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1 Introduction
In this paper, we investigate the conditions of the existence and the general appearance of locally
invariant curves of a perturbed differential equation by a random Wiener process of the ”white
noise” type in the form of Ito. Random perturbations occur along the phase velocity vector of the
corresponding undisturbed differential (deterministic) equation. In [3], the conditions for the exis-
tence and uniqueness of solutions of stochastic differential equations are presented. Construction
and study of the phase portrait of stochastic Ito differential equations with a degenerate diffu-
sion matrix was carried out in [4]. For nonlinear stochastic Ito differential equations with Markov
switching, some sufficient conditions for invariance, stochastic stability, stochastic asymptotic sta-
bility, and instability of invariant sets of equations are obtained in [5]. There is the significant
literature devoted to the invariant sets of ordinary differential equations, functional differential
equations, and stochastic differential equations, and we here mention [2, 5, 7]. The conditions for
the existence of bounded solutions of linear and nonlinear pulsed systems were obtained in [1, 6].

In this paper, the conditions under which the locally phase trajectories of the corresponding
deterministic differential equation can be locally invariant curves of the perturbed equation are
established. A model example describing a certain class of problems related to the study of random
harmonic oscillators is given. The conducted researches in an example illustrate application of
the received results for construction and the analysis of stochastic differential equations of Ito.The
obtained conditions make it possible to build classes of stochastic differential equations for which
the given set is invariant.

2 Setting of the problem and the main results
Consider a system of stochastic differential equations

dξ(t) = a(ξ(t) dt+ b(ξ(t) dw(t), ξ(0) = x0, (2.1)

where a(x) = (a1(x), a2(x)), b(x) = (b1(x), b2(x)) – continuous-differential functions in a certain
open domain D ⊂ R2. Denote by w(t) the one-dimensional Wiener process defined in probabilistic
space (Ω, F, P ), x = (x1, x2) – point in D, x0 ∈ D. It is known [3] that under the given conditions
for coefficients of the equation, there is a continuous with probability 1 unique strong solution ξ(t)
for all t ≥ 0 of this equation.

Denote by ΓD(G) the set of the form Γ = {x : G(x) = C} ⊂ D, where C is a definite constant,
G(x) – a twice continuous-differential function in D and has no special points for all x ∈ Γ.

If for all x0 ∈ ΓD(G)

P
{

sup
0≤t≤τD(x0)

∣∣G(ξ(t))−G(x0)
∣∣ = 0

}
= 1,
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where τD(x0) is the moment of the first exit of the solution from the domain D, then the curve
ΓD(G) is a locally invariant curve of the corresponding equation (2.1).

Consider the problem of investigating the conditions under which the locally phase trajectories of
a deterministic differential equation can be locally invariant curves of the corresponding perturbed
equation by a random Wiener process of the “white noise” type in the Ito form.

According to [4], the locally invariant curve ΓD(G) of equation (2.1) coincides with the locally
phase trajectory of equation

dx(t

dt
= b(x(t)), x(0) = x0. (2.2)

That is G(x(t)) = G(x0), for all for t ≥ 0 whom x(t) ∈ D. Since, (∇G(x), b(x)) = 0, then the
phase velocity vector b(x) of equation (2.2) is directed along the tangent to the phase trajectory
G(x) = G(x0) at point x. Thus we obtained the following theorem.

Theorem 2.1. Locally phase trajectory ΓD(G) of equation (2.2), in which |b(x)| > 0 for all x ∈
ΓD(G), there can be a local phase curve of equation (2.1), only when the random perturbation
of equation (2.2) by Ito-shaped “white noise” processes occurs along the phase velocity vector of
equation (2.2).

We obtain the following result for the case (∇G(x), a(x)) = 0 for all x ∈ ΓD(G).
Since we have a given function G(x), it follows from the necessary condition [4] that

b(x) =
(
−G

′
x2
(x)g(x), G

′
x1
(x)g(x)

)
for each x ∈ ΓD(G), where g(x) is an arbitrary continuous-differential function.

Therefore, from the necessary condition of local invariance [4], we have equality Q(x)g2(x) = 0
for all x ∈ ΓD(G), where

Q(x) = G
′′
x1x1

(x)(G
′
x2
)2(x) +G

′′
x2x2

(x)(G
′
x1
)2(x)− 2G

′′
x1x2

(x)G
′
x1
(x)G

′
x2
(x).

Theorem 2.2. The locally phase trajectory ΓD(G) of equation (2.2) can be a locally invariant
curve of equation (2.1) in which (∇G(x), a(x)) = 0 for all x ∈ ΓD(G), only when the curve consists
only of equilibrium points of equation (2.2) (|b(x)| = 0), and points where the curvature of the curve
ΓD(G) is zero.

Theorem 2.3. Let the curves ΓD(G) be the set of locally phase trajectories of equation (2.2) for
all C. If the curvature of the curve ΓD(G) is not equal to zero at the point x0 ∈ D, |b(x0)| > 0 and
(∇G(x), a(x)) = 0 for all x ∈ D, then the solution of equation (2.2) instantly deviates from ΓD(G)
the direction of convexity of the curve at the point x0.

