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1 Introduction

In paper [3] V. I. Mironenko introduced the concept of a reflecting function to study the qualitative
behavior of solutions of ODE systems. This function is now known as the Mironenko reflecting
function (MRF) and has been successfully used to solve many problems in qualitative theory of
ODE [1,4–7,13,14].

ODE systems with the same MRF have the same translation operator (see [2]) on any interval
(−β, β), and 2ω-periodic ODE systems with the same MRF have the same mapping on the pe-
riod [−ω, ω] (Poincare mapping). Therefore, some qualitative properties (such as the existence of
periodic solutions and their stability) of solutions of ODE systems that have the same MRF are
common. Thus, the study of the qualitative properties of solutions of a whole class of systems with
the same MRF can be reduced to the corresponding study of a simple (well-studied) system. In such
cases, non-autonomous systems can be studied on the basis of corresponding autonomous systems.
In other words, some (well-studied) autonomous system can be transformed into a non-autonomous
one with the help of special perturbations that preserve the MRF, which are called admissible per-
turbations. This provides new chances for researchers when modeling real-world processes and
exploring novel (unstudied) ODE systems.

To search for admissible perturbations, we can use Theorem 1 from [5], which we formulate
here in the form of the following lemma.

Lemma 1.1. If the vector functions ∆i(t, x) (i = 1,m, where m ∈ N or m = ∞) satisfy the identity

∂∆i(t, x)

∂t
+

∂∆i(t, x)

∂x
X(t, x)− ∂X(t, x)

∂x
∆i(t, x) ≡ 0, (1.1)

then the systems ẋ = X(t, x) and ẋ = X(t, x) +
m∑
i=1

αi(t)∆i(t, x) have identical MRF, where t ∈ R,

x = (x1, x2, . . . , xn) ∈ D ⊂ Rn, αi(t) – arbitrary continuous scalar odd functions.

As initial systems, we consider well-known autonomous polynomial ODE systems (i.e. systems
whose right-hand side X(t, x) ≡ X(x), as well as the components of X(x) are polynomials). The
search for admissible perturbations is carried out by the method of undetermined coefficients, using
identity (1.1) for vector functions ∆i(t, x) ≡ ∆i(x) whose components are polynomials. That is, in
this case, identity (1.1) is transformed to the form

∂∆i(x)

∂x
X(x) ≡ ∂X(x)

∂x
∆i(x).
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2 Examples of admissibly perturbed systems and their studies
Using Lemma 1.1 and the approach outlined above, for the Hindmarsh–Rose neuron model

ẋ = y − ax3 + bx2 − z + I,

ẏ = c− dx2 − y,

ż = r(s(x− α)− z),

x, y, z, a, b, c, d, I, r, s, α ∈ R

admissible perturbations are obtained in [11]. Numerical examples show that admissibly perturbed
systems have similar bifurcation diagrams, periodic attractors and strange attractor as the original
Hindmarsh–Rose system.

In [10] admissible perturbations are obtained for the Lorentz-84 system, which models the
general circulation of the atmosphere in mid-latitudes:

ẋ = −ax− y2 − z2 + aF,

ẏ = −y + xy − bxz +G,

ż = −z + bxy + xz,

a, b, F,G, x, y, z ∈ R. (2.1)

In particular, it has been proven that the MRF of system (2.1) and the system

ẋ = (−ax− y2 − z2 + aF )(1 + α1(t)),

ẏ = (−y + xy − bxz)(1 + α1(t))− zα2(t),

ż = (−z + bxy + xz)(1 + α1(t)) + yα2(t)

(2.2)

coincide if G = 0 and αi(t) are arbitrary continuous scalar odd functions (i = 1, 2). The results of
the analysis of the qualitative behavior of solutions of the original system (2.1) are extended to the
perturbed system (2.2) and the following theorem is proved.

