function p ∈ L∞(I;R) satisfy the conditions

σ

ω∫
0

p(s) ds > 0 and γn,σ|p(t)| <
(2π
ω

)n
for t ∈ I.

Then problem (4), (2) is uniquely solvable.

But this proposition is I. Kiguradze and T. Kusano’s theorem from [1], and there was shown
that (2πω )n is optimal.

Now we consider the nonlinear problem (3), (2). To formulate the main theorem we need the
following definition.

Definition. Let σ ∈ {−1, 1}. We will say that the operator h : C(I;R) → L∞(I;R) belongs to
the class Kσ,n

ω if h is a nonnegative linear operator,

h(1)(t) ̸≡ 0,

and for an arbitrary α ∈ L∞(I;R) such that

α ̸≡ 0, 0 ≤ α(t) ≤ 1 for t ∈ I,
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the homogeneous problem

v(n)(t) = σα(t)h(v)(t) for t ∈ I,

v(i)(ω)− v(i)(0) = 0 (i = 0, . . . , n− 1)

has no nontrivial solution.

Note that in the given theorem the function η : I×R+
0 → R+

0 is summable in the first argument,
nondecreasing in the second one, and satisfies the condition

lim
ρ→+∞

1

ρ

ω∫
0

η(s, ρ) ds = 0.

Theorem 2. Let the linear nonnegative operator h : C(I;R) → L∞(I;R), the function g0 ∈
L(I;R), and numbers σ ∈ {−1, 1}, r0 > 0 be such that the condition

g0(t) ≤ σF (x)(t) signh(x)(t) ≤ |h(x)(t)|+ η(t, ||x||Cn−1) if ||x||Cn−1 ≥ r0,

on I, and the inclusion
h ∈ Kσ,n

ω

hold. Moreover, let g ∈ L(I;R) be such that on I the condition

g(t) ≤ σF (x)(t) signh(x)(t) if min
t∈I

|x(t)| ≥ r0

is fulfilled, and
ω∫

0

g(s) ds−
∣∣∣∣

ω∫
0

f0(s) ds

∣∣∣∣ ≥ |cn−1|.

Then problem (3), (2) has at least one solution.

Now we give a corollary of our theorem for the following ordinary differential equation

u′′(t) = f(t, x(τ(t))) + f0(t) for t ∈ I. (5)

Corollary 3. Let numbers σ ∈ {−1, 1}, r0 > 0, functions h ∈ L∞(I;R), g0 ∈ L(I;R), and a
measurable function τ : I → I be such that conditions

γσ,nh(t) + ρh(t) <
(2π
ω

)n
for t ∈ I,

g0(t) ≤ σf(t, x) signx ≤ h(t)|x|+ η(t, |x|) for |x| ≥ r0, t ∈ I,

and
ω∫

0

g0(s) ds−
∣∣∣∣

ω∫
0

f0(s) ds

∣∣∣∣ ≥ |cn−1|

hold. Then problem (5), (2) has at least one solution.
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1 Introduction

In paper [3] V. I. Mironenko introduced the concept of a reflecting function to study the qualitative
behavior of solutions of ODE systems. This function is now known as the Mironenko reflecting
function (MRF) and has been successfully used to solve many problems in qualitative theory of
ODE [1,4–7,13,14].

ODE systems with the same MRF have the same translation operator (see [2]) on any interval
(−β, β), and 2ω-periodic ODE systems with the same MRF have the same mapping on the pe-
riod [−ω, ω] (Poincare mapping). Therefore, some qualitative properties (such as the existence of
periodic solutions and their stability) of solutions of ODE systems that have the same MRF are
common. Thus, the study of the qualitative properties of solutions of a whole class of systems with
the same MRF can be reduced to the corresponding study of a simple (well-studied) system. In such
cases, non-autonomous systems can be studied on the basis of corresponding autonomous systems.
In other words, some (well-studied) autonomous system can be transformed into a non-autonomous
one with the help of special perturbations that preserve the MRF, which are called admissible per-
turbations. This provides new chances for researchers when modeling real-world processes and
exploring novel (unstudied) ODE systems.

To search for admissible perturbations, we can use Theorem 1 from [5], which we formulate
here in the form of the following lemma.

Lemma 1.1. If the vector functions ∆i(t, x) (i = 1,m, where m ∈ N or m = ∞) satisfy the identity

∂∆i(t, x)

∂t
+

∂∆i(t, x)

∂x
X(t, x)− ∂X(t, x)

∂x
∆i(t, x) ≡ 0, (1.1)

then the systems ẋ = X(t, x) and ẋ = X(t, x) +
m∑
i=1

αi(t)∆i(t, x) have identical MRF, where t ∈ R,

x = (x1, x2, . . . , xn) ∈ D ⊂ Rn, αi(t) – arbitrary continuous scalar odd functions.

As initial systems, we consider well-known autonomous polynomial ODE systems (i.e. systems
whose right-hand side X(t, x) ≡ X(x), as well as the components of X(x) are polynomials). The
search for admissible perturbations is carried out by the method of undetermined coefficients, using
identity (1.1) for vector functions ∆i(t, x) ≡ ∆i(x) whose components are polynomials. That is, in
this case, identity (1.1) is transformed to the form

∂∆i(x)

∂x
X(x) ≡ ∂X(x)

∂x
∆i(x).
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2 Examples of admissibly perturbed systems and their studies
Using Lemma 1.1 and the approach outlined above, for the Hindmarsh–Rose neuron model

ẋ = y − ax3 + bx2 − z + I,

ẏ = c− dx2 − y,

ż = r(s(x− α)− z),

x, y, z, a, b, c, d, I, r, s, α ∈ R

admissible perturbations are obtained in [11]. Numerical examples show that admissibly perturbed
systems have similar bifurcation diagrams, periodic attractors and strange attractor as the original
Hindmarsh–Rose system.

In [10] admissible perturbations are obtained for the Lorentz-84 system, which models the
general circulation of the atmosphere in mid-latitudes:

ẋ = −ax− y2 − z2 + aF,

ẏ = −y + xy − bxz +G,

ż = −z + bxy + xz,

a, b, F,G, x, y, z ∈ R. (2.1)

In particular, it has been proven that the MRF of system (2.1) and the system

ẋ = (−ax− y2 − z2 + aF )(1 + α1(t)),

ẏ = (−y + xy − bxz)(1 + α1(t))− zα2(t),

ż = (−z + bxy + xz)(1 + α1(t)) + yα2(t)

(2.2)

coincide if G = 0 and αi(t) are arbitrary continuous scalar odd functions (i = 1, 2). The results of
the analysis of the qualitative behavior of solutions of the original system (2.1) are extended to the
perturbed system (2.2) and the following theorem is proved.

Theorem 2.1. Suppose that αi = αi(t) (i = 1, 2) are continuous functions (not necessarily odd).
Then the following statements hold:

(1) if a > 0, F < 1 and α1(t) > c > −1 ∀ t > 0 (c is a constant), then the equilibrium solution
x = F , y = z = 0 of system (2.2) is globally exponentially stable (exponentially stable in the
large);

(2) if a > 0, F 6 1 and α1(t) > −1 ∀ t > 0, then the equilibrium solution x = F , y = z = 0 of
system (2.2) is globally uniformly Lipschitz stable;

(3) if a > 0, F > 1 and α1(t) > c > −1 ∀ t > 0 (c is a constant), then the equilibrium solution
x = F , y = z = 0 of system (2.2) is Lyapunov unstable.

For the Langford system, which models turbulence in a liquid, presented in the form (more
often found in Russian-language literature):

ẋ = (2a− 1)x− y + xz,

ẏ = x+ (2a− 1)y + yz,

ż = −az − (x2 + y2 + z2),

a, x, y, z ∈ R,

admissible perturbations are obtained in [8]. And for the Langford system, presented in the form:

ẋ = (a− 1)x− y + xz,

ẏ = x+ (a− 1)y + yz,

ż = az − (x2 + y2 + z2),

a, x, y, z ∈ R,
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admissible perturbations are obtained in [9].
In [12], admissible perturbations are obtained for the generalized Langford system

ẋ = ax+ by + xz,

ẏ = cx+ dy + yz,

ż = ez − (x2 + y2 + z2),

a, b, c, d, e, x, y, z ∈ R. (2.3)

In particular, it has been proven that the MRF of system (2.3) and the system

ẋ = (ax+ by + xz)(1 + α1(t)) + x(a+ z)α2(t) + yα3(t)

− y(x2 + y2)(4az + x2 + y2 + 2z2)α4(t),

ẏ = (−bx+ ay + yz)(1 + α1(t)) + y(a+ z)α2(t)− xα3(t)

+ x(x2 + y2)(4az + x2 + y2 + 2z2)α4(t),

ż = −(2az + x2 + y2 + z2)(1 + α1(t) + α2(t))

(2.4)

coincide if c = −b, d = a, e = −2a and αi(t) are arbitrary continuous scalar odd functions (i = 1, 4).
The obtained result allows us to extend the results of the analysis of the qualitative behavior of
solutions of the original system (2.3) to solutions of the perturbed system (2.4). In particular, the
following statements are proven in [12].

Theorem 2.2. Let αi(t) (i = 1, 4) be scalar continuous functions (not necessarily odd).

(1) If a = 0 and α1(t) + α2(t) > l > −1 ∀ t > 0 (l = const), then the solution x = y = z = 0 of
system (2.4) is Lyapunov unstable.

(2) If b = 0 and the function α3(t) + a4α4(t) is ω-periodic and ∃ k ∈ Z such that
ω∫
0

(α3(s) +

a4α4(s)) ds = 2πk, then the solution

x(t) = a sin

(
bt+

t∫
0

(bα1(s) + α3(s) + a4α4(s)) ds

)
,

y(t) = a cos

(
bt+

t∫
0

(bα1(s) + α3(s) + a4α4(s)) ds

)
,

z(t) = −a

(2.5)

of system (2.4) is ω-periodic (the period is not necessarily minimal).

(3) If b ̸= 0 and the function bα1(t)+α3(t)+a4α4(t) is 2π/ |b|-periodic and
2π/b∫
0

(bα1(s)+α3(s)+

a4α4(s)) ds = 0, then solution (2.5) of system (2.4) is 2π/|b|-periodic (the period is not
necessarily minimal).

Theorem 2.3. Let αi(t) (i = 1, 4) be scalar twice continuously differentiable odd functions, b ̸= 0

and the right side of system (2.4) be 2π/|b|-periodic in t. If ∃ k ∈ Z such that
−2π/|b|∫

0

(bα1(s) +

α3(s) + a4α4(s)) ds = 2πk, then solution (2.5) of system (2.4) is 2π/|b|-periodic.
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Let a > 0, and let fi : [a,+∞[× ]0,+∞[→ ]0,+∞[ (i = 1, 2) be continuous functions satisfying
the local Lipschitz condition in the second argument.

We consider the differential system

u′1 = f1(t, u2), u′2 = f2(t, u1). (1)

A solution to that system in an arbitrary interval I ⊂ [a,+∞[ is sought on the set of two-
dimensional continuously differentiable vector functions with positive components.

A solution (u1, u2) to system (1) defined on some infinite interval [t0,+∞[⊂ [a,+∞[ is said to
be proper. Obviously, the components of an arbitrary proper solution (u1, u2) to system (1) are
increasing functions and satisfy one of the following two conditions:

lim
t→+∞

ui(t) = +∞ (i = 1, 2);

lim
t→+∞

uk(t) < +∞ for some k ∈ {1, 2}.

In the first case the above mentioned solution is said to be rapidly growing, while in the
second case it is said to be slowly growing.

A solution (u1, u2) to system (1) defined on some finite interval [t0, t1[⊂ [a,+∞[ is said to be
blow-up if

lim
t→t1

(
u1(t) + u2(t)

)
= +∞.

By a solution to the system under consideration we mean a solution that is maximally extended
to the right. Thus every solution to that system is either proper or blow-up.

A particular case of system (1) is the second order differential equation

u′′ = f(t, u) (2)

with a continuous right-hand side f : [a,+∞[× ]0,+∞[→ ]0,+∞[ .
A solution to that equation in an arbitrary interval I ⊂ [a,+∞[ is sought on the set of twice

continuously differentiable functions, satisfying the inequalities

u(t) > 0, u′(t) ≥ 0,

and by a solution it is meant a maximally extended to the right solution.
According to the above definitions, a solution to equation (2) defined on some infinite interval

[t0,+∞[⊂ [a,+∞[ is said to be proper. A proper solution u to equation (2) is said to be rapidly
growing if

lim
t→+∞

u′(t) = +∞,
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and it is said to be slowly growing otherwise. As for the solution to equation (2) defined on some
finite interval [t0, t1[⊂ [a,+∞[, it is said to be blow-up if

lim
t→t1

u(t) = +∞.

R. Emden and R. H. Fowler have investigated in detail asymptotic properties of proper monotone
solutions to the frequently occurring in applications differential equation

u′′ = tσuλ.

The results obtained by them are reflected in the monograph by R. Bellman ([2], Ch. VII). The
theory of monotone solutions to the Emden–Fowler type differential equation with general coefficient

u′′ = p(t)uλ

was constructed by I. T. Kiguradze [8] (see, also [13], Ch. V). The asymptotic theory of nonoscilla-
tory and oscillatory solutions to two-dimensional differential systems was constructed by J. D. Mir-
zov [15].

The foundations of the asymptotic theory of monotone solutions to an arbitrary order differential
equations were laid back in the late sixties of the last century and it still remains relevant (see
[1, 3–7,9–14] and the references therein).

The results on the existence of rapidly growing solutions and on their asymptotic estimates
given in the present work are obtained based on the method proposed by I. T. Kiguradze and
G. G. Kvinikadze [14].

We investigate the case, where

f1(t, x) ≥ f1(s, y) for t ≥ s, x ≥ y, f2(t, x) ≥ f2(s, y) for t ≤ s, x ≥ y. (3)

Consequently, the function f1 is assumed to be nondecreasing in both arguments, while the function
f2 is assumed to be nonincreasing in first argument and nondecreasing in the second argument.

Everywhere below we use the following notation.

f0i(t, x) =

x∫
0

fi(t, y) dy for t ≥ a, x > y;

φ0 is a function defined from the equality

f01(t, φ0(t, x)) = x for t ≥ a, x > 0;

φ(t, x) = f1
(
t, φ0(t, f02(t, x))

)
t ≥ a, x > 0.

Theorem 1. Let conditions (3) be fulfilled and let the differential equation

v′ = φ(t, v) (4)

have no proper solution. Then any solution to the differential system (1) is blow-up.

Theorem 2. Let conditions (3) be fulfilled and let the differential equation (4) have a unique
solution, satisfying the limit condition

lim
t→+∞

v(t) = +∞. (5)
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Then for any t0 ∈ [a,+∞[ there exists a positive number γ such that if

c1 ≥ 0, c2 ≥ γ, (6)

then the solution (u1, u2) to the differential system (1), satisfying the initial conditions

u1(t0) = c1, u2(t0) = c2, (7)

is blow-up.

Theorem 3. Let along with (3) the condition

+∞∫
a

f2

(
t, x+

t∫
a

f1(s, x) ds

)
dt < +∞ for x > 0

hold. If, moreover, problem (4), (5) has a unique solution v, then the differential system (1) along
with two-parametric set of slowly growing solutions has a one-parametric set of rapidly growing
solutions whose first component for large t0 admits the estimate

u1(t) ≤ v(t) for t ≥ t0.

As an example, we consider the Emden–Fowler type differential system

u′1 = p1(t)u
λ1
2 , u′2 = p2(t)u

λ2
1 , (8)

where λ1 and λ2 are positive numbers such that

λ1λ2 > 1,

p1 : [a,+∞[→ ]0,+∞[ is a nondecreasing continuous function, and p2 : [a,+∞[→ ]0,+∞[ is a
nonincreasing continuous function.

System (8) can be obtained from system (1) in the case, where

f1(t, x) = p1(t)x
λ1 , f2(t, x) = p2(t)x

λ2 .

In that case the above defined functions f0i (i = 1, 2), φ0, φ have the form

f0i(t, x) =
1

1 + λ1
pi(t)x

1+λi (i = 1, 2),

φ0(t, x) =
(1 + λ1

p1(t)

) 1
1+λ1 x

1
1+λ1 ,

φ(t, x) =
(1 + λ1

1 + λ2

) λ1
1+λ2

(
p1(t)p

λ1
2 (t)

) 1
1+λ1 x

λ1+λ1λ2
1+λ1 .

Thus Theorems 1–3 yield the following statements.

Corollary 1. If
+∞∫
a

(
p1(t)p

λ1
2 (t)

) 1
1+λ1 dt = +∞,

then any solution to system (8) is blow-up.
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Corollary 2. If
+∞∫
a

(
p1(t)p

λ1
2 (t)

) 1
1+λ1 dt < +∞, (9)

then for any t0 ∈ [a,+∞[ there exists a positive number γ such that if inequalities (6) are satisfied,
then the solution to problem (8), (7) is blow-up.

Corollary 3. Let along with (9) the condition

+∞∫
a

p2(t)

( t∫
a

p1(s) ds

)λ2

dt < +∞

hold. Then the differential system (8) along with two-parametric set of slowly growing solutions
has a one-parametric set of rapidly growing solutions whose first component for large t0 admits the
estimate

u1(t) ≤ ℓ

( +∞∫
t

(
p1(s)p

λ1
2 (s)

) 1
1+λ1 ds

)− 1
λ

for t ≥ t0,

where
λ =

λ1λ2 − 1

1 + λ1
, ℓ = (1 + λ1)

− 1
1+λ1 (1 + λ2)

− λ1
1+λ1 (λ1λ2 − 1)−1.
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1 Introduction
In this paper, we investigate the conditions of the existence and the general appearance of locally
invariant curves of a perturbed differential equation by a random Wiener process of the ”white
noise” type in the form of Ito. Random perturbations occur along the phase velocity vector of the
corresponding undisturbed differential (deterministic) equation. In [3], the conditions for the exis-
tence and uniqueness of solutions of stochastic differential equations are presented. Construction
and study of the phase portrait of stochastic Ito differential equations with a degenerate diffu-
sion matrix was carried out in [4]. For nonlinear stochastic Ito differential equations with Markov
switching, some sufficient conditions for invariance, stochastic stability, stochastic asymptotic sta-
bility, and instability of invariant sets of equations are obtained in [5]. There is the significant
literature devoted to the invariant sets of ordinary differential equations, functional differential
equations, and stochastic differential equations, and we here mention [2, 5, 7]. The conditions for
the existence of bounded solutions of linear and nonlinear pulsed systems were obtained in [1, 6].

In this paper, the conditions under which the locally phase trajectories of the corresponding
deterministic differential equation can be locally invariant curves of the perturbed equation are
established. A model example describing a certain class of problems related to the study of random
harmonic oscillators is given. The conducted researches in an example illustrate application of
the received results for construction and the analysis of stochastic differential equations of Ito.The
obtained conditions make it possible to build classes of stochastic differential equations for which
the given set is invariant.

2 Setting of the problem and the main results
Consider a system of stochastic differential equations

dξ(t) = a(ξ(t) dt+ b(ξ(t) dw(t), ξ(0) = x0, (2.1)

where a(x) = (a1(x), a2(x)), b(x) = (b1(x), b2(x)) – continuous-differential functions in a certain
open domain D ⊂ R2. Denote by w(t) the one-dimensional Wiener process defined in probabilistic
space (Ω, F, P ), x = (x1, x2) – point in D, x0 ∈ D. It is known [3] that under the given conditions
for coefficients of the equation, there is a continuous with probability 1 unique strong solution ξ(t)
for all t ≥ 0 of this equation.