In order for the solution of equation (2.2) to remain on the phase trajectory ΓD(G) in case of
random perturbations along the phase velocity vector b(x) by the Ito-shaped “white noise” process,
it is necessary to additionally introduce the corresponding control vector a(x) in equation (2.2).

3 Application to the perturbed limit cycle
For qualitative analysis of stochastic differential equations, it is convenient to use the polar coor-
dinate system x1 = r cosϕ, x2 = r cosϕ.

Therefore, we present an auxiliary statement about the connection of the stochastic differential
equation (2.1) with the corresponding stochastic differential equation in polar coordinates. We
consider a system of stochastic differential equations in the domain D = {r > 0,−∞ < ϕ < +∞}:{

dr(t) = a1(r, ϕ) dt+ b1(r, ϕ) dw(t)

dϕ(t) = a2(r, ϕ) dt+ b2(r, ϕ) dw(t),
(3.1)
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where the flow σ-algebra Ft and the one-dimensional process w(t) are the same as in equation (2.1).
The coefficients of system are such that there is one strong solution of the system until the moment
of the first exit τD from the domain D.

Process ξ(t) = (r(t) cosϕ(t), r(t) sinϕ(t)) for t < τD is the solution of the stochastic equation
(2.1).

If for t < τD there is a unique solution of equation (2.1), then for t < τD, r(t) is the radial
characteristic of the process ξ(t) and ϕ(t) is the angular characteristic of the process ξ(t).

Consider equation (2.1) with the corresponding coefficients:

a1(x) = x2q(x) + αx1(1− |x|2), a2(x) = −x1q(x) + αx2(1− |x|2),
b1 = x2g, b2 = −x1g,

where α, g are constants, q(x) is arbitrary continuous-differential function in R2 and |x| =
√
x21 + x22.

The given system describes a certain class of harmonic oscillators that depend on the parameters
α, g.

In this case, the phase trajectories of the corresponding deterministic equation (2.2) are circles
x21 + x22 = C, where C > 0 and equilibrium point (0; 0).

To study the phase “picture” of this equation (2.1), consider the processη(t) = G(ξ(t)), where
G(x) = x21 + x22.

According to the formula Ito we obtain the equation:

dη(t) = η(t)
[
2α(1− η(t)) + g2

]
dt, η(0) = |x0|2. (3.2)

The invariant set of equation (2.1) is the circle |x|2 = 1 + g2(2α)−1 at α > 0 and at 2α < −g2.
If 2α = −g2 or α = 0, then the invariant set will be a point (0; 0).
If −g2 < 2α < 0, then there are no invariant curves for this equation (2.1).
Suppose α = 0, then from equation (3.2) we have

η(t) = |x0|2egt2

for all t ≥ 0 and therefore η(t) → ∞ for t → ∞.
If α ̸= 0 and |x0| > 0, then with probability 1 for all t ≥ 0 it holds

η(t) =
1 + g2(2α)−1

1 + C0 exp{−(2α+ g2)t}
, (3.3)

where
C0 = |x0|−2

[
1 + g2(2α)−1 − |x0|2

]
.

From the analysis of solution (3.3), we have the following:

(a) If 1+g2(2α)−1 > 0, then |x0|2 = 1+g2(2α)−1 is an invariant circle and |ξ(t)|2 = 1+g2(2α)−1

with a probability of 1 for all t ≥ 0.

If in this case α > 0 and |x0|2 ̸= 1 + g2(2α)−1, then |ξ(t)|2 → 1 + g2(2α)−1 with a probability
of 1 at t → ∞ (stability with probability 1).

If α < 0 and |x0|2 < 1 + g2(2α)−1, then |ξ(t)|2 → 0 with a probability of 1 at t → ∞.
If α < 0 and |x0|2 > 1 + g2(2α)−1, then |ξ(t)|2 → ∞ with a probability of 1 at t → t0, where

t0 =
− ln(−1/C0)

2 + g2
.

(b) If 1 + g2(2α)−1 < 0 and α < 0, then there are no invariant curves.
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The equation for the process argument ξ(t) = (r(t) cosϕ(t), r(t) sinϕ(t)) in this case takes the
form

dϕ(t) = −q1(η(t), ϕ(t)) dt− g dw(t), (3.4)

where
q1(η(t), ϕ(t)) = q

(√
η(t) cosϕ(t),

√
η(t) sinϕ(t)

)
.

The systems of equations (3.2), (3.4) provide opportunities for a more detailed study of the
behavior of the solution ξ(t).

In particular, if q(x) = q0, where q0 - constant, then w(t)
t → 0 with probability of 1 at t → ∞

and ϕ(t)
t → −q0 with probability of 1 at t → ∞.

In the case of q(x) = 0, process ϕ(t) has a normal distributionN(ϕ(0), g2t) for all t > 0.
Note that when |x0| = 1 + g2(2α)−1 we obtain η(t) = (2α)−1g2 with probability of 1 for all

t > 0.
Equation (3.4) will turn into an equation with one variable ϕ(t), which greatly simplifies its

study.
By changing the values of the parameters of this example, we can obtain various models of

stochastic oscillators.
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