Theorem 2.1. Suppose that αi = αi(t) (i = 1, 2) are continuous functions (not necessarily odd).
Then the following statements hold:

(1) if a > 0, F < 1 and α1(t) > c > −1 ∀ t > 0 (c is a constant), then the equilibrium solution
x = F , y = z = 0 of system (2.2) is globally exponentially stable (exponentially stable in the
large);

(2) if a > 0, F 6 1 and α1(t) > −1 ∀ t > 0, then the equilibrium solution x = F , y = z = 0 of
system (2.2) is globally uniformly Lipschitz stable;

(3) if a > 0, F > 1 and α1(t) > c > −1 ∀ t > 0 (c is a constant), then the equilibrium solution
x = F , y = z = 0 of system (2.2) is Lyapunov unstable.

For the Langford system, which models turbulence in a liquid, presented in the form (more
often found in Russian-language literature):

ẋ = (2a− 1)x− y + xz,

ẏ = x+ (2a− 1)y + yz,

ż = −az − (x2 + y2 + z2),

a, x, y, z ∈ R,

admissible perturbations are obtained in [8]. And for the Langford system, presented in the form:

ẋ = (a− 1)x− y + xz,

ẏ = x+ (a− 1)y + yz,

ż = az − (x2 + y2 + z2),

a, x, y, z ∈ R,
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admissible perturbations are obtained in [9].
In [12], admissible perturbations are obtained for the generalized Langford system

ẋ = ax+ by + xz,

ẏ = cx+ dy + yz,

ż = ez − (x2 + y2 + z2),

a, b, c, d, e, x, y, z ∈ R. (2.3)

In particular, it has been proven that the MRF of system (2.3) and the system

ẋ = (ax+ by + xz)(1 + α1(t)) + x(a+ z)α2(t) + yα3(t)

− y(x2 + y2)(4az + x2 + y2 + 2z2)α4(t),

ẏ = (−bx+ ay + yz)(1 + α1(t)) + y(a+ z)α2(t)− xα3(t)

+ x(x2 + y2)(4az + x2 + y2 + 2z2)α4(t),

ż = −(2az + x2 + y2 + z2)(1 + α1(t) + α2(t))

(2.4)

coincide if c = −b, d = a, e = −2a and αi(t) are arbitrary continuous scalar odd functions (i = 1, 4).
The obtained result allows us to extend the results of the analysis of the qualitative behavior of
solutions of the original system (2.3) to solutions of the perturbed system (2.4). In particular, the
following statements are proven in [12].

Theorem 2.2. Let αi(t) (i = 1, 4) be scalar continuous functions (not necessarily odd).

(1) If a = 0 and α1(t) + α2(t) > l > −1 ∀ t > 0 (l = const), then the solution x = y = z = 0 of
system (2.4) is Lyapunov unstable.

(2) If b = 0 and the function α3(t) + a4α4(t) is ω-periodic and ∃ k ∈ Z such that
ω∫
0

(α3(s) +

a4α4(s)) ds = 2πk, then the solution

x(t) = a sin

(
bt+

t∫
0

(bα1(s) + α3(s) + a4α4(s)) ds

)
,

y(t) = a cos

(
bt+

t∫
0

(bα1(s) + α3(s) + a4α4(s)) ds

)
,

z(t) = −a

(2.5)

of system (2.4) is ω-periodic (the period is not necessarily minimal).

(3) If b ̸= 0 and the function bα1(t)+α3(t)+a4α4(t) is 2π/ |b|-periodic and
2π/b∫
0

(bα1(s)+α3(s)+

a4α4(s)) ds = 0, then solution (2.5) of system (2.4) is 2π/|b|-periodic (the period is not
necessarily minimal).

Theorem 2.3. Let αi(t) (i = 1, 4) be scalar twice continuously differentiable odd functions, b ̸= 0

and the right side of system (2.4) be 2π/|b|-periodic in t. If ∃ k ∈ Z such that
−2π/|b|∫

0

(bα1(s) +

α3(s) + a4α4(s)) ds = 2πk, then solution (2.5) of system (2.4) is 2π/|b|-periodic.
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