Denote by ΓD(G) the set of the form Γ = {x : G(x) = C} ⊂ D, where C is a definite constant,
G(x) – a twice continuous-differential function in D and has no special points for all x ∈ Γ.

If for all x0 ∈ ΓD(G)

P
{

sup
0≤t≤τD(x0)

∣∣G(ξ(t))−G(x0)
∣∣ = 0

}
= 1,
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where τD(x0) is the moment of the first exit of the solution from the domain D, then the curve
ΓD(G) is a locally invariant curve of the corresponding equation (2.1).

Consider the problem of investigating the conditions under which the locally phase trajectories of
a deterministic differential equation can be locally invariant curves of the corresponding perturbed
equation by a random Wiener process of the “white noise” type in the Ito form.

According to [4], the locally invariant curve ΓD(G) of equation (2.1) coincides with the locally
phase trajectory of equation

dx(t

dt
= b(x(t)), x(0) = x0. (2.2)

That is G(x(t)) = G(x0), for all for t ≥ 0 whom x(t) ∈ D. Since, (∇G(x), b(x)) = 0, then the
phase velocity vector b(x) of equation (2.2) is directed along the tangent to the phase trajectory
G(x) = G(x0) at point x. Thus we obtained the following theorem.

Theorem 2.1. Locally phase trajectory ΓD(G) of equation (2.2), in which |b(x)| > 0 for all x ∈
ΓD(G), there can be a local phase curve of equation (2.1), only when the random perturbation
of equation (2.2) by Ito-shaped “white noise” processes occurs along the phase velocity vector of
equation (2.2).

We obtain the following result for the case (∇G(x), a(x)) = 0 for all x ∈ ΓD(G).
Since we have a given function G(x), it follows from the necessary condition [4] that

b(x) =
(
−G

′
x2
(x)g(x), G

′
x1
(x)g(x)

)
for each x ∈ ΓD(G), where g(x) is an arbitrary continuous-differential function.

Therefore, from the necessary condition of local invariance [4], we have equality Q(x)g2(x) = 0
for all x ∈ ΓD(G), where

Q(x) = G
′′
x1x1

(x)(G
′
x2
)2(x) +G

′′
x2x2

(x)(G
′
x1
)2(x)− 2G

′′
x1x2

(x)G
′
x1
(x)G

′
x2
(x).

Theorem 2.2. The locally phase trajectory ΓD(G) of equation (2.2) can be a locally invariant
curve of equation (2.1) in which (∇G(x), a(x)) = 0 for all x ∈ ΓD(G), only when the curve consists
only of equilibrium points of equation (2.2) (|b(x)| = 0), and points where the curvature of the curve
ΓD(G) is zero.

Theorem 2.3. Let the curves ΓD(G) be the set of locally phase trajectories of equation (2.2) for
all C. If the curvature of the curve ΓD(G) is not equal to zero at the point x0 ∈ D, |b(x0)| > 0 and
(∇G(x), a(x)) = 0 for all x ∈ D, then the solution of equation (2.2) instantly deviates from ΓD(G)
the direction of convexity of the curve at the point x0.

In order for the solution of equation (2.2) to remain on the phase trajectory ΓD(G) in case of
random perturbations along the phase velocity vector b(x) by the Ito-shaped “white noise” process,
it is necessary to additionally introduce the corresponding control vector a(x) in equation (2.2).

3 Application to the perturbed limit cycle
For qualitative analysis of stochastic differential equations, it is convenient to use the polar coor-
dinate system x1 = r cosϕ, x2 = r cosϕ.

Therefore, we present an auxiliary statement about the connection of the stochastic differential
equation (2.1) with the corresponding stochastic differential equation in polar coordinates. We
consider a system of stochastic differential equations in the domain D = {r > 0,−∞ < ϕ < +∞}:{

dr(t) = a1(r, ϕ) dt+ b1(r, ϕ) dw(t)

dϕ(t) = a2(r, ϕ) dt+ b2(r, ϕ) dw(t),
(3.1)
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where the flow σ-algebra Ft and the one-dimensional process w(t) are the same as in equation (2.1).
The coefficients of system are such that there is one strong solution of the system until the moment
of the first exit τD from the domain D.

Process ξ(t) = (r(t) cosϕ(t), r(t) sinϕ(t)) for t < τD is the solution of the stochastic equation
(2.1).

If for t < τD there is a unique solution of equation (2.1), then for t < τD, r(t) is the radial
characteristic of the process ξ(t) and ϕ(t) is the angular characteristic of the process ξ(t).

Consider equation (2.1) with the corresponding coefficients:

a1(x) = x2q(x) + αx1(1− |x|2), a2(x) = −x1q(x) + αx2(1− |x|2),
b1 = x2g, b2 = −x1g,

where α, g are constants, q(x) is arbitrary continuous-differential function in R2 and |x| =
√
x21 + x22.

The given system describes a certain class of harmonic oscillators that depend on the parameters
α, g.

In this case, the phase trajectories of the corresponding deterministic equation (2.2) are circles
x21 + x22 = C, where C > 0 and equilibrium point (0; 0).

To study the phase “picture” of this equation (2.1), consider the processη(t) = G(ξ(t)), where
G(x) = x21 + x22.

According to the formula Ito we obtain the equation:

dη(t) = η(t)
[
2α(1− η(t)) + g2

]
dt, η(0) = |x0|2. (3.2)

The invariant set of equation (2.1) is the circle |x|2 = 1 + g2(2α)−1 at α > 0 and at 2α < −g2.
If 2α = −g2 or α = 0, then the invariant set will be a point (0; 0).
If −g2 < 2α < 0, then there are no invariant curves for this equation (2.1).
Suppose α = 0, then from equation (3.2) we have

η(t) = |x0|2egt2

for all t ≥ 0 and therefore η(t) → ∞ for t → ∞.
If α ̸= 0 and |x0| > 0, then with probability 1 for all t ≥ 0 it holds

η(t) =
1 + g2(2α)−1

1 + C0 exp{−(2α+ g2)t}
, (3.3)

where
C0 = |x0|−2

[
1 + g2(2α)−1 − |x0|2

]
.

From the analysis of solution (3.3), we have the following:

(a) If 1+g2(2α)−1 > 0, then |x0|2 = 1+g2(2α)−1 is an invariant circle and |ξ(t)|2 = 1+g2(2α)−1

with a probability of 1 for all t ≥ 0.

If in this case α > 0 and |x0|2 ̸= 1 + g2(2α)−1, then |ξ(t)|2 → 1 + g2(2α)−1 with a probability
of 1 at t → ∞ (stability with probability 1).

If α < 0 and |x0|2 < 1 + g2(2α)−1, then |ξ(t)|2 → 0 with a probability of 1 at t → ∞.
If α < 0 and |x0|2 > 1 + g2(2α)−1, then |ξ(t)|2 → ∞ with a probability of 1 at t → t0, where

t0 =
− ln(−1/C0)

2 + g2
.

(b) If 1 + g2(2α)−1 < 0 and α < 0, then there are no invariant curves.
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The equation for the process argument ξ(t) = (r(t) cosϕ(t), r(t) sinϕ(t)) in this case takes the
form

dϕ(t) = −q1(η(t), ϕ(t)) dt− g dw(t), (3.4)

where
q1(η(t), ϕ(t)) = q

(√
η(t) cosϕ(t),

√
η(t) sinϕ(t)

)
.

The systems of equations (3.2), (3.4) provide opportunities for a more detailed study of the
behavior of the solution ξ(t).

In particular, if q(x) = q0, where q0 - constant, then w(t)
t → 0 with probability of 1 at t → ∞

and ϕ(t)
t → −q0 with probability of 1 at t → ∞.

In the case of q(x) = 0, process ϕ(t) has a normal distributionN(ϕ(0), g2t) for all t > 0.
Note that when |x0| = 1 + g2(2α)−1 we obtain η(t) = (2α)−1g2 with probability of 1 for all

t > 0.
Equation (3.4) will turn into an equation with one variable ϕ(t), which greatly simplifies its

study.
By changing the values of the parameters of this example, we can obtain various models of

stochastic oscillators.
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Abstract
For nonlinear differential equations with impulsive perturbations, a general assertion about the existence
of bounded solutions is given. With the help of this assertion necessary and sufficient conditions for the
existence and uniqueness of bounded solutions of analogous linear equations are obtained. The equations
are studied using the method of local linear approximation of nonlinear equations.

1 Problem statement
A method of studying nonlinear differential equations with impulse disturbances is proposed, which
uses the approximation of these equations by linear systems on spheres with radii dependent on
these systems. In the case of linear momentum equations, this method provides not only sufficient,
but also necessary conditions for the existence and unity of bounded solutions of the corresponding
equations.

2 Basic notation, spaces and problem
Let R and Z – the set of all real and integer numbers, respectively, T = {tn : n ∈ Z} – the set
of real numbers for which tn < tn+1 for all n ∈ Z, lim

n→−∞
tn = −∞ and lim

n→+∞
tn = +∞, E – a

finite-dimensional Banach space over the field of real or complex numbers with norm ∥ · ∥E and
L(X,Y ) – Banach space of linear continuous operators A : X → Y with the norm

∥A∥L(X,Y ) = sup
∥x∥X=1

∥Ax∥Y ,

where X and Y – Banach spaces with norms ∥ · ∥X and ∥ · ∥Y in accordance.
Denote through C0(R,T, E) the Banach space of defined, continuous and bounded on R \ T

functions x = x(t) with values in E, for each of which there are finite boundaries lim
t→tn−0

x(t) =

x(tn − 0) and lim
t→tn+0

x(t) = x(tn + 0) to all n ∈ Z, with the norm

∥x∥C0(R,T,E) = sup
t∈R\T

∥x(t)∥E ,
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through C1(R,T, E) denote the Banach space of continuously differentiable by R \ T functions
x ∈ C0(R,T, E), for each of which dx/dt ∈ C0(R,T, E), with the norm

∥x∥C1(R,T,E) = max
{

sup
t∈R\T

∥x(t)∥E , sup
t∈R\T

∥∥∥dx(t)
dt

∥∥∥
E

}
,

and through M(Z, E) – Banach space of two-way sequences g = gn elements gn, n ∈ Z, space E
with the norm

∥g∥M(Z,E) = sup
n∈Z

∥gn∥E .

Let us also consider the Banach space Ci(R,T, E) ×M(Z, E), where i ∈ {0, 1}, pairs (x, g) of
elements x = x(t) ∈ Ci(R,T, E) and g = gn ∈ M(Z, E) with the norm

∥(x, g)∥Ci(R,T,E)×M(Z,E) = max
{
∥x∥Ci(R,T,E), ∥g∥M(Z,E)

}
.

For function jumps x ∈ C0(R,T, E) in the points of the set T similarly, as in [2, 3], we will use
the notation

∆x|t=tn = x(tn + 0)− x(tn − 0), n ∈ Z.
Consider a continuous display F : (R \ T) × E → E, for which for every bounded set M ⊂ E

a function F (t, x) is bounded on the set (R \ T) × M and this function is uniformly continuous
on every bounded subset N plural (R \ T) × E. Also consider continuous mappings Gn : E → E,
n ∈ Z, for which sup

n∈Z, x∈M
∥Gn(x)∥E < +∞ for every bounded set M ⊂ E.

From the conditions that satisfy F , it follows that for each x ∈ C0(R,T, E) the function
y = F (t, x(t)) is an element of the space C0(R,T, E).

We will be interested in the conditions under which the system of differential equations with
an impulse disturbance is fulfilled

dx(t)

dt
+ F (t, x(t)) = f(t), t ∈ R \ T,

∆x|t=tn +Gn(x(tn − 0)) = gn, n ∈ Z
(2.1)

for each function f = f(t) ∈ C0(R,T, E) and sequences g = gn ∈ M(Z, E) will have at least one
solution x = x(t) ∈ C1(R,T, E).

The left part of the system of equations (2.1) operator is generated I , that works with
C1(R,T, E) in C0(R,T, E) × M(Z, E). If you use operators L : C1(R,T, E) → C0(R,T, E) and
D : C0(R,T, E) → M(Z, E), which are defined by equalities

(Lx)(t) = dx(t)

dt
+ F (t, x(t)), t ∈ R \ T,

and
(Dx)n = ∆x

∣∣
t=tn

+Gn(x(tn − 0)), n ∈ Z,

then according to (2.1) operator I : C1(R,T, E) → C0(R,T, E)×M(Z, E) is given by the ratio
I x = (Lx,Dx), x ∈ C1(R,T, E).

Let R(I ) – set of operator values I , i.e. {I x : x ∈ C1(R,T, E)}.
System of equations (2.1) and the corresponding operator I in the general case are nonlinear

and clarification for system (2.1) conditions for the existence of bounded solutions for each function
f = f(t) ∈ C0(R,T, E) and sequencesg = gn ∈ M(Z, E) or similarly, finding out the conditions of
execution for the operatorI equality

R(I ) = C0(R,T, E)×M(Z, E)

are not trivial tasks.
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3 The main result
When finding out the conditions for the existence of limited solutions of system (2.1) we will use
the auxiliary linear systems with impulse disturbance of appearance

dx(t)

dt
+A(t)x(t) = f(t), t ∈ R \ T,

∆x
∣∣
t=tn

+Bnx(tn − 0) = gn, n ∈ Z,
(3.1)

coefficients A(t) and Bn of which in a certain sense (see the formulation of Theorem 3.1 and the
relation (3.5)) differ little on closed spheres of space E from F (t, · ) and Gn( · ) in accordance.

Let’s use a set of pairs (A,B) defined and continuous on R \ T functions A = A(t) with values
in L(E,E) and bilateral sequences B = Bn ∈ L(E,E), n ∈ Z, which are elements of spaces
C0(R,T, L(E,E)) and M(Z, L(E,E)) in accordance.

For a pair of (A,B) let’s match the linear continuous operator

L(A,B) : C
1(R,T, E) → C0(R,T, E)×M(Z, E),

which is given by the ratio

L(A,B)x = (L x,Dx), x ∈ C1(R,T, E), (3.2)

where
(L x)(t) =

dx(t)

dt
+A(t)x(t), t ∈ R \ T, (3.3)

and
(Dx)n = ∆x|t=tn +Bnx(tn − 0), n ∈ Z. (3.4)

Set of linear operators L(A,B) : C1(R,T, E) → C0(R,T, E) × M(Z, E), dependent on (A,B),
each of which is determined by the left part of system (3.1), i.e. ratios (3.2)–(3.4), and has an
inverse continuous operator L−1

(A,B) : C
0(R,T, E)×M(Z, E) → C1(R,T, E), denote by O.

Theorem 3.1 ([1]). Suppose for each number H > 0 there are such number r > 0 and L(A,B) ∈ O
that

sup
x∈B0[0,r]

max
{

sup
t∈R\T

∥F (t, x(t))−A(t)x(t)∥E , sup
n∈Z

∥Gn(x(tn − 0))−Bnx(tn − 0)∥E
}

≤ r∥L−1
(A,B)∥

−1
L(C0(R,T,E)×M(Z,E),C1(R,T,E))

−H. (3.5)

Then for each f ∈ C0(R,T, E) and g ∈ M(Z, E) the system of equations (2.1) has at least one
solution x ∈ C1(R,T, E).

Remark 3.1. In system (2.1) the reflection F (t, · ), t ∈ R \ T, and Gn( · ), n ∈ Z, may be non-
Lipschitz.

4 The case of linear impulse systems
Let’s fix an arbitrary function Q = Q(t) ∈ C0(R,T, L(E,E)) and a sequence

R = Rn ∈ M(Z, L(E,E)).
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Consider the corresponding system of linear differential equations with an impulse disturbance
dx(t)

dt
+Q(t)x(t) = f(t), t ∈ R \ T,

∆x
∣∣
t=tn

+Rnx(tn − 0) = gn, n ∈ Z,

where f = f(t) ∈ C0(R,T, E) and g = gn ∈ M(Z, E), and the linear differential operator L(Q,R) :
C1(R,T, E) → C0(R,T, E)×M(Z, E), which is given by the ratio

L(Q,R)x = (L1x,D1x), x ∈ C1(R,T, E),

where
(L1x)(t) =

dx(t)

dt
+Q(t)x(t), t ∈ R \ T,

and
(D1x)n = ∆x

∣∣
t=tn

+Rnx(tn − 0), n ∈ Z.

Let’s use Theorem 3.1 and operators L(A,B) ∈ O, which are determined by ratios (3.2)–(3.4).
The following two statements are true.

Theorem 4.1 ( [1]). For each number H > 0 there are such number r > 0 and the operator
L(A,B) ∈ O, for which

sup
x∈B0[0,r]

max
{

sup
t∈R\T

∥Q(t)x(t))−A(t)x(t)∥E , sup
n∈Z

∥Rnx(tn − 0)−Bnx(tn − 0)∥E
}

< r∥L−1
(A,B)∥

−1
L(C0(R,T,E)×M(Z,E),C1(R,T,E))

−H,

if and only if the linear operator L(Q,R) : C1(R,T, E) → C0(R,T, E) × M(Z, E) has an inverse
continuous operator.

Theorem 4.2 ( [1]). Operator L(Q,R) : C1(R,T, E) → C0(R,T, E) × M(Z, E) has an inverse
continuous operator if and only if the operator exists L(A,B) ∈ O, for which

sup
x∈B0[0,1]

max
{

sup
t∈R\T

∥Q(t)x(t))−A(t)x(t)∥E , sup
n∈Z

∥Rnx(tn − 0)−Bnx(tn − 0)∥E
}

< ∥L−1
(A,B)∥

−1
L(C0(R,T,E)×M(Z,E),C1(R,T,E))

.

5 Perturbations of linear impulse systems are small at infinity
Consider a system of differential equations with an impulse disturbance

dx(t)

dt
+A(t)x(t) = F (t, x(t)) + f(t), t ∈ R \ T,

∆x
∣∣
t=tn

+Bn(x(tn − 0)) = Gn(x(tn − 0)) + gn, n ∈ Z,
(5.1)

in which function A = A(t), f = f(t) and sequences B = Bn, g = gn, n ∈ Z are such as in system
(3.1), and non-linear mappings F (t, · ) : E → E, t ∈ R \ T, and Gn( · ) : E → E, n ∈ Z are such as
in system (2.1).
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We assume that the operator L(A,B) : C
1(R,T, E) → C0(R,T, E) ×M(Z, E), which is known

as the left part of system (3.1), has an inverse continuous operator L−1
(A,B) and

lim
r→+∞

r−1 sup
x∈B0[0,r]

max
{

sup
t∈R\T

∥F (t, x(t))∥E , sup
n∈Z

∥Gn(x(tn − 0)∥E
}

< ∥L−1
(A,B)∥

−1
L(C0(R,T,E)×M(Z,E),C1(R,T,E))

. (5.2)

A special case of Theorem 4.2 is

Theorem 5.1 ([1]). System of equations (5.1) for each (f, g) ∈ C0(R,T, E)×M(Z, E) has at least
one solution x ∈ C1(R,T, E).

Remark 5.1. Ratio (5.2) is performed if

sup
(t,x)∈R×E

∥F (t, x)∥E + sup
(n,x)∈Z×E

∥Gn(x)∥E < +∞.

