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Abstract
For nonlinear differential equations with impulsive perturbations, a general assertion about the existence
of bounded solutions is given. With the help of this assertion necessary and sufficient conditions for the
existence and uniqueness of bounded solutions of analogous linear equations are obtained. The equations
are studied using the method of local linear approximation of nonlinear equations.

1 Problem statement
A method of studying nonlinear differential equations with impulse disturbances is proposed, which
uses the approximation of these equations by linear systems on spheres with radii dependent on
these systems. In the case of linear momentum equations, this method provides not only sufficient,
but also necessary conditions for the existence and unity of bounded solutions of the corresponding
equations.

2 Basic notation, spaces and problem
Let R and Z – the set of all real and integer numbers, respectively, T = {tn : n ∈ Z} – the set
of real numbers for which tn < tn+1 for all n ∈ Z, lim

n→−∞
tn = −∞ and lim

n→+∞
tn = +∞, E – a

finite-dimensional Banach space over the field of real or complex numbers with norm ∥ · ∥E and
L(X,Y ) – Banach space of linear continuous operators A : X → Y with the norm

∥A∥L(X,Y ) = sup
∥x∥X=1

∥Ax∥Y ,

where X and Y – Banach spaces with norms ∥ · ∥X and ∥ · ∥Y in accordance.
Denote through C0(R,T, E) the Banach space of defined, continuous and bounded on R \ T

functions x = x(t) with values in E, for each of which there are finite boundaries lim
t→tn−0

x(t) =

x(tn − 0) and lim
t→tn+0

x(t) = x(tn + 0) to all n ∈ Z, with the norm

∥x∥C0(R,T,E) = sup
t∈R\T

∥x(t)∥E ,
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through C1(R,T, E) denote the Banach space of continuously differentiable by R \ T functions
x ∈ C0(R,T, E), for each of which dx/dt ∈ C0(R,T, E), with the norm

∥x∥C1(R,T,E) = max
{

sup
t∈R\T

∥x(t)∥E , sup
t∈R\T

∥∥∥dx(t)
dt

∥∥∥
E

}
,

and through M(Z, E) – Banach space of two-way sequences g = gn elements gn, n ∈ Z, space E
with the norm

∥g∥M(Z,E) = sup
n∈Z

∥gn∥E .

Let us also consider the Banach space Ci(R,T, E) ×M(Z, E), where i ∈ {0, 1}, pairs (x, g) of
elements x = x(t) ∈ Ci(R,T, E) and g = gn ∈ M(Z, E) with the norm

∥(x, g)∥Ci(R,T,E)×M(Z,E) = max
{
∥x∥Ci(R,T,E), ∥g∥M(Z,E)

}
.

For function jumps x ∈ C0(R,T, E) in the points of the set T similarly, as in [2, 3], we will use
the notation

∆x|t=tn = x(tn + 0)− x(tn − 0), n ∈ Z.
Consider a continuous display F : (R \ T) × E → E, for which for every bounded set M ⊂ E

a function F (t, x) is bounded on the set (R \ T) × M and this function is uniformly continuous
on every bounded subset N plural (R \ T) × E. Also consider continuous mappings Gn : E → E,
n ∈ Z, for which sup

n∈Z, x∈M
∥Gn(x)∥E < +∞ for every bounded set M ⊂ E.

From the conditions that satisfy F , it follows that for each x ∈ C0(R,T, E) the function
y = F (t, x(t)) is an element of the space C0(R,T, E).

We will be interested in the conditions under which the system of differential equations with
an impulse disturbance is fulfilled

dx(t)

dt
+ F (t, x(t)) = f(t), t ∈ R \ T,

∆x|t=tn +Gn(x(tn − 0)) = gn, n ∈ Z
(2.1)

for each function f = f(t) ∈ C0(R,T, E) and sequences g = gn ∈ M(Z, E) will have at least one
solution x = x(t) ∈ C1(R,T, E).

