Pointwise Conditions of Solvability of a Periodic Problem for Higher Order Functional Differential Equations

Sulkhan Mukhigulashvili
Institute of Mathematics, Academy of Sciences of the Czech Republic
Brno, Czech Republic
E-mail: smukhig@gmail.com

Abstract

On the interval $I:=[a, b]$, we study the higher order linear functional-differential equation

$$
\begin{equation*}
u^{(n)}(t)=\ell(u)(t)+q(t), \tag{1}
\end{equation*}
$$

where $q \in L(I ; R), \ell: C(I ; R) \rightarrow L^{\infty}(I ; R)$ is a linear bounded operator, under the periodic type boundary conditions

$$
\begin{equation*}
u^{(i)}(\omega)-u^{(i)}(0)=c_{i} \quad(i=0, \ldots, n-1) . \tag{2}
\end{equation*}
$$

The obtained pointwise efficient sufficient conditions of unique solvability of our problem are non-improvable and moreover, for such important classes of functional-differential equations as differential or integrodifferential equations with deviated argument are these conditions take into account the effect of argument deviation and generalize some previously known results (see, for example, [1-3]). Also on the basis of the mentioned results for the linear problem, there are proved non-improvable efficient sufficient conditions of solvability of the periodic type problem for the nonlinear functional differential equation

$$
\begin{equation*}
u^{(n)}(t)=F(u)(t)+f_{0}(t) \text { for } t \in[0, \omega], \tag{3}
\end{equation*}
$$

where $F: C(I ; R) \rightarrow L(I ; R)$ is a Carathéodory's local class operator and $f_{0} \in L(I, R)$.

Main results

Let $m \in N, \sigma \in\{-1,1\}$, and consider the numbers defined by the following equations

$$
\gamma_{n, \sigma}=\left\{\begin{array}{l}
1 \text { for } n=2 m, \quad \sigma=(-1)^{m} \\
0 \quad \text { for } n=2 m, \sigma=(-1)^{m+1} \\
0 \quad \text { for } n=2 m+1, \quad \sigma \in\{-1,1\}
\end{array}\right.
$$

Let also for an arbitrary $x \in I=[0, \omega]$ and a monotone linear operator ℓ, the nonnegative functions $\Delta_{x} \in C\left(I ; R_{0}^{+}\right)$, and $\rho_{\ell} \in L^{\infty}\left(I ; R_{0}^{+}\right)$be defined by the equalities

$$
\Delta_{x}(t)=|t-x|, \quad \rho_{\ell}(t)=\frac{2 \pi}{\omega}\left(\ell(1)(t) \int_{0}^{\omega} \ell\left(\Delta_{s}\right)(s) d s\right)^{1 / 2}
$$

Then the following theorem is true.

Theorem 1. Let $\sigma \in\{-1,1\}$, and the monotone linear operator $\ell: C(I ; R) \rightarrow L^{\infty}(I ; R)$ satisfy the conditions

$$
\sigma \int_{0}^{\omega} \ell(1)(s) d s>0
$$

and

$$
\gamma_{n, \sigma}|\ell(1)(t)|+\rho_{\ell}(t)<\left(\frac{2 \pi}{\omega}\right)^{n} \quad \text { for } t \in I
$$

Then problem (1), (2) is uniquely solvable.
Due to the definition of the constant $\gamma_{n, \sigma}$ from our theorem it immediately follows
Corollary 1. Let $m \in N, \ell: C(I ; R) \rightarrow L^{\infty}(I ; R)$ be the monotone linear operator, and

$$
n=2 m+1 \text { and } \int_{0}^{\omega} \ell(1)(s) d s \neq 0
$$

or

$$
n=2 m \text { and }(-1)^{m+1} \int_{0}^{\omega} \ell(1)(s) d s>0
$$

Then the condition

$$
\ell(1)(t) \int_{0}^{\omega} \ell\left(\Delta_{s}\right)(s) d s<\left(\frac{2 \pi}{\omega}\right)^{2(n-1)} \text { for } t \in I
$$

guarantees the unique solvability of problem (1), (2).
Now assume that $\ell(u)(t)=p(t) u(t)$, where $p \in L^{\infty}(I ; R)$, i.e. we assume that (1) is the ordinary differential equation

$$
\begin{equation*}
u^{(n)}(t)=p(t) u(t)+q(t) \text { for } t \in I \tag{4}
\end{equation*}
$$