Remark 5.2. Reflection F (t, · ) : E → E, t ∈ R \ T, and Gn( · ) : E → E, n ∈ Z, in system (5.1)
can be such that the relation (5.2) holds and

lim
r→+∞

r−1 sup
x∈B0[0,r]

max
{

sup
t∈R\T

∥F (t, x(t))∥E , sup
n∈Z

∥Gn(x(tn − 0))∥E
}
= +∞.

Remark 5.3. The method of local linear approximation in the theory of nonlinear differential,
difference, and differential functional equations is considered in [4].

Theorems 3.1, 4.1, 4.2, 5.1 are substantiated using the theory of c-continuous operators, the
elements of which are laid out in [1, 4].
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We consider the following stochastic functional-differential neutral equation on Hilbert space:

d(u(t)− g(ut)) = (f(ut) +Au) dt+ σ(ut) dW (t), t ≥ 0, (0.1)
u(t) = ϕ(t), t ∈ [−h, 0], (0.2)

where
- ut = u(t+ θ), θ ∈ [−h, 0];
- A – linear operator on separable Hilbert space H;
- W (t) – Q-Wiener process on separable Hilbert space K;
- u(t) – state process;
- f – functional from C([−h, 0],H) into H;
- σ – mapping from same space to special space of Hilbert–Smidt operators;
- ϕ : [−h, 0] → H – initial condition,

while existence and uniqueness of a mild solution of the given equation (0.1), (0.2) is known, weak
solutions is relatively undiscovered field.

Thus, we consider existence of weak solutions of equation (0.1), (0.2).

1 Preliminaries
Let’s assume that K and H are Hilbert spaces, and V , V ′ is such Banach spaces that

V ⊂ H = H ′ ⊂ V ′

is a Gelfand triple.
Let (Ω, F, P ) be a complete probability space equipped with a normal filtration {Ft; t ≥ 0}

generated by the Q-Wiener process W on (Ω, F, P ) with the linear bounded covariance operator
such that tr Q <∞.

We assume that there exist a complete ortonormal system ek in K and a sequence of nonnegative
real numbers λk such that Qek = λkek, k = 1, 2, . . . , and

∞∑
k=1

λk <∞.
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The Wiener process admits the expansion W (t) =
∞∑
k=1

λkβk(t)ek, where βk(t) are real valued Brow-

nian motions mutually independent on (Ω, F, P ).
Let U0 = Q

1
2 (U) and L2

0 = L2(U0,H) be the space of all Hilbert–Schmidt operators from U0 to
H with the inner product (Φ,Ψ)L2

0 = tr[ΦQΨ∗] and the norm ∥Φ∥L0
2
, respectively.

C := C([−h, 0];H) is the space of continuous mappings from [−h, 0] to H equipped with the
norm ∥u∥C = sup

θ∈[−h,0]
∥u(θ)∥, and LV

2 := L2((−h, 0);V ) is the space of V -valued mappings with the
norm

∥u∥2
V
:=

0∫
−h

∥u(t)∥2
V
dt.

2 Conditions on functions
To ensure existence and uniqueness of a solution, we have to impose additional conditions on
functions A, f , σ, g.
Conditions on A:

(A1) Domain of A - D(A) is dense in H such that A : V → V ′;

(A2) For any u, v ∈ V there exist α > 0:

|⟨Au, v⟩| ≤ α∥u∥V ∥v∥V ;

(A3) A satisfies the coercitivity condition: ∃β > 0, γ:

⟨Av, v⟩ ≤ −β∥v∥2
V
+ γ∥v∥2

V
, ∀ v ∈ V.

Conditions on g:

(G1) g are mapping from C ∩ L2
V

to H;

(G2) (Growth condition) ∃K > 0:

∥g(ϕ)∥2
V
≤ K(1 + ∥ϕ∥2

LV
2
), ∀ϕ ∈ LV

2 ;

(G3) (Lipshitz condition) ∃1/2 > L > 0:

∥g(ϕ)− g(ψ)∥V ≤ L∥ϕ(t)− ψ(t)∥V , ∀ t ∈ V.

Composite conditions:

(C1) f is a mapping from C ∩ L2
V

to H, σ is a mapping from C ∩ L2
V

to L0
2;

(C2) (Growth condition) There ∃K > 0, θ ≥ 1:

∥f(ϕ)∥V ≤ K

(
1 +

( 0∫
−h

∥ϕ(t)∥V dt

)θ

+ ∥ϕ∥θ
V

)

and
∥σ(ϕ)∥2L0

2
≤ K

(
1 + ∥ϕ∥2

C

)
∀ϕ ∈ C ∩ L2

V
.
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(C3) (Coercitivity condition) There ∃β > 0, λ, C1: ∀ϕ ∈ C ∩ L2
V

:

⟨Aϕ(0), ϕ(0)⟩+ ⟨f(ϕ), ϕ(0)⟩+ ∥σ(ϕ)∥2
LV
2
≤ −β∥ϕ(0)∥2

V
+ λ∥ϕ∥2

C
+ C1.

(C4) (Monotonicity condition) There ∃ δ > 0: ∀ϕ, ϕ1 ∈ C ∩ L2
V

:

2
⟨
A(ϕ(0)− ϕ1(0)), ϕ(0)− ϕ1(0)

⟩
+ 2

⟨
f(ϕ)− f(ϕ1), ϕ(0)− ϕ1(0)

⟩
+ ∥σ(ϕ)− σ(ϕ1∥2L0

2
≤ δ∥ϕ− ϕ1∥2C .

3 Main results
Definition. We call an Ft adapted random process (u(t)) ∈ V weak solution for equation (0.1),
(0.2) if:

(1) u(t) = ϕ(t), t ∈ [−h, 0];

(2) u ∈ L2(Ω× [0, T ], V );

(3) ∀ v ∈ V , t ∈ [0, T ]:

(u(t)− g(ut), v) = (ϕ− g(ϕ), v) +

t∫
0

(f(us) +Au, v) ds+

t∫
0

(σ(us), v) dW (s).

Theorem (Existence and uniqueness). Suppose that conditions (A1)–(A3), (G1)–(G3) and (C1)–
(C4) hold, then ∀ϕ ∈ C ∩ L2

V
equation (0.1), (0.2) has a unique weak solution on [0, T ] such

that
u ∈ C([0, T ]× Ω;H) ∩ L2([0, T ]× Ω;V ).

Moreover, the energy equation holds:

∥u− g(ut)∥2 = ∥ϕ− g(ϕ)∥2

+

t∫
0

⟨
Au(s) + f(us), u(s)

⟩
ds+

t∫
0

∥σ(us)∥2L0
2
ds+

t∫
0

⟨σ(us), u(s)⟩ dW (s).

Sketch of the proof:
Step 1: We consider projections of equation (0.1), (0.2) into sequence of finite-dimensional sub-
spaces which looks as follows:

d
(
un(t)− gn(unt )

)
=

(
fn(unt ) +Aun(t)

)
dt+ σn(unt ) dW

n(t), (3.1)
un(t) = ϕn(t), t ∈ [−h, 0], (3.2)

assuming that Pn is generated by {ek; k = 1, . . . , n} of H and P ′
n its restriction on V – projectors

of H and V correspondingly:

(1) An = P ′
nA;

(2) un(t) = P ′
nu(t);

(3) ϕn(t) = P ′
nϕ(t);
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(4) fn = Pnf ;

(5) gn = Png;

(6) σn = Pnσ.

Then prove that each of (3.1), (3.2) has exactly one solution.
Step 2: Then we create a priory estimate on solutions of projected equations, which looks as
follows:

E sup
t∈[0,t1]

(
∥un(t)∥2

V
+ ∥gnunt ∥2V

)
+ E

( t1∫
0

∥un(t)∥2
V
dt

)
≤ A

for some A > 0.
Those estimates are uniform (not dependant on dimension) and t1 depends only on prede-

fined coercitivity constants from (A3) and (C3), which implies that sequence of solutions are weak
compact, hence holds weakly converging subsequence and can be iteratively continued on further
intervals.
Step 3: After that we prove that we can make n→ ∞ in projected equations.

There we use the monotonicity condition and the growth conditions (G2) and (C2).
Additionally we prove that the energy equation holds, which implies existence and continuous

dependence on initial data.

Corollary (Continuous dependence on the initial data). Let the conditions of the theorem above
hold. Let ϕ and ϕ1 be initial data for the solutions u(t, ϕ) and u(t, ϕ1) of equation (0.1), (0.2).
Then there exist a constant C(T ) such that

E sup
t∈[0,T ]

(
∥ut(ϕ)− ut(ϕ1)∥2C

)
≤ C(T )∥ϕ− ϕ1∥2C .
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Abstract
We consider the problem of optimal control for a system of integro-differential equations on the half-axis.
Sufficient optimality conditions are derived in terms of the right-hand side of the system and the functions
involved in the cost function. This task is distinctive in that it is analyzed up to the moment when the
solution reaches the boundary of the region, which depends on the control. The proof of existence is based
on the compactness approach with the identification of a minimizing sequence, followed by a limit transition
in the equation and the cost function.

1 Problem statement
We consider the optimal control problem for a system of integro-differential equations:

ẋ = f1(t, x) + f2(t, x)u(t) +

t∫
0

f3(t, s, x)u(s) ds,

x(0) = x0,

(1.1)

with a cost function on the infinite interval:

J(u) =

τ∫
0

e−γtL(t, x(t), u(t)) dt → inf, (1.2)

where x0 ∈ D is a fixed vector, t ∈ [0,∞), x ∈ D is the phase vector, D is a bounded region in Rd,
∂D is the boundary of D, τ is the first moment when the solution x(t) reaches to ∂D, u ∈ U ⊂ Rm

is the control vector, U is a convex, closed set in Rm, and 0 ∈ U .
Let the following conditions be satisfied:

(A) Vector function f1(t, x) : [0,∞) × D → Rd, matrix f2(t, x) : [0,∞) × D → Rd × Rm, and
matrix f3(t, s, x) : [0,∞)× [0,∞)×D → Rd×Rm are continuous with respect to all variables.
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(B) Functions f1(t, x), f2(t, x), f3(t, s, x) satisfy the Lipschitz condition, i.e. there exists a con-
stant H > 0 such that for any x1, x2 ∈ D, t ≥ 0, and u ∈ U , the following inequalities
hold:

|f1(t, x1)− f1(t, x2)| ≤ H|x1 − x2|,
∥f2(t, x1)− f2(t, x2)∥ ≤ H|x1 − x2|,

∥f3(t, s, x1)− f3(t, s, x2)∥ ≤ H|x1 − x2|,

here we have | · | – vector norm, ∥ · ∥ – matrix norm.
The functions L(t, x, u), Lx(t, x, u), and Lu(t, x, u) are continuous with respect to all variables

and the following conditions hold:

(1) L(t, x, u) ≥ 0 for t ∈ [0,∞), x ∈ D and u ∈ U ;

(2) there exist constants C > 0 and p ≥ 2 such that for any t ∈ [0,∞), x ∈ D, u ∈ U , the
following inequality holds:

L(t, x, u) ≤ C
(
1 + |u|p

)
;

(3) there exists a constant K > 0 such that for any t ∈ [0,∞), x ∈ D, u ∈ U , the next inequality
holds:

|Lx(t, x, u)|+ |Lu(t, x, u)| ≤ K
(
1 + |u|p−1

)
;

(4) L(t, x, u) is convex with respect to u for any fixed t ∈ [0,∞), x ∈ D.

Control u(t) is considered admissible if:

(a1) u(t) ∈ Lp([0,∞]);

(a2) u(t) ∈ U , for t ∈ [0,∞];

(a3) there exists a constant C1 > 0 that is independent of u(t) and the next condition holds:

∞∫
0

|u(t)|p dt ≤ C1;

(a4) |J(u)| < ∞.

The set of admissible controls is marked as “V ” for problem (1.1), (1.2).
For systems of ordinary differential equations, similar problems were studied in works [3], for

stochastic in [4], for functional-differential systems in [1], and for impulsive systems in [2].

2 Main result
The main result of this paper concerns the existence of a solution of problem (1.1), (1.2). We
obtained the following theorem.

Theorem 2.1. Let system (1.1) with the quality criterion (1.2) satisfy conditions (A), (B), and
(1)–(3). Then problem (1.1), (1.2) has a solution in the class of admissible controls V , i.e. there
exists an optimal control u∗(t) which minimizes the cost function (1.2).
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Proof. Because the cost function is a non-negative quantity, there exists a non-negative lower bound
m for the values of J(u). Therefore, there exists a sequence of admissible controls {un(t), n ≥ 1}
such that J(un) → m monotonically as n → ∞.

Since U is a convex and closed set, then using Mazur’s lemma we obtain u∗(t) almost everywhere
for t.

For the solutions xn(t), we have the integral representation:

xn(t) = x0 +

t∫
0

[
f1(t, xn(t)) + f2(t, xn(t))un(t) +

s∫
0

f3(s, σ, xn(s))u(σ) dσ

]
dt.

Using the functions xn, we build functions yn(t) defined on [0,∞) as follows:

yn(t) =

{
xn(t), t ∈ [0, τn),

xn(τn), t ≥ 0.

It is easy to see the set of function yn is compact in the space of continuous functions defined on
[0, T ] for arbitrary t > 0. So, there exist a subsequence {ynk

(t), n ≥ 1} of a sequence {yn(t), n ≥ 1}
such that {ynk

(t), n ≥ 1} uniformly on the interval [0, T ].
Using the diagonal method, we can show that some subsequence of the sequence {ynn(t), n ≥ 1}

converges pointwise to a continuous function y∗(t) for any t ∈ [0,∞).
For convenience, we denote this subsequence again as {yn(t), n ≥ 1} and the corresponding

control sequence as {un(t), n ≥ 1}.
Let τ∗ denote the moment of the first exit of y∗(t) to the boundary ∂D, so

τ∗ =

{
inf

{
t ≥ 0 : y∗(t) ∈ ∂D

}
,

∞, if y∗(t) ∈ D, ∀ t ≥ 0,

τn =

{
inf

{
t ≥ 0 : yn(t) ∈ ∂D

}
,

∞, if yn(t) ∈ D, ∀ t ≥ 0.

We will show that τ∗ ≤ lim
n→∞

inf τn.
Really assume that this is not true. Then τ∗ > lim

n→∞
inf τn = τ . Let’s consider two cases:

(1) Suppose τ∗ < ∞. Choose any T1 ∈ [0,∞) such that T1 ≥ τ∗. On the interval [0, T1],
yn(t) → y∗(t), n → ∞.

By the characterization theorem of the lower limit, for any δ > 0 the set {n ∈ N : τn < τ + δ}
is infinite. Choose δ such that τ + δ < τ∗. Then, there exists a subsequence {τnk

, nk ≥ 1}
of {τn, n ≥ 1} such that τnk

< τ + δ. Choose a moment t0 such that t0 ∈ (τ + δ, τ∗). Then
ynk

(t0) = xnk
(τnk

) ∈ ∂D.
From the uniform convergence of yn(t) to y∗(t) on [0, T1], we have for any ε > 0 that there

exists N ∈ N such that for any nk ≥ N , the following inequality holds:

|y∗(t)− ynk
(t)| < ε.

However, by choosing ε such that 0 < ε < inf
υ∈∂D

|y∗(t0)− υ|, then for a fixed t0 ∈ (τ + δ, τ∗), we
obtain

|y∗(t0)− ynk
(t)| =

∣∣y∗(t0)− xnk
(τnk

)
∣∣ > ε.

So, we get a contradiction.
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(2) Suppose τ∗ = ∞ and lim
n→∞

inf τn < ∞. Similarly to the previous case, we have

τ∗ ≤ lim
n→∞

inf τn.

Set x∗(t) = y∗(t) for t ∈ [0, τ∗], in the case of finite τ∗ and x∗(t) = y∗(t) for t ∈ [0,∞) in the
case of τ∗ = ∞.

Now, let’s show that x∗(t) is a solution to system (1.1), for all t until it reaches the boundary,
corresponding to the control u∗(t).

Take any t ∈ [0, τ∗], for τ∗ < ∞, and t ∈ [0,∞) for τ∗ = ∞. Choose a sufficiently large T ≥ 0 so
that for any such t, yn(t) = xn(t) for sufficiently large n. Since yn(t) → y∗t) as n → ∞ uniformly
on [0, T ], xn(t) → x∗(t) uniformly on [0, τ∗1 ], where

τ∗1 =

{
inf

{
t ∈ [0, T ] : if x∗(t) ∈ ∂D

}
,

T, if x∗(t) ∈ D \ ∂D, ∀ t ≥ 0.

Since xn(t) is a solution to system (1.1), we have

xn(t) = x0 +

t∫
0

(
f1(s, xn(s)) + f2(s, xn(s))u

∗(s) +

s∫
0

f3(s, σ, xn(s))u
∗(σ) dσ

)
ds

+

t∫
0

(
f2(s, xn(s))− f2(s, x

∗(s))
)
(un(s)− u∗(s)) ds

+

t∫
0

s∫
0

(
f3(s, σ, xn(s))− f3(s, σ, x

∗(s))
)
(un(σ)− u∗(σ)) dσ ds

+

t∫
0

f2(s, x
∗(s))(un(s)− u∗(s)) ds+

t∫
0

s∫
0

f3(s, σ, x
∗(s))(un(σ)− u∗(σ)) dσ ds.

The convergence of each integral can be easily proven by Lebesgue’s dominated convergence
theorem, and the definition of weak convergence.

Then, by taking the limit as n → ∞, we obtain

x∗(t) = x0 +

t∫
0

(
f1(s, x

∗(s)) + f2(s, x
∗(s))u∗(s) +

s∫
0

f3(s, σ, x
∗(s))u∗(σ) dσ

)
ds

for any t ∈ [0, τ∗1 ].
So, we conclude that x∗(t) is a solution to system (1.1), corresponding to the control u∗(t) for

t ∈ [0, τ∗1 ].
Since the time moment T is chosen arbitrarily, we have that x∗(t) is a solution to system (1.1)

corresponding to the control u∗(t) for t ≥ 0 until the solution reaches the boundary of the region.
As xn(t) coincides with yn(t) up to this moment, the sequences {xn(t), n ≥ 1} converge pointwise

to x∗(t) for any t ∈ [0, τ∗1 ].
Now, we prove that the control u∗(t) is optimal. Consider two cases:

(1) Suppose x∗(τ∗) ∈ ∂D. Since L(t, x, · ) is convex, the following inequality holds:

e−γt
(
L(t, x∗(t), υ(t))

)
≥ e−γt

(
L(t, x∗(t), u∗(t))

)
+ (υ(t)− u∗(t))e−γt

(
Lυ(t, x

∗(t), u∗(t))
)
,

υ ∈ U , t ∈ [0, τ∗].
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Set υ = un(t). Then we easily get the following inequality

lim
n→∞

τ∗∫
0

e−γtL(t, x∗(t), un(t)) dt ≥
τ∗∫
0

e−γtL(t, x∗(t), u∗(t)) dt.

Also, we have:

J(u∗) ≤ lim
n→∞

inf

τ∗∫
0

e−γtL(t, xn(t), un(t)) dt ≤ lim
n→∞

J(un(t)).

Since
inf
u∈U

J(u) ≤ J(u∗) ≤ lim
n→∞

inf J(un) = m,

we conclude that
J(u∗) = m.