The left part of the system of equations (2.1) operator is generated I , that works with
C1(R,T, E) in C0(R,T, E) × M(Z, E). If you use operators L : C1(R,T, E) → C0(R,T, E) and
D : C0(R,T, E) → M(Z, E), which are defined by equalities

(Lx)(t) = dx(t)

dt
+ F (t, x(t)), t ∈ R \ T,

and
(Dx)n = ∆x

∣∣
t=tn

+Gn(x(tn − 0)), n ∈ Z,

then according to (2.1) operator I : C1(R,T, E) → C0(R,T, E)×M(Z, E) is given by the ratio
I x = (Lx,Dx), x ∈ C1(R,T, E).

Let R(I ) – set of operator values I , i.e. {I x : x ∈ C1(R,T, E)}.
System of equations (2.1) and the corresponding operator I in the general case are nonlinear

and clarification for system (2.1) conditions for the existence of bounded solutions for each function
f = f(t) ∈ C0(R,T, E) and sequencesg = gn ∈ M(Z, E) or similarly, finding out the conditions of
execution for the operatorI equality

R(I ) = C0(R,T, E)×M(Z, E)

are not trivial tasks.
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3 The main result
When finding out the conditions for the existence of limited solutions of system (2.1) we will use
the auxiliary linear systems with impulse disturbance of appearance

dx(t)

dt
+A(t)x(t) = f(t), t ∈ R \ T,

∆x
∣∣
t=tn

+Bnx(tn − 0) = gn, n ∈ Z,
(3.1)

coefficients A(t) and Bn of which in a certain sense (see the formulation of Theorem 3.1 and the
relation (3.5)) differ little on closed spheres of space E from F (t, · ) and Gn( · ) in accordance.

Let’s use a set of pairs (A,B) defined and continuous on R \ T functions A = A(t) with values
in L(E,E) and bilateral sequences B = Bn ∈ L(E,E), n ∈ Z, which are elements of spaces
C0(R,T, L(E,E)) and M(Z, L(E,E)) in accordance.

For a pair of (A,B) let’s match the linear continuous operator

L(A,B) : C
1(R,T, E) → C0(R,T, E)×M(Z, E),

which is given by the ratio

L(A,B)x = (L x,Dx), x ∈ C1(R,T, E), (3.2)

where
(L x)(t) =

dx(t)

dt
+A(t)x(t), t ∈ R \ T, (3.3)

and
(Dx)n = ∆x|t=tn +Bnx(tn − 0), n ∈ Z. (3.4)

Set of linear operators L(A,B) : C1(R,T, E) → C0(R,T, E) × M(Z, E), dependent on (A,B),
each of which is determined by the left part of system (3.1), i.e. ratios (3.2)–(3.4), and has an
inverse continuous operator L−1

(A,B) : C
0(R,T, E)×M(Z, E) → C1(R,T, E), denote by O.

Theorem 3.1 ([1]). Suppose for each number H > 0 there are such number r > 0 and L(A,B) ∈ O
that

sup
x∈B0[0,r]

max
{

sup
t∈R\T

∥F (t, x(t))−A(t)x(t)∥E , sup
n∈Z

∥Gn(x(tn − 0))−Bnx(tn − 0)∥E
}

≤ r∥L−1
(A,B)∥

−1
L(C0(R,T,E)×M(Z,E),C1(R,T,E))

−H. (3.5)

Then for each f ∈ C0(R,T, E) and g ∈ M(Z, E) the system of equations (2.1) has at least one
solution x ∈ C1(R,T, E).

Remark 3.1. In system (2.1) the reflection F (t, · ), t ∈ R \ T, and Gn( · ), n ∈ Z, may be non-
Lipschitz.

4 The case of linear impulse systems
Let’s fix an arbitrary function Q = Q(t) ∈ C0(R,T, L(E,E)) and a sequence

R = Rn ∈ M(Z, L(E,E)).
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Consider the corresponding system of linear differential equations with an impulse disturbance
dx(t)

dt
+Q(t)x(t) = f(t), t ∈ R \ T,

∆x
∣∣
t=tn

+Rnx(tn − 0) = gn, n ∈ Z,

where f = f(t) ∈ C0(R,T, E) and g = gn ∈ M(Z, E), and the linear differential operator L(Q,R) :
C1(R,T, E) → C0(R,T, E)×M(Z, E), which is given by the ratio

L(Q,R)x = (L1x,D1x), x ∈ C1(R,T, E),

where
(L1x)(t) =

dx(t)

dt
+Q(t)x(t), t ∈ R \ T,

and
(D1x)n = ∆x

∣∣
t=tn

+Rnx(tn − 0), n ∈ Z.