Therefore, u∗(t) is the optimal control.

(2) Now let τ∗ = ∞ and x∗(t) ∈ D \ ∂D, t ≥ 0.

It is easy to show that the function L(t, x∗(t), un(t)) is integrable on [0,∞). Since L(t, x, · ) is
convex, the following inequality holds:

e−γtL(t, x∗(t), υ(t)) ≥ e−γtL(t, x∗(t), u∗(t)) + (υ(t)− u∗(t))e−γtLυ(t, x
∗(t), u∗(t)),

υ(t) ∈ V , t ∈ [0,∞).
Furthermore, due to weak convergence, we obtain the satisfaction of the following inequality:

lim
n→∞

∞∗∫
0

e−γtL(t, x∗(t), unk
(t)) dt ≥

∞∫
0

e−γtL(t, x∗(t), u∗(t)) dt.

Let’s also define J(un) as follows:

J(un) =

∞∫
0

e−γtL(t, xn(t), un(t)) dt =

∞∫
0

e−γt
[
L(t, xn(t), un(t))− L(t, x∗(t), un(t))

]
dt

+

∞∫
0

e−γt
[
L(t, x∗(t), un(t))− L(t, x∗(t), u∗(t))

]
dt+

∞∫
0

e−γtL(t, x∗(t), u∗(t)) dt.

We obtain
lim
n→∞

inf J(un(t)) ≥ J(u∗).

Since
inf
u∈U

J(u) ≤ J(u∗) ≤ lim
n→∞

inf J(un(t)) = m,

then
J(u∗) = m.

Thus, u∗(t) is the optimal control.
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We study the differential-algebraic two-point non-linear boundary value problem on a compact
interval

x′(t) = f(t, x(t), y(t)), t ∈ [a, b], (1)
y(t) = g(t, x(t), y(t)), t ∈ [a, b]; (2)

B(x(a), y(b)) = d, (3)

where f : [a, b]×Ωϱ0 ×Ωϱ1 → Rp, g : [a, b]×Ωϱ0 ×Ωϱ1 → Rq and B : Ωϱ0 ×Ωϱ1 → Rp are continuous
functions defined on certain bounded sets Ωϱ0 ⊂ Rp, Ωϱ1 ⊂ Rq specified below (see (7) and (9)),
d ∈ Rp. We assume that the functions f , g, B satisfy the Lipschitz conditions∣∣f(t, u1, v1)− f(t, u2, v2)

∣∣ ≤ K1|u1 − u2|+K2|v1 − v2|, (4)∣∣g(t, u1, v1)− g(t, u2, v2)
∣∣ ≤ K3|u1 − u2|+K4|v1 − v2|, (5)

for t ∈ [a, b], {u1, u2} ⊂ Ωϱ0 , {v1, v2} ⊂ Ωϱ1 , where K1, K2, K3, K4 are non-negative matrices of
dimensions p× p, p× q, q× p, q× q such that the spectral radii of Q and K4 satisfy the inequalities

r(Q) < 1, r(K4) < 1, (6)

where
Q =

3

10
(b− a)K
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and K is the (p+ q)× (p+ q) block matrix K =

(
K1 K2

K3 K4

)
. By a solution of problem (1)–(3) we

understand a pair of a continuously differentiable x : [a, b] → Ωϱ0 and continuous y : [a, b] → Ωϱ1

functions, satisfying (1)–(3).
We show that techniques similar to those of [1, 2] can be effectively applied to the study of

problem (1), (2). Note that, although condition (6) ensures that equation (2) can theoretically be
solved with respect to y, it may be difficult or impossible to do this explicitly, and this is not
required in our approach.

In the sequel, 1l is the unit matrix of dimension l. For any x = col(x1, . . . , xl), y = col(y1, . . . , yl),
we write |x| = col(|x1|, . . . , |xl|) and understand x ≤ y as xi ≤ yi for all i = 1, 2, . . . , l. The
operations max and min for vector functions are also understood componentwise. Given any non-
negative vector ϱ ∈ Rl, we put

Oϱ(z) =
{
ξ ∈ Rl : |ξ − z| ≤ ϱ

}
for z ∈ Rl and

Oϱ(U) =
⋃
z∈U

Oϱ(z)

for a set U ⊂ Rl. The set Oϱ(U) may be called the componentwise ϱ-neighbourhood of U .
Fix certain compact convex sets D0 ⊂ Rp, D1 ⊂ Rp and put

Ωϱ0 = Oϱ0(Da,b), (7)

where ϱ0 is a non-negative vector and

Da,b =
{
(1− θ)z + θη : z ∈ D0, η ∈ D1, θ ∈ [0, 1]

}
.

Choose some ỹ ∈ Rq and put

Y = max
(t,z,η)∈[a,b]×D0×D1

∣∣g(t, x0(t, z, η), ỹ)− ỹ
∣∣,

where
x0(t, z, η) =

(
1− t− a

b− a

)
z +

t− a

b− a
η, t ∈ [a, b], (8)

for any z ∈ D0, η ∈ D1. Take a non-negative vector ϱ1 and put

Ωϱ1 = Oϱ1(y1), (9)

where
y1 = max

(t,z,η)∈[a,b]×D0×D1

|g(t, x0(t, z, η), ỹ)|.

We assume in what follows that the non-negative vectors ϱ0, ϱ1 can be chosen so that

ϱ0 ≥
1

2
(b− a)δϱ0,ϱ1(f), (10)

ϱ1 ≥ (1q −K4)
−1
(1
2
(b− a)K3δϱ0,ϱ1(f) +K4Y

)
+ Y, (11)

where
δϱ0,ϱ1(f) =

1

2

(
max

(t,x,y)∈[a,b]×Ωϱ0×Ωϱ1

f(t, x, y)− min
(t,x,y)∈[a,b]×Ωϱ0×Ωϱ1

f(t, x, y)
)
.
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Together with inequalities (6), conditions (10), (11) may be regarded as smallness conditions on
the functions f and g in a neighbourhood of sets D0 and D1. When some of these conditions are
violated, one can apply a technique from [3] in order to construct convergent iterations.

Instead of the original boundary value problem (1)–(3), consider the family of auxiliary two-
point boundary value problems

x′(t) = f(t, x(t), y(t)), t ∈ [a, b],

y(t) = g(t, x(t), y(t)), t ∈ [a, b];
(12)

x(a) = z, x(b) = η, (13)

where z ∈ D0 and η ∈ D1 are free parameters. We focus on continuously differentiable x : [a, b] →
Ωϱ0 and continuous y : [a, b] → Ωϱ1 solutions of problem (12), (13) with values x(a) ∈ D0 and
x(b) ∈ D1. As it will be indicated below, one can then go back to the original problem by choosing
the values of z and η appropriately.

In relation to the two-point boundary value problem (12), (13), introduce the sequences of
functions

xm+1(t, z, η) = z +

t∫
a

f
(
s, xm(s, z, η), ym(s, z, η)

)
ds

− t− a

b− a

b∫
a

f
(
s, xm(s, z, η), ym(s, z, η)

)
ds+

t− a

b− a
(η − z), (14)

ym+1(t, z, η) = g(t, xm(t, z, η), ym(t, z, η)), t ∈ [a, b], m = 1, 2, . . . , (15)

where
y0(t, z, η) = ỹ, t ∈ [a, b],

with a fixed value of ỹ and the function x0 given by (8).
For 1 ≤ i1 < i2 ≤ n, let Ji1,i2 be the (i2 − i1 + 1) × n block matrix with the unit matrix of

dimension i2 − i1 + 1 placed starting from the i1th column, that is

Ji1,i2 =
(
0 1i2−i1+1 0

)
, (16)

where the symbols 0 stand for the zero blocks of appropriate dimensions.

Theorem 1. Let conditions (4)–(6) and (10), (11) be fulfilled. Then, for all fixed z ∈ D0 and
η ∈ D1:

1) The functions of sequence (14) have range in Ωϱ0, satisfy the two-point conditions (13), and
the limit

x∞(t, z, η) = lim
m→∞

xm(t, z, η)

exists uniformly on [a, b] × D0 × D1. The function x∞( · , z, η) satisfies conditions (13) and is
continuously differentiable.

2) The functions of sequence (15) have range in Ωϱ1 and converge to a continuous limit function

y∞(t, z, η) = lim
m→∞

ym(t, z, η)

uniformly on [a, b]×D0 ×D1.
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3) The functions x = x∞( · , z, η), y = y∞( · , z, η) satisfy equation (2) and the Cauchy problem
with a constant forcing term:

x′(t) = f(t, x(t), y(t)) +
1

b− a
∆(z, η), t ∈ [a, b]; x(a) = z, (17)

where ∆ : D0 ×D1 → Rp is the mapping given by the formula

∆(z, η) = η − z −
b∫

a

f
(
s, x∞(s, z, η), y∞(s, z, η)

)
ds. (18)

Other couples of functions (x, y) having range in the set Ωϱ0 × Ωϱ1 and satisfying (2), (17) do not
exist.

4) The estimates

∣∣x∞(t, z, η)− xm(t, z, η)
∣∣ ≤ 10

9
α1(t)J1,pK

σQm−σ(1p+q −Q)−1

(
δϱ0,ϱ1(f)

Y

)
,

∣∣y∞(t, z, η)− ym(t, z, η)
∣∣ ≤ 10

9
α1(t)Jp+1,p+qK

σ+1Qm−σ−1(1p+q −Q)−1

(
δϱ0,ϱ1(f)

Y

)
hold for all t ∈ [a, b] and m sufficiently large, where

σ =


0 if b− a >

10

3
,

1 if b− a ≤ 10

3
.

By (16), the left multiplication of a vector column by J1,p (resp., Jp+1,p+q) means the selection
of the components 1, 2, . . . , p (resp., p+ 1, . . . , p+ q).

For z ∈ Ωϱ0 , η ∈ Ωϱ1 , let us put

Λ(z, η) = B
(
x∞(a, z, η), y∞(b, z, η)

)
− d.

The functions ∆ and Λ determine the relation of the functions x∞( · , z, η) and y∞( · , z, η) to
solutions of the original problem (1)–(3).

Theorem 2. Under the assumptions of Theorem 1, the couple of functions (x∞( · , z, η), y∞( · , z, η))
is a solution of the boundary value problem (1)–(3) if and only if the parameters z, η satisfy the
system of 2p algebraic or transcendental equations

∆(z, η) = 0, Λ(z, η) = 0. (19)

The next statement proves that the system of determining equations (19) determines all possible
solutions of the original non-linear boundary value problem (1)–(3) in the regions Ωϱ0 , Ωϱ1 .

Theorem 3. Under the assumptions of Theorem 1, the following assertions hold:

1) If there exist a pair of vectors (z∗, η∗) ∈ D0×D1 satisfying the system of determining equations
(19), then the boundary value problem (1)–(3) has a solution (x∗, y∗) such that x∗([a, b]) ⊂ Ωϱ0,
y∗([a, b]) ⊂ Ωϱ1 and

x∗(a) = z∗, x∗(b) = η∗.

Moreover, this solution has the form

(x∗, y∗) =
(
x∞( · , z∗, η∗), y∞( · , z∗, η∗)

)
.
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2) If problem (1)–(3) has a solution (x∗, y∗) with (x∗(a), x∗(b)) ∈ D0×D1 and range in Ωϱ0×Ωϱ1,
then the system of determining equations (19) is satisfied with z = x∗(a), η = x∗(b).

The practical investigation of problem (1)–(3) is carried out by studying the approximate de-
termining equations

∆m(z, η) = 0, Λm(z, η) = 0, (20)

where
Λm(z, η) = B

(
xm(a, z, η), ym(b, z, η)

)
− d

and

∆m(z, η) = η − z −
b∫

a

f
(
s, xm(s, z, η), ym(s, z, η)

)
ds,

for some fixed m. Assuming that the Lipschitz condition holds for B,

|B(u1, v1)−B(u2, v2)| ≤ K5|u1 − u2|+K6|v1 − v2|,

under additional assumptions, we prove the existence of a solution of the original problem (1)–(3)
by showing that the solvability of the approximate determining equations (20) in the respective
region implies that of (19). A practical computation using Maple confirms the constructiveness of
the proposed approach.
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For a given n ∈ N and zero neighborhood G ⊂ Rn, we consider the differential system

ẋ = f(t, x), f(t, 0) ≡ 0, t ∈ R+ ≡ [0,+∞), x ∈ G, (1)

where f, f ′
x ∈ C(R+, G). Let’s put

Bδ ≡
{
x0 ∈ Rn | 0 < |x0| < δ

}
, ∆ ≡ sup

{
δ | Bδ ⊂ G

}
,

and denote by x( · , x0) a non-extendable solution of system (1) with the initial value x(0, x0) = x0.
The differential system (1) is completely deterministic, however, it is possible to give a natural

stochastic meaning to its measures of stability µκ(f) or instability νκ(f) [1, 2]. They allow us to
estimate from below the possibility or impossibility of randomly selecting the initial value x0 of
perturbed solution x( · , x0), arbitrarily close to zero, so that its graph falls into a given tube of the
zero solution in any of the following senses [3, 4]:

(a) immediately on the entire time semi-axis (the Lyapunov stability for κ = λ);

(b) at least episodically, but at arbitrarily late points in time (the Perron stability for κ = π);

(c) at least from some moment, but then forever (the upper-limit stability for κ = σ).

The forerunners of the described measures were the recent concepts of almost stability and
almost complete instability [5], which provide the corresponding properties of solutions with a full
measure.

Definition 1. We will say that system (1) has the following property of the Lyapunov, Perron or
upper-limit type:

(a) stability (almost stability) if for any ε > 0 there exists δ ∈ (0,∆) such that any (respec-
tively, almost any in the sense of the Lebesgue measure) initial value x0 ∈ Bδ satisfies the
corresponding requirement

sup
t∈R+

|x(t, x0)| < ε, lim
t→+∞

|x(t, x0)| < ε, lim
t→+∞

|x(t, x0)| < ε; (2)

(b) complete instability (almost complete instability) if there exist ε > 0 and δ ∈ (0,∆) such
that any (respectively, almost any) initial value x0 ∈ Bδ does not satisfy the corresponding
requirement (2) (which is considered to be unfulfilled by definition, in particular, when the
solution x( · , x0) is not defined on the entire ray R+).

Definition 2. For system (1), the number

µκ(f) ∈ [0, 1], κ = λ, π, σ,

is called, respectively, the Lyapunov, Perron and upper-limit measure of stability, if system (1):
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(a) for each µ < µκ(f) is µ-stable, i.e. for any ε > 0 there exists δε ∈ (0,∆) such that for every
δ ∈ (0, δε) all values x0 ∈ Bδ, satisfying the corresponding requirement (2), form a subset,
whose relative measure (in the Lebesgue sense) in Bδ is

Mκ(f, ε, δ) ≥ µ;

(b) for each µ > µκ(f) is not µ-stable.

Definition 3. For system (1), the number

νκ(f) ∈ [0, 1], κ = λ, π, σ,

is called, respectively, the Lyapunov, Perron and upper-limit measure of instability, if system (1):

(a) for each ν < νκ(f) is ν-unstable, i.e. for any ε > 0 there exists δε ∈ (0,∆) such that for every
δ ∈ (0, δε) all values x0 ∈ Bδ, unsatisfying the corresponding requirement (2), form a subset,
whose relative measure (in the Lebesgue sense) in Bδ is

Nκ(f, ε, δ) ≥ ν;

(b) for each ν > νκ(f) is not ν-unstable.

The correctness of Definitions 2 and 3 is justified by the following theorems.

Theorem 1. For any system (1), any ε > 0 and each of the requirements (2), the sets of all points
x0 ∈ G, both satisfying this requirement and not satisfying it, are measurable.

Theorem 2. For any system (1) the set of all values µ ∈ [0, 1] for which it is Lyapunov, Perron
or upper-limit µ-stable, as well as all values ν ∈ [0, 1], for which it is ν-unstable, obviously contains
the point 0 and represents an interval, possibly degenerate to this point.

The following two theorems offer specific formulas for measures of stability and instability and
define a set of basic relations linking various measures.

Theorem 3. For each system (1), the entire six of its Lyapunov, Perron and upper-limit measures
of stability or instability are uniquely defined, which are respectively given by the formulas

µκ(f) = lim
ε→+0

lim
δ→+0

Mκ(f, ε, δ), νκ(f) = lim
ε→+0

lim
δ→+0

Nκ(f, ε, δ), (3)

where the limits at ε → +0 can be replaced by the lower or, respectively, upper exact bound on
ε > 0.

Theorem 4. For any system (1) the inequalities are satisfied

0 6 µλ(f) 6 µσ(f) 6 µπ(f) 6 1, 0 6 νπ(f) 6 νσ(f) 6 νλ(f) 6 1, (4)
0 6 µκ(f) + νκ(f) 6 1. (5)

Almost stability and almost complete instability are naturally associated with single values of
the corresponding measures, but this logical connection turns out to be only one-way.

Theorem 5. System (1) has almost stability or almost complete instability (of some type) if and
only if it is 1-stable or, accordingly, 1-unstable (of that type), and then its measures of stability and
instability (of the same type) are equal to 1 and 0 or, respectively, vice versa.
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Theorem 6. For n = 2, there are two autonomous systems of the form (1), which have neither
almost stability nor almost complete instability of any of the three types: one of them has measures
of stability and instability of all three types equal to 1 and 0, respectively, and the other is the
opposite.

In the case of a linear system, the Lyapunov and upper-limit measures can only take their
extreme values, which are obviously also realized on the Perron measures – this is what the following
two theorems establish.

Theorem 7. For any linear system (1), only the following two situations are possible, and in
formulas (3) for all measures of stability and instability mentioned in them, the lower limits for
δ → +0 are exact:

(a) either the relations are satisfied

µλ(f) = µσ(f) = µπ(f) = 1 > 0 = νπ(f) = νσ(f) = νλ(f)

and system (1) has stability of all three types;

(b) either the relations are satisfied

µλ(f) = µσ(f) = 0 < 1 = νσ(f) = νλ(f)

and system (1) has the Lyapunov and upper-limit almost complete (possibly even complete)
instability.

In addition, in the linear case, the upper-limit complete instability follows from the Lyapunov
one, but the Perron instability does not follow, and not to any extent.

Theorem 8. For any n ∈ N, each of the situations listed in Theorem 7 is realized on some limited
scalar linear system of the form (1), and the second situation is realized on at least two systems:
one of them is autonomous and has the Perron complete instability, i.e.

µπ(f) = 0 < 1 = νπ(f),

and the other – the Perron stability, i.e.

µπ(f) = 1 > 0 = νπ(f).

The set of all possible sets of different measures of stability and instability of one-dimensional
systems is finite.

Theorem 9. For n = 1, the measures of stability and instability of any system (1) satisfy the
relations

µλ(f) = µσ(f) 6 µπ(f), νπ(f) 6 νσ(f) = νλ(f), (6)
µκ(f), νκ(f) ∈ {0, 1/2, 1}, µκ(f) + νκ(f) = 1, κ = λ, π, σ. (7)

Theorem 10. For n = 1, both inequalities in chains (6) for some limited linear system (1) are
strict, and the cases of all equalities in these chains for each pair of measures of stability and
instability specified by conditions (7) are implemented on some autonomous systems (1).

Theorem 6 simultaneously confirms the realizability of both zero and one values by all measures
of stability or instability for two-dimensional autonomous systems. Moreover, for such systems the
set of implementable sets of all measures turns out to be quite rich.



186 I. N. Sergeev

Theorem 11. For n = 2, for each individual non-strict inequality in chains (4) and (5) there are
two autonomous systems of the form (1): for one of them it turns into an equality, and for the
other into a strict inequality.

Theorem 12. For n = 2, for any r > 0 there exists an autonomous system (1), in which the
measures of stability of all three types take the same positive value, as well as all measures of
instability, and the ratio of these two values equals r, and the right inequality in chain (5) turns
into equality.

The following two theorems implement the most contrasting situations in the autonomous ar-
bitrarily non-one-dimensional case.

Theorem 13. For every integer n > 1, some autonomous system (1) satisfies the relations

µλ(f) = µσ(f) = 0 < 1 = µπ(f), νπ(f) = νσ(f) = 1 > 0 = νλ(f).

Theorem 14. For every integer n > 1, some autonomous system (1) satisfies the relations

µλ(f) = 0 < 1 = µσ(f) = µπ(f), νπ(f) = 1 > 0 = νσ(f) = νλ(f).

In the one-dimensional autonomous case, two contrasting situations described in Theorems 13
and 14 are impossible.

Theorem 15. For n = 1, for any autonomous system (1) the equalities are satisfied

µλ(f) = µσ(f) = µπ(f), νπ(f) = νσ(f) = νλ(f).
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Let us consider the system of differential equations with turning point:

εY ′(x, ε)−A(x, ε)Y (x, ε) = H(x), (0.1)

where
A(x, ε) = A0(x) + εA1(x)

is a known matrix, where

A0(x) =

 0 0 0
0 0 1

−b(x) −a(x) 0

 , A1 =

0 1 0
0 0 0
0 0 0

 ,

when ε → 0, x ∈ [−l, 0], Y (x, ε) ≡ Yk(x, ε) = colomn(y1(x, ε), y2(x, ε), y3(x, ε)) is an unknown
vector function, H(x) = colomn(0, 0, h(x)) is a given vector function.

Needs of modern physics, mathematics, biology and their applied fields require us solving prob-
lems of a more complex nature, i.e. research behavior of the function in asymptotic models, which
are reduced to problems (0.1).

Let us investigate the problem of constructing uniform asymptotics of solutions of a singularly
perturbed system (0.1) for which the conditions are fulfilled:

S1. A0(x), H(x) ∈ C∞[−l, 0].

S2. a(x) = xã(x), ã(x) < 0, b(x) ̸= 0.

This case has the following feature: the turning point is unstable [1] and the construction of
asymptotics requires a separate technique, since the results of previous studies cannot be simply
extended to this case.

Conducted research in [1] showed that for construction of uniform asymptotic under conditions
S2, i.e. when ã(x) < 0, b(x) > 0 when x ∈ [−l, 0], the second form must be used the Airy equation,
the solutions of which are the so-called Airy–Langer functions: Ai(t) and Bi(t).

U ′′(t)− tU(t) = 0.

That is, in this case, the model operator for a homogeneous system is the Airy model operator. And
to construct the asymptotics of the solution of a heterogeneous system, we will use an essentially
special function ν(t)

U ′′(t)− tU(t) = π−1.

Some aspects of problem (0.1) we studied in [3]. In [4], a developed algorithm for construct-
ing uniform asymptotics of solutions to systems of singularly perturbed differential equations is
proposed. In [2] constructive conditions for the existence of the asymptotics of the solution of the
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system of singularly perturbed differential equations of the fourth order with a differential turning
point are established, and the algorithm for constructing the corresponding solution is proposed.

The characteristic equation that corresponds to the SP system (0.1) is as follows:

|A0(x)− λE| =

∣∣∣∣∣∣
−λ 0 0
0 −λ 1

−b(x) −a(x) −λ

∣∣∣∣∣∣ = −λ3 − xã(x)λ = 0.

The roots of this equation are

λ1 = 0, λ2,3= ±
√
xã(x) .

The purpose of this work is to construct a uniform asymptotic solution with an unstable turning
point of the first kind.

1 Regularization of singularly perturbed systems
of differential equations

In order to save all essential singular functions, that appear in the solution of system (0.1) due to
the special point ε = 0, a regularizing variable is introduced t = ε−p · φ(x), where exponent p and
regularizing function φ(x) are to be determined.

Instead of Yk(x, ε) function, Ỹk(x, t, ε) transformation function will be studied, also the trans-
formation will be performed in such a way that the following identity is true

Ỹ (x, t, ε)
∣∣
t=ε−pφ(x)

≡ Y (x, ε),

which is the necessary condition for suggested method.
The vector equation (0.1) can be written as

L̃εỸk(x, t, ε) ≡ µφ′ ∂ỹ(x, t, ε)

∂t
+ µ3 ∂ỹ(x, t, ε)

∂x
−A(x, ε)Ỹk(x, t, ε) = H(x). (1.1)

Asymptotic forms of solutions for equation (1.1) are constructed in the form of the series

Ỹk(x, t, ε) =
2∑

i=1

Di(x, t, ε) + f(x, ε)ν(t) + εγg(x, ε)ν ′(t) + ω(x, ε),

2∑
i=1

Di(x, t, ε) =

εs1αk1(x, ε)

εs2αk2(x, ε)

εs3αk3(x, ε)

Ui(t) + εγ

εk1βk1(x, ε)

εk2βk2(x, ε)

εk3βk3(x, ε)

Ui
′(t),

where U1(t), U2(t) are the Airy–Langer functions [1] and αik(x, ε), βik(x, ε), fk(x, ε), gk(x, ε),
ωk(x, ε), k = 1, 2, 3 are analytic functions with reference to a small parameter and are infinitely
differentiable functions of variable x ∈ [−l; 0] which are still to be determined.

For convenience, we introduce the notation U1(t) ≡ Ai(t), U2(t) ≡ Bi(t).
First of all, the analysis how transformation operator L̃ε operates on vector function Dk(x, t, ε)

will be performed, and then the obtained result will be utilized in the homogeneous transformation
equation (0.1). Then, after equating corresponding coefficients of essential singular functions Uk(t),
k = 1, 2 and their derivatives two following vector equations are obtained:

U ′
i(t) : ε

1−pαik(x, ε)φ
′(x)− εγ [A0(x) + εA1]βik(x, ε) = −ε1+γβ′

ik(x, ε), (1.2)
Ui(t) : −ε1+γ−2pβik(x, ε)φ(x)φ

′(x)− [A0(x) + εA1]αik(x, ε) = −εα′
ik(x, ε). (1.3)
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2 Construction of formal solutions of a homogeneous
transformation system

The unknown coefficients of the vector equations (1.2) and (1.3) are sought as following vector
function series (i = 1, 2):

αik(x, ε) =

+∞∑
r=0

µrαikr(x), βik(x, ε) =

+∞∑
r=0

µrβikr(x).

To determine vector function components

αikr = colomn
(
αi1r(x), αi2r(x), αi3r(x)

)
and

βikr(x) = colomn
(
βi1r(x), βi2r(x), βi3r(x)

)
,

the following recurrent systems of equations are obtained:

Φ(x)Zk0(x) = 0, r = 0, 1, 2,

Φ(x)Zkr(x) = FZk(r−3)(x), r ≥ 3.

At the moment, the regularizing function has not yet been defined; therefore, it will be defined
as a solution of the problem

φ(x)φ′2(x) = −a(x) ≡ −xã, φ(0) = 0,

which is the following function

φ(x) =

(
3

2

x∫
0

√
−xã(x) dx

) 2
3

.

The regularizing function of such kind has been considered in [1, 5].
Due to such a choice of the regularizing variable φ(x) there is a nontrivial solution of the

homogeneous system Φ(x)Zkr(x) = 0, r = 0, 1, 2, that is

Zk0(x) = colomn
(
0,

1

φ′(x)
βi30(x),−φ(x)φ′(x)βi20(x), 0, βi20(x), βi30(x)

)
,

where βikr(x) (i = 1, 2; k = 2, 3) are arbitrary up to some point and sufficiently smooth function
at x ∈ [−l; 0].

Solving systems of recurrent equations at the third step, i.e., when r = 3, and taking into
account that the functions are arbitrary, βis0(x) = β0

is0 · β̂is0(x) (i = 1, 2; s = 2, 3), where β0
is0(x)

are arbitrary constants, β̂is0(x) is a partial and sufficiently smooth for all x ∈ [−l; 0] solutions of
homogeneous equations. This definition of vector functions Zik0(x) implies that there are following
solutions of inhomogeneous systems of the algebraic equations (1.2) and (1.3):

Zk3(x) = colomn(zi13, zi23, zi33, zi43, zi53, zi63),

zi13 =
1

φ′(x)
βi20(x), zi23 =

−β′
i20(x) + βi33(x)

φ′(x)
,

zi33 =
−β′

i30(x)− a(x)βi23(x)− b(x)(φ(x))−1(φ′(x))−2βi30
φ′(x)

,

zi43 = (φ(x))−1(φ′(x))−2βi20(x), zi53 = βi21(x), zi63 = βi31(x),
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where βi21(x) and βi31(x) are arbitrary up to some point and sufficiently smooth functions for all
x ∈ [−l; 0].

Thus, gradual solving of systems of equations (1.2) and (1.3) gives two formal solutions of the
transformation vector equation (0.1)

Dik(x, ε
− 2

3φ(x), ε) =

∞∑
r=0

εr
[
αikr(x)Ui(ε

− 2
3φ(x)) + ε

1
3βikr(x, ε)U

′
i(ε

− 2
3φ(x))

]
. (2.1)

The third formal solution of the homogeneous vector equation (0.1) is then constructed as a
series

ω(x, ε) ≡
∞∑
r=0

εrωr(x) ≡ colomn
( ∞∑

r=0

εrω1r(x),
∞∑
r=0

εrω2r(x),
∞∑
r=0

εrω3r(x)
)
.

3 Construction of formal partial solutions
Similarly to the previous steps, in order to construct asymptotic forms of partial solutions of the
inhomogeneous transformation vector equation (0.1), let us analyze how transformation operator
operates on an element from the space of non-resonant solutions:

L̃ε

(
fk(x, ε)ν(t) + µgk(x, ε)ν

′(t) + ωk(x, ε)
)

= µfk(x, ε)φ
′(x)ν(t) + gk(x, ε)φ

′(x)φ(x)ν(t)−A(x, ε)fk(x, ε)ν(t)− µA(x, ε)gk(x, ε)ν
′(t)

+ µ3f ′
k(x)ν(t) + µ4g′k(x)ν

′(t) + µ2φ′(x)gk(x)π
−1 + µ3ω′(x)−A(x, ε)ωk(x) = H(x).

In order to have smooth solutions of the systems, the asymptotic forms of the solutions are
constructed as series

fk(x, ε) =
+∞∑
r=−2

µrfr(x), gk(x, ε) =
+∞∑
r=−2

µrgr(x), ω(x, ε) =
+∞∑
r=0

µrωr(x).

Therefore, the partial solution of the transformation vector equation (0.1) is then defined as
the series

Ỹ part.
k (x, t, ε) =

∞∑
r=−2

µr
[
fkr(x)ν(t) + µgkr(x)ν

′(t)
]
+

∞∑
r=0

µrωkr(x). (3.1)

4 Conclusions
Therefore, we constructed a uniform asymptotic solution for a system of singularly perturbed
differential equations with an unstable turning point (0.1) in the form (2.1) and (3.1).
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The extended abstract concerns the parameter-dependent periodic problem

u′′ = p(t)u+ h(t)|u|λ sgnu+ µf(t); u(0) = u(ω), u′(0) = u′(ω), (1)

where p, h, f ∈ L([0, ω]), h ≥ 0 a. e. on [0, ω], λ > 1, and µ ∈ R is a parameter. By a solution
to problem (1), as usual, we understand a function u : [0, ω] → R which is absolutely continuous
together with its first derivative, satisfies the given equation almost everywhere, and meets the
periodic conditions. The text is based on the paper [4].

We first show where problem (1) may appear from. Consider a forced oscillator consisting of
two fixed charged bodies of charges q > 0 and a charged mass body of weight m and charge Q > 0
(see Fig. 1).

Parameter-dependent periodic problems for
non-autonomous Duffing equations with a sign-changing

forcing term1
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where p, h, f ∈ L([0, ω]), h ≥ 0 a. e. on [0, ω], λ > 1, and µ ∈ R is a parameter. By a solution
to problem (1), as usual, we understand a function u : [0, ω] → R which is absolutely continuous
together with its first derivative, satisfies the given equation almost everywhere, and meets the periodic
conditions. The text is based on the paper [4].

We first show where problem (1) may appear from. Consider a forced oscillator consisting of two
fixed charged bodies of charges q > 0 and a charged mass body of weight m and charge Q > 0 (see
Fig. 1). Assume that the mass body moves horizontally without any friction and the charges q of the

~F (t)

x0

x0 x0

y0

Figure 1: Nonlinear undamped forced oscillator

fixed bodies change ω-periodically, i. e., q : R → ]0,+∞[ is an ω-periodic function. This is a system
with one degree of freedom described by the coordinate x, whose equation of motion is of the form

mx′′ − Qq(t)

4πεrε0

(
x+ x0[(

x+ x0
)2

+ y20
]3/2 +

x− x0[(
x− x0

)2
+ y20

]3/2
)

= F (t), (2)

where εr is the relative permittivity and ε0 is the vacuum permittivity.
Numeric simulations show that if y20 < 2x20, then equation (2) with q(t) ≡ Const . and F (t) ≡ 0

has exactly three equilibria x1 := 0, x2 > 0, and x3 = −x2. Approximating the non-linearity in (2) by
the third degree Taylor polynomial centred at 0, we obtain the equation

x′′ = −
Qq(t)

(
2x20 − y20

)
2πεrε0m

(
x20 + y20

)5/2 x+
3Qq(t)

(
24x20y

2
0 − 3y40 − 8x40

)
πεrε0m

(
x20 + y20

)9/2 x3 +
F (t)

m
,

which is a particular case of the differential equation in (1) with µ = 1, where

p(t) := −
Qq(t)

(
2x20 − y20

)
2πεrε0m

(
x20 + y20

)5/2 , h(t) :=
3Qq(t)

(
24x20y

2
0 − 3y40 − 8x40

)
πεrε0m

(
x20 + y20

)9/2 ,

f(t) := F (t)
m , and λ := 3. Assuming that

(
4− 2

√
10/3

)
x20 < y20 < 2x20 and F (t) 6≡ 0, it is easy to show

that the functions p and h are negative and positive, respectively.
To formulate our results, we need the following definition.
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has exactly three equilibria x1 := 0, x2 > 0, and x3 = −x2. Approximating the non-linearity in (2)
by the third degree Taylor polynomial centred at 0, we obtain the equation
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which is a particular case of the differential equation in (1) with µ = 1, where

p(t) := − Qq(t)(2x20 − y20)

2πεrε0m(x20 + y20)
5/2

, h(t) :=
3Qq(t)(24x20y

2
0 − 3y40 − 8x40)

πεrε0m(x20 + y20)
9/2

,

f(t) := F (t)
m , and λ := 3. Assuming that (4 − 2

√
10/3 )x20 < y20 < 2x20 and F (t) ̸≡ 0, it is easy to

show that the functions p and h are negative and positive, respectively.
To formulate our results, we need the following definition.

Definition ([2]). We say that a function p belongs to the set V−(ω) (resp. V+(ω)) if, for any
function u ∈ AC 1([0, ω]) satisfying

u′′(t) ≥ p(t)u(t) for a. e. t ∈ [0, ω], u(0) = u(ω), u′(0) ≥ u′(ω),

the inequality u(t) ≤ 0 (resp. u(t) ≥ 0) holds for t ∈ [0, ω]. By U(ω), we denote the set of pairs
(p, f) such that the problem

u′′ = p(t)u+ f(t); u(0) = u(ω), u′(0) = u′(ω) (3)

has a unique solution which is positive. The set V0(ω) consists of all the functions p such that
problem (3) with f(t) ≡ 0 possesses a positive solution.

Remark 1. The effective conditions guaranteeing the inclusions p ∈ V−(ω), p ∈ V+(ω), p ∈ V0(ω),
as well as (p, f) ∈ U(ω) are provided in [2] (see also [1, 5]).

Below we discuss the existence/non-existence as well as the exact multiplicity of positive solu-
tions to problem (1) depending on the choice of the parameter µ provided that p ̸∈ V−(ω)∪V0(ω).
Let us show, as a motivation, what happens in the autonomous case of (1). Hence, we consider the
equation

x′′ = −ax+ b|x|λ sgnx+ µ. (4)

In view of our hypotheses h ≥ 0 a. e. on [0, ω], h(t) ̸≡ 0 and since −a ̸∈ V−(ω) ∪ V0(ω) if only if
a > 0, we assume that a, b > 0. By direct calculation, the phase portraits of equation (4) can be
elaborated depending on the choice of the parameter µ ∈ R (see, Fig. 2) and, thus, one can prove
the following proposition concerning the periodic solutions to equation (4).

Proposition 1. Let λ > 1 and a, b > 0. Then, the following conclusions hold:

(i) If µ > (λ−1)a
λ ( a

λb)
1

λ−1 , then equation (4) has a unique negative equilibrium (saddle) and no
other periodic solutions occur.

(ii) If µ = (λ−1)a
λ ( a

λb)
1

λ−1 , then equation (4) has a unique positive equilibrium (cusp), a unique
negative equilibrium (saddle), and no other periodic solutions occur.

(iii) If 0 < µ < (λ−1)a
λ ( a

λb)
1

λ−1 , then equation (4) possesses exactly two positive equilibria x1 > x2
(x1 is a saddle and x2 is a center), a unique negative equilibrium x3 (saddle), and non-constant
(positive and possibly sign-changing) periodic solutions with different periods. Moreover, all
the non-constant periodic solutions oscillate around x2 between x3 and x1.

(iv) If µ = 0, then equation (4) possesses a unique positive equilibrium x0 (saddle), a trivial
equilibrium (center), a unique negative equilibrium −x0, and non-constant sign-changing
periodic solutions with different periods. Moreover, all the non-constant periodic solutions
oscillate around 0 between −x0 and x0.

(v) For µ < 0, the conclusions are “symmetric” as compared with the items (i)–(iii), see Fig. 2.
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Definition 1 ([2]). We say that a function p belongs to the set V−(ω) (resp. V+(ω)) if, for any
function u ∈ AC 1([0, ω]) satisfying

u′′(t) ≥ p(t)u(t) for a. e. t ∈ [0, ω], u(0) = u(ω), u′(0) ≥ u′(ω),

the inequality u(t) ≤ 0 (resp. u(t) ≥ 0) holds for t ∈ [0, ω]. By U(ω), we denote the set of pairs (p, f)
such that the problem

u′′ = p(t)u+ f(t); u(0) = u(ω), u′(0) = u′(ω) (3)

has a unique solution which is positive. The set V0(ω) consists of all the functions p such that problem
(3) with f(t) ≡ 0 possesses a positive solution.

Remark 2. The effective conditions guaranteeing the inclusions p ∈ V−(ω), p ∈ V+(ω), p ∈ V0(ω), as
well as (p, f) ∈ U(ω) are provided in [2] (see also [1, 5]).