Let’s use Theorem 3.1 and operators L(A,B) ∈ O, which are determined by ratios (3.2)–(3.4).
The following two statements are true.

Theorem 4.1 ( [1]). For each number H > 0 there are such number r > 0 and the operator
L(A,B) ∈ O, for which

sup
x∈B0[0,r]

max
{

sup
t∈R\T

∥Q(t)x(t))−A(t)x(t)∥E , sup
n∈Z

∥Rnx(tn − 0)−Bnx(tn − 0)∥E
}

< r∥L−1
(A,B)∥

−1
L(C0(R,T,E)×M(Z,E),C1(R,T,E))

−H,

if and only if the linear operator L(Q,R) : C1(R,T, E) → C0(R,T, E) × M(Z, E) has an inverse
continuous operator.

Theorem 4.2 ( [1]). Operator L(Q,R) : C1(R,T, E) → C0(R,T, E) × M(Z, E) has an inverse
continuous operator if and only if the operator exists L(A,B) ∈ O, for which

sup
x∈B0[0,1]

max
{

sup
t∈R\T

∥Q(t)x(t))−A(t)x(t)∥E , sup
n∈Z

∥Rnx(tn − 0)−Bnx(tn − 0)∥E
}

< ∥L−1
(A,B)∥

−1
L(C0(R,T,E)×M(Z,E),C1(R,T,E))

.

5 Perturbations of linear impulse systems are small at infinity
Consider a system of differential equations with an impulse disturbance

dx(t)

dt
+A(t)x(t) = F (t, x(t)) + f(t), t ∈ R \ T,

∆x
∣∣
t=tn

+Bn(x(tn − 0)) = Gn(x(tn − 0)) + gn, n ∈ Z,
(5.1)

in which function A = A(t), f = f(t) and sequences B = Bn, g = gn, n ∈ Z are such as in system
(3.1), and non-linear mappings F (t, · ) : E → E, t ∈ R \ T, and Gn( · ) : E → E, n ∈ Z are such as
in system (2.1).
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We assume that the operator L(A,B) : C
1(R,T, E) → C0(R,T, E) ×M(Z, E), which is known

as the left part of system (3.1), has an inverse continuous operator L−1
(A,B) and

lim
r→+∞

r−1 sup
x∈B0[0,r]

max
{

sup
t∈R\T

∥F (t, x(t))∥E , sup
n∈Z

∥Gn(x(tn − 0)∥E
}

< ∥L−1
(A,B)∥

−1
L(C0(R,T,E)×M(Z,E),C1(R,T,E))

. (5.2)

A special case of Theorem 4.2 is

Theorem 5.1 ([1]). System of equations (5.1) for each (f, g) ∈ C0(R,T, E)×M(Z, E) has at least
one solution x ∈ C1(R,T, E).

Remark 5.1. Ratio (5.2) is performed if

sup
(t,x)∈R×E

∥F (t, x)∥E + sup
(n,x)∈Z×E

∥Gn(x)∥E < +∞.

Remark 5.2. Reflection F (t, · ) : E → E, t ∈ R \ T, and Gn( · ) : E → E, n ∈ Z, in system (5.1)
can be such that the relation (5.2) holds and

lim
r→+∞

r−1 sup
x∈B0[0,r]

max
{

sup
t∈R\T

∥F (t, x(t))∥E , sup
n∈Z

∥Gn(x(tn − 0))∥E
}
= +∞.

Remark 5.3. The method of local linear approximation in the theory of nonlinear differential,
difference, and differential functional equations is considered in [4].

Theorems 3.1, 4.1, 4.2, 5.1 are substantiated using the theory of c-continuous operators, the
elements of which are laid out in [1, 4].
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