Below we discuss the existence/non-existence as well as the exact multiplicity of positive solutions
to problem (1) depending on the choice of the parameter µ provided that p 6∈ V−(ω) ∪ V0(ω). Let us
show, as a motivation, what happens in the autonomous case of (1). Hence, we consider the equation

x′′ = −ax+ b|x|λ sgnx+ µ. (4)

In view of our hypotheses h ≥ 0 a. e. on [0, ω], h(t) 6≡ 0 and since −a 6∈ V−(ω)∪V0(ω) if only if a > 0,
we assume that a, b > 0. By direct calculation, the phase portraits of equation (4) can be elaborated
depending on the choice of the parameter µ ∈ R (see, Fig. 2) and, thus, one can prove the following
proposition concerning the periodic solutions to equation (4).

µ = 14 µ = 3
√

3 µ = 4 µ = 2

µ = 0 µ = −4 µ = −3
√

3 µ = −14

Figure 2: Phase portraits of equation (4) with a = 9, b = 4, and λ = 3.

Proposition 3. Let λ > 1 and a, b > 0. Then, the following conclusions hold:

2

Figure 2. Phase portraits of equation (4) with a = 9, b = 4, and λ = 3.

We start with the most general statement of the text, which provides the existence/non-existence
results in the case of p ̸∈ V−(ω) ∪ V0(ω). This condition is satisfied, e.g., if

ω∫
0

p(s)ds ≤ 0, p(t) ̸≡ 0.

Theorem 1. Let λ > 1, p ̸∈ V−(ω) ∪ V0(ω), f(t) ̸≡ 0, and

h(t) > 0 for a. e. t ∈ [0, ω]. (5)

Then, there exist −∞ ≤ µ∗ < 0 and 0 < µ∗ ≤ +∞ such that the following conclusions hold:

(1) For any µ ∈ ]µ∗, µ
∗[ , problem (1) has a positive solution u∗ such that every solution u to

problem (1) satisfies

either u(t) < u∗(t) for t ∈ [0, ω], or u(t) ≡ u∗(t). (6)

Moreover, any couple of distinct positive solutions u1, u2 to (1) different from u∗ satisfies

min
{
u1(t)− u2(t) : t ∈ [0, ω]

}
< 0, max

{
u1(t)− u2(t) : t ∈ [0, ω]

}
> 0.

(2) If µ∗ < +∞ (e.g. provided that
ω∫
0

f(s)ds > 0), then
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(a) for µ > µ∗, problem (1) has no positive solution,
(b) for µ = µ∗, problem (1) has a unique non-negative solution u∗ and every solution u to

(1) satisfies (6).

(3) If µ∗ > −∞ (e.g. provided that
ω∫
0

f(s)ds < 0), then

(a) for µ < µ∗, problem (1) has no positive solution,
(b) for µ = µ∗, problem (1) has a unique non-negative solution u∗ and every solution u to

(1) satisfies (6).

It is clear that u is a solution to problem (1) if and only if −u is a solution to the problem

z′′ = p(t)z + h(t)|z|λ sgn z − µf(t); z(0) = z(ω), z′(0) = z′(ω).

Therefore, we get the following corollary from Theorem 1.

Corollary. Let λ > 1, p ̸∈ V−(ω) ∪ V0(ω), f(t) ̸≡ 0, and condition (5) hold. Then, there exists
0 < µ0 < +∞ such that, for any µ ∈ ]−µ0, µ0[ , problem (1) has a negative solution u∗ and a positive
solution u∗ such that every solution u to problem (1) different from u∗, u∗ satisfies

u∗(t) < u(t) < u∗(t) for t ∈ [0, ω].

We showed in [3, Example 2.8] that assuming p ̸∈ V−(ω) ∪ V0(ω), hypothesis (5) in Theorem 1
(i.e. the positivity of h a. e. on [0, ω]) is essential for the existence of a positive solution to problem
(1) with µ = 0 and cannot be weakened to the non-negativity of h. However, under a stronger
assumption on the coefficient p (namely, p ∈ V+(ω)), hypothesis (5) of Theorem 1 can be relaxed to

h(t) ≥ 0 for a. e. t ∈ [0, ω], h(t) ̸≡ 0. (7)

Theorem 2. Let λ > 1, p ∈ V+(ω), h satisfy (7), and

(p, f) ∈ U(ω),
ω∫

0

f(s)ds > 0. (8)

Then, there exist −∞ ≤ µ∗ < 0 and 0 < µ∗ < +∞ such that the following conclusions hold:

(1) For any µ > µ∗, problem (1) has no positive solution.
(2) For µ = µ∗, problem (1) has a unique positive solution u∗ and, moreover, every solution u to

problem (1) satisfies (6).
(3) For µ ∈ ]0, µ∗[ , problem (1) has exactly two positive solutions u1, u2 and these solutions

satisfy
u1(t) > u2(t) > 0 for t ∈ [0, ω].

Moreover, every solution u to problem (1) different from u1 is such that

u(t) < u1(t) for t ∈ [0, ω].

(4) For µ = 0, problem (1) has exactly three solutions: a positive solution u0, the trivial solution,
a negative solution −u0.

(5) For µ ∈ ]µ∗, 0[ , problem (1) has either one or two positive solutions. Moreover, (1) has
a positive solution u∗ such that every solution u to problem (1) satisfies (6).
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(6) If µ∗ > −∞, then, for any µ < µ∗, problem (1) has no positive solution.

Open questions. The following two questions remain open in Theorem 2:

(a) Does the inequality µ∗ > −∞ hold without any additional assumption?
(b) What happens in the case of µ = µ∗, if µ∗ > −∞ and h(t) = 0 on a set of positive measure?

Remark 2. Assuming f(t) ≥ 0 for a. e. t ∈ [0, ω], f(t) ̸≡ 0, the conclusions of Theorems 1 and 2
can be substantially refined (see [4, Theorems 3.6 and 3.14]).

Theorem 2 guarantees the existence of certain “critical” values µ∗, µ∗ of the parameter µ such
that crossing these values, a bifurcation of positive solutions to problem (1) occurs. From an
application point of view, the estimates of these numbers are also needed.

Proposition 2. Let λ > 1, p ∈ IntV+(ω), h satisfy (7), and
ω∫

0

[f(s)]+ds > Γ(p)

ω∫
0

[f(s)]−ds > 0,

where the number Γ(p), depending only on p, is defined in [2, Section 6]. Then, the numbers µ∗,
µ∗ appearing in the conclusion of Theorem 2 satisfy

µ∗ ≤ − (λ− 1)[∆(p)]−
λ

λ−1

λ
[
λ

ω∫
0

h(s)ds
] 1
λ−1

ω∫
0

[f(s)]−ds

,

where ∆(p) denotes a norm of Green’s operator of problem (8) (see [4, Remark 2.5]), and

(λ− 1)[∆(p)]−
λ

λ−1

λ
[
λ

ω∫
0

h(s)ds
] 1
λ−1

ω∫
0

[f(s)]+ds

≤ µ∗ <

(λ− 1)
[
Γ(p)

ω∫
0

[p(s)]−ds−
ω∫
0

[p(s)]+ds
] λ
λ−1

λ
[
λ

ω∫
0

h(s)ds
] 1
λ−1

[ ω∫
0

[f(s)]+ds− Γ(p)
ω∫
0

[f(s)]−ds
] .
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1 Introduction
Let T > 0 be given, J = [0, T ] and ∥x∥ = max{|x(t)| : t ∈ J} be the norm in C(J).

We discuss the fractional boundary value problem

cDαx(t)− p(t, x(t))cDα−1x(t) = f(t, x(t)), (1.1)
x(0) = x(T ), x′(0) = 0, (1.2)

where α ∈ (1, 2], p, f ∈ C(J × R) and cD denotes the Caputo fractional derivative.

Definition 1.1. We say that x : J → R is a solution of equation (1.1) if x′, cDαx ∈ C(J) and (1.1)
holds for t ∈ J . A solution x of (1.1) satisfying the boundary condition (1.2) is called a solution of
problem (1.1), (1.2).

The special case of (1.1) is the differential equation x′′−p(t, x)x′ = f(t, x). Problem (1.1), (1.2) is
at resonance, because each constant function x on J is a solution of problem cDαx−p(t, x)cDα−1x=0,
(1.2).

The aim of this paper is to give conditions guaranteeing the existence and uniqueness of solutions
to problem (1.1), (1.2). It is shown that this problem is reduced to the existence of a fixed point
of an integral operator S in the set C(J)× R. The Schaefer fixed point theorem [1] is applied for
solving S(x, c) = (x, c).

2 Preliminaries
We recall the definitions of the Riemann–Liouville fractional integral and the Caputo fractional
derivative [2, 3].

The Riemann–Liouville fractional integral Iγx of order γ > 0 of a function x : J → R is
defined as

Iγx(t) =

t∫
0

(t− s)γ−1

Γ(γ)
x(s)ds,

where Γ is the Euler gamma function. I0 is the identical operator.
The Caputo fractional derivative cDγx of order γ > 0, γ ̸∈ N, of a function x : J → R is given as

cDγx(t) =
dn

dtn

t∫
0

(t− s)n−γ−1

Γ(n− γ)

(
x(s)−

n−1∑
k=0

x(k)(0)

k!
sk
)

ds,
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where n = [γ]+1, [γ] means the integral part of the fractional number γ. If γ ∈ N, then cDγx = x(γ).
In particular,

cDγx(t) =
d

dt

t∫
0

(t− s)−γ

Γ(1− γ)
(x(s)− x(0))ds = d

dt
I1−γ(x(t)− x(0)) if γ ∈ (0, 1).

Let P,F : C(J) → C(J) be the Nemytskii operators associated to p, f ,
Px(t) = p(t, x(t)), Fx(t) = f(t, x(t)).

Equation (1.1) can be written as
cDαx(t)− Px(t)cDα−1x(t) = Fx(t).

Let an operator Q acting on C(J) be defined by the formula

Qx(t) =

t∫
0

Fx(s) exp

( t∫
s

Px(ξ)dξ
)

ds, t ∈ J.

Then Qx(t)|t=0 = 0, Q : C(J) → C1(J) and for x ∈ C(J), t ∈ J ,
(Qx(t))′ = Px(t)Qx(t) + Fx(t),

Iα−1Qx(t) = Iα(Qx(t))′ = Iα(Px(t)Qx(t) + Fx(t)). (2.1)
The following result deals with solutions x of equation (1.1) satisfying the initial condition

x(0) = c, x′(0) = 0, (2.2)
where c ∈ R.
Lemma 2.1. If x is a solution of the initial value problem (1.1), (2.2), then

x(t) = c+ Iα−1Qx(t), t ∈ J. (2.3)
Also vice versa if x ∈ C(J) satisfies (2.3), then x is a solution of problem (1.1), (2.2).

Let S : C(J)× R → C(J)× R be an operator defined by

S(x, c) =
(
c+ Iα−1Qx(t), c− Iα−1Qx(t)

∣∣
t=T

)
.

The relation between fixed points of S and solutions of problem (1.1), (1.2) is given in the
following result.
Lemma 2.2. If (x, c) ∈ C(J)×R is a fixed point of S, then x is a solution of problem (1.1), (1.2)
and c = x(0). If x is a solution of problem (1.1), (1.2), then (x, x(0)) ∈ C(J) × R is a fixed point
of S.
Proof. Let (x, c) ∈ C(J)× R be a fixed point of S. Then

x(t) = c+ Iα−1Qx(t), t ∈ J, (2.4)
Iα−1Qx(t)

∣∣
t=T

= 0. (2.5)
Now we conclude from Lemma 2.1 and equality (2.4) that x is a solution of (1.1) and x(0) = c,
x′(0) = 0. The equality x(T ) = c follows from (2.4) and (2.5). Hence x is a solution of problem
(1.1), (1.2).

Let x be a solution of problem (1.1), (1.2) and let x(0) = c. Then (see (1.2)) x(T ) = c. By
Lemma 2.1, x satisfies equality (2.3) which together with x(T ) = c gives Iα−1Qx(t)|t=T = 0.
Consequently, (x, c) is a fixed point of S.

Lemma 2.3. Operator S is completely continuous.
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3 Existence results
Theorem 3.1. Let

(H1) p(t, x) be bounded and nonnegative on J × R,

(H2) there exist D > 0 such that

xf(t, x) > 0 for t ∈ J, |x| ≥ D,

(H3) there exist A,B ∈ [0,∞) such that

|f(t, x)| ≤ A+B|x| for t ∈ J, x ∈ R.

Then problem (1.1), (1.2) has at least one solution. In addition, |x(0)| < D for each solution x of
this problem.

Proof. Keeping in mind Lemma 2.2, we need to prove that the operator S admits a fixed point in
C(J) × R. Since S is a completely continuous operator by Lemma 2.3, the Schaefer fixed point
theorem guarantees the existence of a fixed point of S if the set

M =
{
(x, c) ∈ C(J)× R : (x, c) = λS(x, c) for some λ ∈ (0, 1)

}
is bounded in C(J)× R.

In order to prove the boundedness of M, let (x, c) = λS(x, c) for some (x, c) ∈ C(J) × R and
λ ∈ (0, 1). Then

x(t) = λ
(
c+ Iα−1Qx(t)

)
, t ∈ J, (3.1)

c(λ− 1) = λIα−1Qx(t)
∣∣
t=T

. (3.2)

It follows from (2.1) and (3.1) that

x′(t) = λ
d

dt
Iα−1Qx(t) = λIα−1

(
Px(t)Qx(t) + Fx(t)

)
, t ∈ J, (3.3)

and x′(0) = 0. We claim that
|x(0)| < D, (3.4)

where D is from (H2). Suppose x(0) ≥ D. Then Fx(t)|t=0 = f(0, x(0)) > 0 by (H2), and therefore
Fx > 0 on [0, ρ] for some ρ ∈ (0, T ]. Since Px(t) = p(t, x(t)) ≥ 0 on J by the assumption, we have
Qx > 0 on (0, ρ] and then (see (3.3)) x′ > 0 on this interval. Thus x is increasing on [0, ρ] and
so x > D on (0, ρ]. Analysis similar to the above interval [0, ρ] shows that x ≥ D on J . Hence
Fx > 0 on J and therefore λIα−1Qx(t)|t=T > 0 contrary to (3.2) since c(λ − 1) < 0. We have
proved x(0) < D. Similarly we can prove x(0) > −D. Consequently, estimate (3.4) is valid.

Since (see (3.1)) x(0) = λc, we have

x(t) = x(0) + λIα−1Qx(t), t ∈ J.

Now by applying (3.4), (H1) and (H3), some calculations give

|x(t)| ≤ L1 + L2

t∫
0

|x(s)|ds, t ∈ J,

where L1, L2 are positive constants independent of λ. By the Gronwall–Bellman lemma, ∥x∥ ≤
L1e

L2T .
In order to give the bound for c, two cases if λ ∈ (0, 1/2] or λ ∈ (1/2, 1) are discussed.
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Example 3.1. Let k > 0, ρ ∈ (0, 1), q ∈ C(J) and w, r ∈ C(J × R) be bounded, |r(t, x)| ≤ P for
(t, x) ∈ J × R. Then the function

f(t, x) = r(t, x) + q(t)|x|ρ + kx

satisfies condition (H3) for A = P + ∥q∥, B = k + ∥q∥. Since

lim
x→±∞

P + ∥q∥|x|ρ

x
= 0,

there exists D > 0 such that
P + ∥q∥|x|ρ

x
> −k for x ≤ −D,

P + ∥q∥xρ

x
< k for x ≥ D.

Hence f satisfies condition (H2). By Theorem 3.1, there exists a solution of problem
cDαx− |w(t, x)|cDα−1x = r(t, x) + q(t)|x|ρ + kx,

x(0) = x(T ), x′(0) = 0.

4 Uniqueness results
In this section we assume that the function p(t, x) in equation (1.1) is independent of the variable
x, that is, p(t, x) = p(t). Hence we discuss the fractional differential equation

cDαx(t)− p(t)cDα−1x(t) = f(t, x(t)), (4.1)

where p ∈ C(J). According to Lemma 2.2, x is a solution of problem (4.1), (1.2) if and only if
x ∈ C(J),

x(t) = x(0) + Iα−1Qx(t) for t ∈ J and x(0) = x(T ),

where

Qx(t) =

t∫
0

Fx(s) exp

( t∫
s

p(ξ)dξ
)

ds.

Let A be the set of all solutions to problem (4.1), (1.2). Under conditions (H2), (H3) and p ≥ 0
on J , A ̸= ∅ and |x(0)| < D for x ∈ A by Theorem 3.1. We are interested in the structure of the
set A, especially when A is a singleton set, that is, when problem (4.1), (1.2) has a unique solution.

Lemma 4.1. Let p ≥ 0 on J and let (H2), (H3),

(H4) for each t ∈ J , f(t, x) is increasing in the variable x on R

hold. Then u(0) = v(0) for u, v ∈ A.

The following theorem says that if u, v ∈ A and u ̸= v, then the function u − v vanishes at
points tn of a sequence {tn} ⊂ (0, T ).

Theorem 4.1. Let (H2)–(H4) hold and let p ≥ 0 on J . Let u, v ∈ A and u ̸= v. Then there exists
a decreasing sequence {tn} ⊂ (0, T ), lim

n→∞
tn = 0, such that

u(tn)− v(tn) = 0 for n ∈ N.

We are now in the position to give the conditions for the existence of a unique solution to
problem (4.1), (1.2).
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Theorem 4.2. Let p ≥ 0 on J and let (H2)–(H4),

(H5) f satisfies the local Lipschitz condition on J×R, that is, for each S > 0 there is L = L(S) > 0
such that

|f(t, x1)− f(t, x2)| ≤ L|x1 − x2| for t ∈ J, x1, x2 ∈ [−S, S]

hold. Then problem (4.1), (1.2) has a unique solution.

Example 4.1. Let k > 0, ρ ∈ (0, 1), q, r ∈ C(J) and f(t, x) = r(t) + |x|ρ arctanx + kx. Then
f satisfies conditions (H2) and (H3) for D = ∥r∥/k and A = ∥r∥ + π/2, B = k + π/2. Since the
function ϕ(x) = |x|ρ arctanx+ kx has continuous derivative on R, ∂f

∂x ∈ C(J ×R), and therefore f
satisfies condition (H5). Clearly, f satisfies condition (H4). Consequently, by Theorem 4.2, there
exists a unique solution of problem

cDαx− |q(t)|cDα−1x = r(t) + |x|ρ arctanx+ kx,

x(0) = x(T ), x′(0) = 0.
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1 Basic concepts of the theory of time scales
A time scale, denoted by T, is defined as an arbitrary nonempty closed subset of the real axis. To
refer to a subset of the time scale, we use the notation AT, where AT represents the intersection of
set A of the real axis with the time scale T.

For every time scale there are defined two operators, the forward jump operator σ and the
backward jump operator ρ, which are integral to this theory. The forward jump operator is defined
as σ(t) = inf{s ∈ T : s > t}, while the backward jump operator is defined as ρ(t) = sup{s ∈
T : s < t}. It’s important to note that in this context, we assume that inf ∅ := supT and
sup∅ := inf T.

A key component of time scale theory is the graininess function, denoted as µ, which maps
elements of the time scale to the interval [0,∞]. It is defined as µ(t) = σ(t)− t.

Additionally, a point t ∈ T is characterized as left-dense (LD), left-scattered (LS), right-dense
(RD), or right-scattered (RS) based on conditions involving the operators ρ and σ. If T contains a
left-scattered maximum M , we define Tk = T \M ; otherwise, Tk = T.

Moreover, a function f : T → Rn is considered ∆-differentiable at t ∈ Tk if the limit

f∆(t) = lim
s→t

f(σ(t))− f(t)

σ(t)− t

exists in Rn.
Let us recall the following classical results (see [1, 2]):

(a) If t ∈ Tk is a right-dense point of T, then f is ∆-differentiable at t if and only if the limit

f∆(t) = lim
s→t

f(t)− f(s)

t− s

exists in Rn.

(b) If t ∈ Tk is a right-scattered point of T, and if f is continuous at t, then f is ∆-differentiable
at t, and

f∆(t) =
f(σ(t))− f(t)

µ(t)
.
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To delve into the properties of periodicity in dynamic equations on time scales, it is essential
to establish a clear understanding of periodicity on these time scales.

We say that a time scale T is called a periodic time scale if

Π :=
{
τ ∈ R : t± τ ∈ T, ∀ t ∈ T

}
̸= {0}.

The smallest positive τ ∈ Π is called the period of the time scale.

Definition 1.1 ([5]). Let T ̸= R be a periodic time scale with period τ . We say that the function
f : T → R is periodic if there exists a natural number n such that P = nτ , f(t+ P ) = f(t) for all
t ∈ T. The smallest positive number P is called the period of function f if f(t+ P ) = f(t) for all
t ∈ T.

If T = R, we say that f is periodic with period P > 0, if P is the smallest positive number such
that f(t+ P ) = f(t) for all t ∈ T.

It’s worth noting that if T is a periodic time scale with period τ , then the forward jump operator
σ exhibits periodic behavior, where σ(t+nτ) = σ(t)+nτ . This periodicity extends to the graininess
function, as

µ(t+ nτ) = σ(t+ nτ)− (t+ nτ) = σ(t)− t = µ(t).

In our subsequent study, we consider a set of periodic time scales denoted as Tλ, where λ ∈ Λ ⊂
R and λ = 0 serves as a limit point of the set Λ. It is assumed that for any λ ∈ Λ, inf Tλ = −∞,
supTλ = ∞, and the point t = 0 is a part of Tλ for all λ ∈ Λ.

Let Tλ be a periodic time scale with period τλ = ω
n(λ) , where n(λ) is a natural number. We set

µλ := sup
t∈Tλ

µλ(t), where µλ(t) : Tλ → [0,∞) is the graininess function. If µλ → 0 as λ → 0, then Tλ

converges to the continuous time scale T0 = R, and the dynamic equation system on the time scale
transforms into the corresponding system of differential equations. Due to the periodicity of the
graininess function µλ(t), on each subset of the time scale [t; t + τ ]λ ⊂ Tλ, the following equality
holds:

sup
t∈[t;t+τ ]λ

µλ(t) = µλ.

Hence, it is naturaly to expect that, under certain conditions, the existence of a periodic solution
in a differential equation implies the existence of a corresponding solution in the dynamic equation
on the periodic time scale Tλ, and vice versa.

2 Problem statement and auxiliary results
We consider the system of differential equations

dx

dt
= X(t, x), (2.1)

where x ∈ D, D ⊂ Rn is a domain in the space Rd, and the corresponding system of equations
defined on Tλ

x∆λ = X(t, xλ), (2.2)
where t ∈ Tλ, λ ∈ Λ ⊂ R, λ = 0 is a limit point of the set Λ, xλ : Tλ → Rn, and x∆λ (t) is the
∆-derivative of xλ(t) in Tλ.

Assume that X(t, x) is continuously differentiable and bounded with its partial derivatives, i.e.
there exists C > 0 such that

|X(t, x)|+
∣∣∣∂X(t, x)

∂t

∣∣∣+ ∥∥∥∂X(t, x)

∂x

∥∥∥ ≤ C
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for t ∈ R and x ∈ D. Here ∂X
∂x is the corresponding Jacobian matrix, | · | is the Euclidian norm of

a vector, and ∥ · ∥ is the norm of a matrix.
In addition, we also assume that the function X(t, x) is periodic in t with a period ω, i.e.

X(t+ ω, x) = X(t, x), t ∈ R, x ∈ D.

We need a lemma to address the evaluation of the discrepancy between the solutions of a Cauchy
problem for a system of differential equations and the corresponding solutions of dynamic equations
on time scales, given that they share the same initial conditions.

Lemma 2.1 ([4]). Let t0 ∈ Tλ, t0 + T ∈ Tλ, xλ and x(t) are the solutions of (2.2) and (2.1) on
[t0, t0+T ] and [t0, t0+T ]Tλ

, respectively. Then if the initial conditions x(t0) = xλ(t0) = x0, x0 ∈ D
are satisfied, the following inequality holds

|x(t)− xλ(t)| ≤ µ(λ)K(T ),

where

µ(λ) = sup
t∈[t0,t0+T ]Tλ

µλ(t) for t ∈ [t0, t0 + T ]Tλ
,

K(T ) = eC(T+1)
(
C +

C2T

4

)
+ 3C is constant.

Let us define the notion of asymptotic stability for solutions of dynamic equations on time
scales, drawing parallels with the definition of asymptotic stability in the context of differential
equations as outlined in [3].

Definition 2.1. A solution xλ(t) of system (2.2), defined on a family of time scales Tλ, is called
uniformly in t0 and λ asymptotically stable if for any ε > 0 there exist δ > 0 and T > 0, which do
not depend on t0 and λ, such that if yλ(t) is a solution of system (2.2) and

|xλ(t0)− yλ(t0)| < δ,

then

|xλ(t)− yλ(t)| < ε, if t ≥ t0,

|xλ(t)− yλ(t)| ≤
δ

2
, if t ∈ [t0 + T,∞)Tλ

.

3 Main results
We were considering the sequence of periodic time scales Tλ with the smallest period τ(λ) such
that τ(λ) approaches 0 as λ → 0, and τ(λ)

ω is rational. And we delineated prerequisites for the
existence of a periodic solution to the system described by equation (2.1), provided that the system
(2.2) already possesses a periodic solution.

Theorem 3.1. Suppose there exists a positive value λ0 such that for all λ less than λ0, the system
of differential equations (2.2) has a uniformly along t0 ∈ Tλ and λ asymptotically stable periodic
solution xλ(t), which belongs to the domain D along with ρ-neighborhood. Then the dynamic system
(2.1) also has a periodic solution with period p = rω, where r is an integer.
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Proof. Since xλ(t) is asymptotically stable, then for any ε > 0 (ε < ρ
2) there exist δ > 0 (δ < ε)

and T̃ > 0, which are independent of t0 and λ, such that if

|xλ(t0)− yλ(t0)| ≤ δ,

then

|xλ(t)− yλ(t)| < ε, if t ≥ 0, (3.1)

|xλ(t)− yλ(t)| ≤
δ

2
, if t ∈ [T̃ ,∞)λ. (3.2)

Without loss of generality, it can be assumed that t0(λ) = 0. Let T be the smallest point right
from T̃ such that T = r0ω, r0 is an integer.

Let us choose λ0 such that for any λ < λ0 and for the defined δ > 0 and T the following
conditions hold:

(1) the corresponding time scale Tλ with the graininess function µλ has the period τλ = ω
m0

, m0

is an integer;

(2) if yλ(t) is a solution of the dynamic system (2.2) on time scale Tλ and φ(t) is a solution of
the differential system (2.1) such that φ(tk) = yλ(tk), tk ∈ Tλ, then the following inequality
holds:

|φ(t)− yλ(t)| <
δ

2
, t ∈ [tk, tk+1]λ, (3.3)

where tk+1 is the smallest point in the interval [tk + T, tk + T +1]Tλ
such that tk+1 = ik+1τλ,

with ik+1 ∈ N. As λ → 0 both µλ and τλ tend to zero, which ensures the existence of such a
point for sufficiently small graininess function.

Since we can choose λ0 such that for any λ < λ0 it holds µλK(T+1) ≤ δ/2, then, by Lemma 2.1,
the inequality (3.3) holds.

For the corresponding µλ, according to the conditions of Theorem 3.1 and Definition 1.1, the
system (2.2) has a periodic asymptotically stable solution xλ(t) with a period Pλ = n0τλ.

We consider the δ-neighborhood of the point xλ(0). Let y0 be any point in this neighborhood.
Then

|xλ(0)− y0| ≤ δ.

Let φ(t, y0) be a solution of the system (2.1), and let yλ(t) be a solution of the system (2.2),
both satisfying the initial condition φ(0, y0) = yλ(0) = y0 at the point t0(λ) = 0.

Let’s consider the interval [0, T ]λ. Since T = r0ω, ω = m0τλ and i1 := r0m0, then T = r0m0τλ =
0 + i1τλ = t1 ∈ Tλ. So, from the inequalities (3.1) and (3.2) it follows that

|yλ(T )− xλ(T )| ≤
δ

2
.

Consequently, considering (3.2), (3.3), we obtain

|xλ(T )− φ(T, y0)| ≤ |xλ(T )− yλ(T )|+ |yλ(T )− φ(T, y0)| < δ.

Thus, the solution φ(t) of the system (2.1), which starts in the δ-neighborhood of xλ(0), does
not leave the 2ε-neighborhood of the solution xλ(t) of the system (2.2) on the interval [0, T ]λ of
time scale Tλ, returns to the δ-neighborhood of xλ(t) at time T , provided that the solution φ(t) is
defined on the interval [0, T ].
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Let ŷλ(t) be a solution of the system (2.2) such that its initial conditions coincide with the
initial conditions of the solution φ(t) at time T :

φ(T ) = ŷλ(T ).

Let’s consider the interval [T, 2T ]Tλ
. If i2 := 2r0m0, then we get

2T = 2r0m0τλ = 0 + i2τλ = t2 ∈ Tλ.

So,

|ŷλ(2T )− xλ(2T )| ≤
δ

2

and we have
|xλ(2T )− φ(2T )| < δ.

Continuing this process, we obtain on each interval [(k − 1)T, kT ]

|xλ(kT )− φ(kT )| < δ.

Recall that the time scale Tλ has a period τλ = ω
m0

, and, according to the definition 1.1, the
solution xλ has a period Pλ = n0τλ.

Then, at the point tkM = Mτλ := rω from the set of points {tk = kT}, r is divisible by n0, we
have:

|xλ(tkM )− φ(rω)| < δ,

where M is a common multiple of m0, r0 and n0.
Because xλ(tkM ) = xλ(0), π : y0 → φ(rω, y0) maps the ball of radius δ onto itself. Thus, there

exists a fixed point y1 of the mapping π such that

φ(rω, y1) = y1.

This implies that the solution of the system (2.1) with the initial condition φ(0) = y1 is periodic
with a period rω, which completes the proof.

The next theorem establishes the existence of a periodic solution of the system (2.2) on Tλ, if
the system (2.1) has the corresponding periodic solution.

Theorem 3.2. Suppose the system of dynamic equations (2.1) has an asymptotically stable periodic
solution x(t) with a period ω, which belongs to the domain D with ρ-neighborhood. Then there exist
λ0 > 0 such that for all λ < λ0 the differential system (2.2) has at least one periodic solution with
a period rω on Tλ, where r is an integer.
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1 Introduction
Recently, there has been an increasing interest in studying differential equation with variable ex-
ponents, that is, differential equations with α(t)-Laplacian (Generally referred to as p(t)-Laplacian
and see below for the details) of the form(

p(t)φα(t)(x
′)
)′
+ q(t)φβ(t)(x) = 0, t = a, (A)

where α(t), β(t), p(t) and q(t) are positive continuous functions on [a,∞), a = 1 and use is made
of the notation

φγ(t)(ξ) = |ξ|γ(t)−1ξ = |ξ|γ(t) sgn ξ, ξ ∈ R, γ ∈ C[1,∞).

By a solution of (A) we mean a function x ∈ C1[Tx,∞), Tx = a, which has the property
p(t)φα(t)(x

′) ∈ C1[Tx,∞) and satisfies the equation at all points t = Tx. A nontrivial solution x(t)
of (A) is said to be nonoscillatory if x(t) ̸= 0 for all large t and oscillatory otherwise. In this talk
we restrict our attention to its eventually positive solutions.

The first interest in α( · )-type Laplacian (i.e., p( · )-type Laplacian) was in function spaces called
variable exponent spaces. Variable exponent spaces appeared in the literature for the first time in
a 1931 paper by Orlicz ([9]). In 2000 and 2011, Růžička and Diening et al. studied equation with
non-standard p(x)-growth in the modeling of the so-called electrorheological fluids ([10]) and the
Lebesgue and Sobolev spaces with variable exponetns([2]), respectively. The mathematically and
physically importance of p( · )-type Laplacian was recognized by the above-mentioned Růžička’s
monograph (see [8]).

In recent years, there has been well analyzed the oscillatory and nonoscillatory behavior of the
equation with p(t)-Laplacian(

a(t)φp(t)−1(x
′)
)′ ± b(t)φq(t)−1(x) = 0, t = a, (p(t) = q(t) or p(t) ̸= q(t)),

which is of the same type as (A) but written in a different representation of p(t) = a(t), q(t) = b(t),
α(t) = p(t)− 1 (p(t) > 1) and β(t) = q(t)− 1 (q(t) > 1) in equation (A) (see [1, 3–7]).

To the best of the author’s knowledge, detail is unknown about nonoscillatory behavior of
(A), and so in this talk we make an attempt to investigate in detail the existence and asymptotic
behavior of eventually positive solutions of (A).

2 Existence of positive solutions
In this talk we make the following assumptions without further mentioning:

∞∫
a

[ k

p(t)

] 1
α(t)

dt = ∞ (2.1)
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for every constant k > 0, and employ the notation

Pα(t),k(t) =

t∫
T

[ k

p(s)

] 1
α(s)

ds, t = T = a. (2.2)

From (2.1) and (2.2) it is obvious that

Pα(T ),k(T ) = 0, lim
t→∞

Pα(t),k(t) = ∞ for every k > 0,

Pα(t),k(t) > Pα(t),l(t), t > T for k > l > 0 and lim
k→0

Pα(t),k(t) = 0 for each t = T.

First of all, we begin by classifying all possible positive solutions of equation (A) according to
their asymptotic behavior as t → ∞.

Lemma 2.1. One and only one of the following cases occurs for each positive solution x(t) of (A):

I. lim
t→∞

p(t)φα(t)(x
′(t)) = const. > 0, lim

t→∞
x(t) = ∞;

II. lim
t→∞

p(t)φα(t)(x
′(t)) = 0, lim

t→∞
x(t) = ∞;

III. lim
t→∞

p(t)φα(t)(x
′(t)) = 0, lim

t→∞
x(t) = const > 0.

We want to obtain criteria for the existence of positive solutions of (A) of type I, II and III.

Theorem 2.1. Suppose that for each fixed k > 0 and T = a,

lim
l→0

Pα(t),l(t)

Pα(t),k(t)
= 0 (2.3)

uniformly on any interval of the form [T1,∞), T1 > T . Then equation (A) possesses a positive
solution of type I if and only if

∞∫
a

q(t)(Pα(t),k(t))
β(t) dt < ∞ for some constant k > 0. (2.4)

Theorem 2.2. Equation (A) possesses a positive solution of type III if and only if
∞∫
a

[
1

p(t)

∞∫
t

q(s)cβ(s) ds

] 1
α(t)

dt < ∞ for some constant c > 0. (2.5)

Unlike the solution of the types I and III it is difficult to characterize the type II solution of (A),
and so we content ourselves with sufficient conditions for the existence of such solutions of (A).

Theorem 2.3. Suppose that (2.3) holds. Equation (A) possesses a positive solution of type II if
(2.4) holds for some constant k > 0 and

∞∫
a

[
1

p(t)

∞∫
t

q(s)dβ(s) ds

] 1
α(t)

dt = ∞ (2.6)

for every constant d > 0.
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3 Examples
We now present some examples illustrating Theorem 2.1 obtained in Section 2.

Example 3.1. Consider the equations with variable exponents of nonlinearity(
e−(t2−1)φt(x

′)
)′
+ q1(t)φt(x) = 0, t = e, (E1)(

e−(t2−1)φt(x
′)
)′
+ q2(t)φ 1

t
(x) = 0, t = e, (E2)

and (
e−(1− 1

t2
)φ 1

t
(x′)

)′
+ q3(t)φ 1

t
(x) = 0, t = e, (E3)

where the functions qi(t), i = 1, 2, 3, are

q1(t) = e−(t2−1)
(
1 +

1

t2

)t{ 2

t2 + 1
− log

(
1 +

1

t2

)}
,

q2(t) = e−(1− 1
t2

)
(
1 +

1

t2

)t{ 2

t2 + 1
− log

(
1 +

1

t2

)}
,

and
q3(t) = e−(1− 1

t2
) 1

t2

(
1 +

1

t2

) 1
t
{ 2

t2 + 1
+ log

(
1 +

1

t2

)}
,

respectively. They are special cases of (A) with α(t) = t in (Ei), i = 1, 2, α(t) = 1/t in (E3),
β(t) = t in (E1), β(t) = 1/t in (Ei), i = 2, 3, p(t) = e−(t2−1) in (Ei), i = 1, 2, p(t) = e−(1− 1

t2
) in

(E3) and q(t) = qi(t), i = 1, 2, 3 in the above. The functions p(t) = e−(t2−1) and p(t) = e−(1− 1
t2

)

satisfy (2.1) with k = 1 and, in addition, the function Pα(t),1(t) associated with (Ei), i = 1, 2, 3 is

Pα(t),1(t) =

t∫
e

[ 1

p(s)

] 1
α(s)

ds =

t∫
e

es−
1
s ds ∼ et−

1
t as t → ∞

by (2.2), where the symbol ∼ is used to denote the asymptotic equivalence

f(t) ∼ g(t) as t → ∞ ⇐⇒ lim
t→∞

f(t)

g(t)
= 1.

Since
∞∫
e

q1(t)(Pt,1(t))
t dt =

∞∫
e

e−(t2−1)
(
1 +

1

t2

)t{ 2

t2 + 1
− log

(
1 +

1

t2

)}
(et−

1
t )t dt

=

∞∫
e

(
1 +

1

t2

)t{ 2

t2 + 1
− log

(
1 +

1

t2

)}
dt < ∞,

∞∫
e

q2(t)(Pt,1(t))
1
t dt =

∞∫
e

(
1 +

1

t2

)t{ 2

t2 + 1
− log

(
1 +

1

t2

)}
dt < ∞,

and
∞∫
e

q3(t)(P 1
t
,1(t))

1
t dt =

∞∫
e

1

t2

(
1 +

1

t2

) 1
t
{ 2

t2 + 1
+ log

(
1 +

1

t2

)}
dt < ∞,
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we can apply Theorem 2.1 to conclude that there exists a positive solution of type I such that
x(t) = et−

1
t , which satisfies

lim
t→∞

p(t)φt(x
′(t)) = lim

t→∞

(
1 +

1

t2

)t
= 1, lim

t→∞
x(t) = ∞

for (Ei), i = 1, 2 and that for (E3)

lim
t→∞

p(t)φ 1
t
(x′(t)) = lim

t→∞

(
1 +

1

t2

) 1
t
= 1, lim

t→∞
x(t) = ∞.
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Following [1], we give the definition of topological entropy that will be necessary hereafter. Let
X be a compact metric space with a metric d and f : X → X a continuous mapping. Along with
the original metric d, we define an additional system of metrics on X:

dfn(x, y) = max
0≤i≤n−1

d
(
f i(x), f i(y)

)
, x, y ∈ X, n ∈ N,

where f i, i ∈ N, is the i-th iteration of f, f0 ≡ idX . For any n ∈ N and ε > 0, denote by Nd(f, ε, n)

the maximum number of points in X, pairwise dfn-distances between which are greater than ε. Then
the topological entropy of the mapping f is defined by the formula

hd(f, x) = lim
ε→0

lim
n→∞

1

n
lnNd(f, ε, n).

Let C(X,X) denote the set of continuous mappings from X to X with the metric

ρ(f, g) = max
x∈X

d(f(x), g(x)).

Consider the function
f 7−→ htop(f). (1)

It was proved in [2] that function (1) belongs to the second Baire class on the space C(X,X), and
the set of points in the space C(X,X) at which function (1) is lower semicontinuous contains an
everywhere dense Gδ set. It was established in [3] that the set of points of lower semicontinuity
itself is an everywhere dense Gδ set in C(X,X).

If X coincides with the Cantor set K on the interval [0, 1] with the metric induced by the natural
metric of the real line, then function (1) is everywhere discontinuous and is lower semicontinuous
only at the points where the topological entropy is equal to zero [3]. It was demonstrated in [4]
that function (1) does not belong to the first Baire class even on the subspace of homeomorphisms
satisfying the Lipschitz condition.

Let us denote by Eh(f) the set of limiting realizable values of topological entropy, i.e. those
that are obtained for arbitrarily small uniform perturbations of the mapping f :

Eh(f) =
∩
n∈N

{
htop(g) : ρ(f, g) < n−1

}
.

Theorem 1 ([5]). For each continuous mapping f : K → K, the equality Eh(f) = [0;+∞] holds.
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Given a metric space M and a continuous mapping f : M → C(X,X) let us construct a
function

µ 7−→ htop(f(µ, · ). (2)

From [2] and [3] it follows that the set of points in the space M at which function (2) is lower
semicontinuous is an everywhere dense Gδ set. In the case M = X = K for any everywhere dense
Gδ set A ⊂ M, there is a continuous mapping f : M → C(X,X) such that htop(f(A, · ) = 0 and
htop(f(M\A, · ) = +∞ [5]. In particular, the set of points of lower semicontinuity of function (2)
coincides with the set A. It turns out that using the method of [5] one can prove the following

Theorem 2. If M = X = K, then for any number h > 0 and an everywhere dense Gδ set A ⊂ M,
there is a continuous mapping f : M → C(X,X) such that the equalities htop(f(A, · )) = 0 and
htop(f(M\A, · )) = h are satisfied.
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Abstract

The general theory of quaternion q-difference equations is essentially different from the traditional
q-difference equations in the complex space for the non-commutative algebraic structure of the
quaternionic algebra. In this talk, we will present some basic results such as the Wronskian,
Liouville formula and the general solution structure theorems of the higher-order linear quaternion
q-difference equations (short for QQDCEs) with constant and variable coefficients by applying the
quaternion characteristic polynomial and the quaternion determinant algorithm.

1 Introduction
In 1843, Hamilton initiated the quaternion space H to extend and develop the complex field C and
applied it to mechanics in three-dimensional space. With the large development of the quaternion
algebra, it demonstrates a great superiority over the real-valued vectors and has been widely applied
to depicting some complex phenomena in physics, space geometric analysis, especially in the aspects
of flight dynamics, molecular dynamics and three-dimensional rotations, etc. (see [1, 2]).

The unified form called dynamic equations on time scales were introduced to combine these
both continuous and discrete forms and the common features of the continuous and discrete dy-
namic equations have been extensively studied (see [5]). Recently, the quaternion differential and
difference equations have been widely studied in both theoretical aspects and application area, the
quaternionic dynamics described by these equations perfectly present the dynamical behavior of
the status of the objects comparing with the complex equations since the various shift transforms
such as the rotations in the quaternion space can be easily expressed and accurately calculated.
In 2020–2021, the authors established some basic results of quaternion dynamic equations on time
scales, and some real applications were provided (see [3, 4]).

In [6], Wang, Chen and Li established the general theory of the higher-order quaternion linear
difference equations via the complex adjoint matrix and the quaternion characteristic polynomial
and it is largely different from the general theory of the traditional difference equations since the
non-commutativity under the quaternion multiplication (i.e., ab ̸= ba for a, b ∈ H). In [7], the
general theory of the higher-order linear quaternion q-difference equations was established.
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2 Preliminaries
We assume that 0 < q < 1, qN := {qn : n ∈ N} ∪ {0}. For convenience, we introduce some
notations. The symbol N denotes the set of non-negative integers, C the complex numbers, Mm(H)
the m×m-order quaternionic matrices and Mm(C) the m×m-order complex matrices.

Next, some basic knowledge of the quaternion algebra is necessary. Let q̃, q̃ ′ ∈ H, if there exists
w ∈ H \ {0} such that q̃ ′ = wq̃w−1, then we say that q̃ is equivalent to q̃ ′, for convenience, we
denote it by q̃ ′ ∼ q̃. Let also q̃ = q̃0 + q̃1 i+ q̃2 j+ q̃3 k ∈ H, we define χ : H → R by χ(q̃) = q̃0 and
define the set [q̃] = {q̃ ′ ∈ H|q̃ ′ ∼ q̃}, then the following results hold:

(i) |q̃ ′| = |wq̃w−1| = |q̃|;

(ii) if q̃ ′ ∼ q̃, then χ(q̃ ′) = χ(q̃);

(iii) [q̃] ⊂
{
q̃ ′ ∈ H : χ(q̃ ′) = χ(q̃), |q̃ ′| = |q̃|

}
;

(iv) if q̃ ∼ q̃0 + i
√
q̃ 2
1 + q̃ 2

2 + q̃ 2
3 , then

[q̃ ] =
{
q̃0 + x1 i+ x2 j+ x3 k : x21 + x22 + x23 = q̃ 2

1 + q̃ 2
2 + q̃ 2

3

}
.

For any a ∈ C, we introduce the q-shifted factorial by

(a, q)n = 1, n = 0;

(a, q)n =

n−1∏
l=0

(1− aql), n ∈ N;

(a, q)∞ =

∞∏
l=0

(1− aql).

Moreover, we obtain

(a, q)∞ =
∞∑
n=0

(−1)nq
n(n−1)

2
an

(q; q)n

if lim
n→∞

(a; q)n exists.
Now, we will introduce the definition of the q-difference operator.

Definition 2.1 (see [7]). Let f : qN → H, the q-difference operator is defined by

Dqf(t) =


f(qt)− f(t)

qt− t
, t ̸= 0,

lim
n→∞

f(qn)− f(0)

qn
, t = 0.

The concept of integrable quaternion-valued functions on qN can be introduced naturally as
follows.

Definition 2.2 (see [7]). Let f : qN → H, t, s ∈ qN, f(t) = f (0)(t) + f (1)(t) i+ f (2)(t) j+ f (3)(t)k.
If f (l)(t) is integrable for l = 0, 1, 2, 3, then we say that f(t) is integrable, i.e.,

t∫
s

f(t) dqt =

t∫
s

f (0)(t) dqt+

t∫
s

f (1)(t) dqt i+

t∫
s

f (2)(t) dqt j+

t∫
s

f (3)(t) dqtk.
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Now, let b ∈ H, we define the quaternion q-exponential by

ebq :=

∞∑
l=0

bl

(q; q)l
, l ∈ N.

Consider the following initial value problem of the quaternion q-difference equation:

Dqx(t) = bx(t), x(t0) = x0, (2.1)

where b, x0 ∈ H.

Lemma 2.1 (see [7]). The solution of (2.1) with the q-exponential form can be given as

x(t) = ebt(1−q)
q x0 =

∞∑
l=0

(bt(1− q))l

(q; q)l
x0.

Based on Lemma 2.1, one can obtain the following functions immediately.

Definition 2.3 (see [7]). Let b ∈ H, t ∈ qN, we define the sine and cosine functions by
sinq(bt) :=

1

2 i

(
eibt(1−q)
q − e−ibt(1−q)

q

)
=

1

i

∞∑
l=0

(ibt(1− q))2l+1

(q; q)2l+1
,

cosq(bt) :=
1

2

(
eibt(1−q)
q + e−ibt(1−q)

q

)
=

∞∑
l=0

(ibt(1− q))2l

(q; q)2l
.

3 Existence and uniqueness of the solution for the higher-order
linear quaternion q-difference equations

Consider the higher-order linear quaternion q-difference equations as follows{
am(t)Dm

q x(t) + am−1(t)D
m−1
q x(t) + · · ·+ a1(t)Dqx(t) + a0(t)x(t) = B(t), t ∈ qN,

Dl
qx(t0) = vl,

(3.1)

where am, . . . , a1, a0, B : qN → H, vl ∈ H, 0 ≤ l ≤ m − 1. Let bl(t) = a−1
m (t)al(t), then (3.1) is

equivalent to the following q-difference equation{
Dm

q x(t) + bm−1(t)D
m−1
q x(t) + · · ·+ b1(t)Dqx(t) + b0(t)x(t) = B̃(t), t ∈ qN,

Dl
qx(t0) = vl,

(3.2)

where
B̃(t) = a−1

m (t)B(t).

Below, though applying the transforms x0(t) = x(t), x1(t) = Dqx(t), . . . , xm−1(t) = Dm−1
q x(t),

one has that (3.2) is equivalent to

Dqxl(t) = fl
(
t, x0(t), x1(t), . . . , xm−1(t)

)
=

{
xl+1(t), l = 0, 1, . . . ,m− 2,

f(t, x0(t), x1(t), . . . , xm−1(t)), l = m− 1,
(3.3)

where

f
(
t, x0(t), x1(t), . . . , xm−1(t)

)
=

m−1∑
l=0

(
− bl(t)D

l
qx(t)

)
+ B̃(t), xl(t0) = vl, 0 ≤ l ≤ m− 1.
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Definition 3.1 (see [7]). Let t ∈ qN, we define the set Dl(H) as

Dl(H) :=
{
xl( · ) ∈ H : |xl(t)− vl| < α

}
,

where {xl(t)}m−1
l=0 is continuous at t = t0 and bounded at t ̸= t0, i.e., lim

t→t0
xl(t) = xl(t0) = vl ∈ H

and there exists M > 0 such that |x(t)| ≤ M for all t ∈ qN, α > 0, l = 0, 1, . . . ,m − 1, |p| =√
p20 + p21 + p22 + p23 for p = p0 + p1 i+ p2 j+ p3 k ∈ H.

Next, we will establish the solutions of (3.3) with the initial value xl(t0) = vl.

Theorem 3.1 (see [7]). Let t ∈ qN, fl : qN×D0(H)×D1(H)×· · ·×Dm−1(H) → H, 0 ≤ l ≤ m− 1.
If fl(t, x0(t), x1(t), . . . , xm−1(t)) satisfies the following conditions:

(i) fl(t, x0(t), x1(t), . . . , xm−1(t)) is continuous at t = t0 and boundedat t ̸= t0.

(ii) fl(t, x0(t), x1(t), . . . , xm−1(t)) satisfies the Lipschitz condition, i.e., there exists a constant
K > 0 such that

∣∣∣fl(t, x0(t), x1(t), . . . , xm−1(t)
)
− fl

(
t, x̃0(t), x̃1(t), . . . , x̃m−1(t)

)∣∣∣ ≤ K
m−1∑
l=0

(
|xl(t)− x̃l(t)|

)
,

where xl( · ), x̃l( · ) ∈ Dl(H).

Then (3.3) with the initial value xl(t0) = vl has an unique solution on [t0 − h, t0 + h] ∩ qN, where
h = min{ 1

Km(1−q) ,
α
B},

B := max
0≤l≤m−1

sup
|xl(t)−vl|<α

∣∣fl(t, x0(t), x1(t), . . . , xm−1(t)
)∣∣, α > 0.

Theorem 3.2 (see [7]). Let t0 ∈ qN, h > 1−q, where h = min{ 1
Km(1−q) ,

α
B}. If (3.3) has an initial

value xl(t0) = vl, then (3.3) has an unique solution on qN.

4 Solving higher-order linear quaternion q-difference equations

In this section, we shall consider the following initial value problem:

DqW (t) = A(t)W (t), W (0) = W0, (4.1)

where W : qN → Hd, W0 ∈ Hd, d ∈ N, Hd is the d-dimensional quaternion space, A(t) =
(auv(t))

d
u,v=1 ∈ Hd, auv(t) is continuous at t = 0 and bounded at t ̸= 0.

Theorem 4.1 (see [7]). If I − (1 − q)qltA(qlt) is invertible for l ∈ N. Then the solution of (4.1)
can be represented by

W (t) =
∞∏
l=0

[
I − (1− q)qltA(qlt)

]−1
W0,

where t ∈ qN, A(t) is a d× d quaternion matrix and I is an identity matrix.
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1 Introduction
For a given integer n ≥ 2 let Mn denote the class of linear differential systems

ẋ = A(t)x, x ∈ Rn, t ∈ R+ ≡ [0,+∞), (1.1)

with continuous bounded coefficients defined on R+.
Let us identify the system (1.1) with the matrix-valued function A : R+ → Rn×n and use the

following notation: A ∈ Mn.
Recall that the characteristic exponent (or the Lyapunov exponent) of a function x( · ) is [6,

p. 552], [1, p. 25]
χ(x) = lim

t→+∞
ln ∥x(t)∥1/t.

We denote by s(A) the stability index of a system A ∈ Mn, i.e. the dimension of the linear
subspace of bounded solutions to this system, and by es(A) its exponential stability index, that
is the dimension of the linear subspace of solutions to this system having negative characteristic
exponents. One can see that the following inequality holds:

s(A) ≥ es(A).

O. Perron in his paper [7] constructed an example of a system A ∈ M2 and its continuous
exponentially decaying (2× 2)-dimensioned perturbation Q( · ) such that the initial system has its
exponential stability index equal to 2, and the perturbed system

ẋ = (A(t) +Q(t))x, x ∈ R2, t ∈ R+,

has both its stability indices equal to 1.
There is another interesting example presented by O. Perron [8]. He describes a diagonal system

A ∈ M2 with the exponential stability index equal to 2 (and with the same stability index) and its
continuous higher-order perturbation f( · , · ) such that the stability index of the perturbed system
ẋ = A(t)x+ f(t, x) equals 0 (and so does its exponential stability index).

Thus, both examples demonstrate the effect of loss of stability. These examples had initiated a
lot of research aimed to learn how perturbations of different types can affect stability of systems in
Mn. The results obtained in this direction form a considerable part of the contemporary Lyapunov
exponent theory. When a perturbation is in a certain sense “small”, the effect of loss of stability
is called the Perron effect [5, Chapter 4]. Starting with the paper [4], this term is used only when
perturbations do not decrease the Lyapunov exponents of the initial system, and we adhere to this
terminology.



220 M. I. Zaidel

2 Statement of the problem and the main result
In this paper we present a kind of generalization of the Perron effect. To this end, for a system
A ∈ Mn and a metric space M we consider the class En[A](M) consisting of jointly continuous
matrix-valued functions Q : R+ ×M → Rn×n satisfying the following two conditions.

The first one is the estimate

∥Q(t, µ)∥ ≤ CQ exp(−σQt) for all (t, µ) ∈ R+ ×M,

where CQ and σQ are positive constants (generally, different for each function Q).
The second condition is that the stability and exponential stability indices of the perturbed

system A + Q, being functions of µ ∈ M and denoted by s( · ;A + Q) and es( · ;A + Q), do not
exceed the corresponding stability indices of the system A, i.e.

s(µ;A+Q) ≤ s(A) and es(µ;A+Q) ≤ es(A) for all µ ∈ M.

We state the problem in the following way. Our task is for any integer n ≥ 2 and metric space M
to give a complete functional description of the class of pairs ((s(A), es(A)), (s( · ;A+Q), es( · ;A+
Q))) composed of the stability indices of the initial system A and those of the perturbed system
A+Q. The system A here ranges over Mn, and for every A the matrix-valued function Q ranges
over the set En[A](M). Thus, our problem is to present a complete functional description of the
following class:

Σ En(M) ≡
{(

(s(A), es(A)), (s( · ;A+Q), es( · ;A+Q))
)
| A ∈ Mn, Q ∈ En[A](M)

}
.

Before we could formulate the main result, let us remind the reader that a function f : M → R
is called [3, pp. 266–267] a function of the class (Fσ,

∗) if for any r ∈ R the preimage of the half-line
(r,+∞) is an Fσ-set in the space M , i.e. it can be represented as a countable union of closed
subsets of M . In particular, the class (Fσ,

∗) is a subclass of Baire class 2 [3, p. 294]. Let us also
denote the set {0, 1, . . . , n} by Zn.

The solution to the problem is stated by the following

Theorem 1. Let M be a metric space and n > 2 an integer. A pair ((α0, β0), (α( · ), β( · )) with
α0, β0 ∈ Zn and α( · ), β( · ) : M → Zn belongs to the class Σ En(M) if and only if the following
conditions are met:

1) α0 ≥ β0;

2) α(µ) ≥ β(µ) for all µ ∈ M ;

3) α(µ) ≤ α0,β(µ) ≤ β0 for all µ ∈ M ;

4) the functions α( · ) and β( · ) are of the class (Fσ,
∗).

3 Corollaries and remarks
Let M be a metric space. For an integer n ≥ 2 we consider a family of linear systems depending
on a parameter µ ∈ M of the form

ẋ = A(t, µ)x, x ∈ Rn, t ∈ R+, (3.1)

such that for each fixed µ ∈ M the matrix-valued function A( · , µ) : R+ → Rn×n is continuous and
bounded (generally, the bounding constant is different for each µ).
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Usually, a family of mappings A( · , µ), µ ∈ M , is considered under one of the two following
natural assumptions: the family is continuous in a) the compact-open topology or b) the uniform
topology. The case a) is equivalent to the condition that if a sequence (µk)k∈N of points from M
converges to a point µ0 ∈ M , then the sequence (A(t, µk))k∈N of matrices converges uniformly over
each interval [0, T ] ⊂ R+ to the matrix A(t, µ0) as k → +∞. The case b) differs from a) in that the
convergence is uniform over the whole half-line R+. We denote the class of families (3.1) that are
continuous in the compact-open topology by Cn(M) and those that are continuous in the uniform
topology by Un(M). Clearly, Un(M) ⊂ Cn(M).

Further, we identify the family (3.1) with the matrix-valued function A( · , · ) specifying it and
use the following notation: A ∈ Cn(M) or A ∈ Un(M).

Corollary. Let M be a metric space. For any integer n ≥ 2, the classes of pairs of functions

Σ Cn(M) ≡
{
(s( · ;A), es( · ;A)) | A ∈ Cn(M)

}
and

ΣUn(M) ≡
{
(s( · ;A), es( · ;A)) | A ∈ Un(M)

}
coincide with one another and consist of the pairs (α( · ), β( · )) of functions M → Zn of the class
(Fσ,

∗) that satisfy the inequality α(µ) ≥ β(µ) for all µ ∈ M .

Remark. The description of the classes composed of the second elements of the pairs from Σ Cn(M)
and ΣUn(M) was obtained in the paper [2]. Those classes coincide with one another and consist
of functions M → Zn from the class (Fσ,

∗).
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