Then it is clear that $\ell\left(\Delta_{t}\right)(t)=p(t)|t-t| \equiv 0$, and therefore from our theorem it follows:
Corollary 2. Let $\sigma \in\{-1,1\}$, and a constant sign function $p \in L^{\infty}(I ; R)$ satisfy the conditions

$$
\sigma \int_{0}^{\omega} p(s) d s>0 \text { and } \gamma_{n, \sigma}|p(t)|<\left(\frac{2 \pi}{\omega}\right)^{n} \text { for } t \in I
$$

Then problem (4), (2) is uniquely solvable.
But this proposition is I. Kiguradze and T. Kusano's theorem from [1], and there was shown that $\left(\frac{2 \pi}{\omega}\right)^{n}$ is optimal.

Now we consider the nonlinear problem (3), (2). To formulate the main theorem we need the following definition.

Definition. Let $\sigma \in\{-1,1\}$. We will say that the operator $h: C(I ; R) \rightarrow L^{\infty}(I ; R)$ belongs to the class $\mathcal{K}_{\omega}^{\sigma, n}$ if h is a nonnegative linear operator,

$$
h(1)(t) \not \equiv 0
$$

and for an arbitrary $\alpha \in L^{\infty}(I ; R)$ such that

$$
\alpha \not \equiv 0, \quad 0 \leq \alpha(t) \leq 1 \text { for } t \in I
$$

the homogeneous problem

$$
\begin{gathered}
v^{(n)}(t)=\sigma \alpha(t) h(v)(t) \text { for } t \in I, \\
v^{(i)}(\omega)-v^{(i)}(0)=0 \quad(i=0, \ldots, n-1)
\end{gathered}
$$

has no nontrivial solution.
Note that in the given theorem the function $\eta: I \times R_{0}^{+} \rightarrow R_{0}^{+}$is summable in the first argument, nondecreasing in the second one, and satisfies the condition

$$
\lim _{\rho \rightarrow+\infty} \frac{1}{\rho} \int_{0}^{\omega} \eta(s, \rho) d s=0
$$

Theorem 2. Let the linear nonnegative operator $h: C(I ; R) \rightarrow L^{\infty}(I ; R)$, the function $g_{0} \in$ $L(I ; R)$, and numbers $\sigma \in\{-1,1\}, r_{0}>0$ be such that the condition

$$
g_{0}(t) \leq \sigma F(x)(t) \operatorname{sign} h(x)(t) \leq|h(x)(t)|+\eta\left(t,\|x\|_{C^{n-1}}\right) \text { if }\|x\|_{C^{n-1}} \geq r_{0},
$$

on I, and the inclusion

$$
h \in \mathcal{K}_{\omega}^{\sigma, n}
$$

hold. Moreover, let $g \in L(I ; R)$ be such that on I the condition

$$
g(t) \leq \sigma F(x)(t) \operatorname{sign} h(x)(t) \text { if } \min _{t \in I}|x(t)| \geq r_{0}
$$

is fulfilled, and

$$
\int_{0}^{\omega} g(s) d s-\left|\int_{0}^{\omega} f_{0}(s) d s\right| \geq\left|c_{n-1}\right|
$$

Then problem (3), (2) has at least one solution.
Now we give a corollary of our theorem for the following ordinary differential equation

$$
\begin{equation*}
u^{\prime \prime}(t)=f(t, x(\tau(t)))+f_{0}(t) \text { for } t \in I \tag{5}
\end{equation*}
$$

Corollary 3. Let numbers $\sigma \in\{-1,1\}, r_{0}>0$, functions $h \in L^{\infty}(I ; R), g_{0} \in L(I ; R)$, and a measurable function $\tau: I \rightarrow I$ be such that conditions

$$
\begin{gathered}
\gamma_{\sigma, n} h(t)+\rho_{h}(t)<\left(\frac{2 \pi}{\omega}\right)^{n} \text { for } t \in I, \\
g_{0}(t) \leq \sigma f(t, x) \operatorname{sign} x \leq h(t)|x|+\eta(t,|x|) \text { for }|x| \geq r_{0}, t \in I,
\end{gathered}
$$

and

$$
\int_{0}^{\omega} g_{0}(s) d s-\left|\int_{0}^{\omega} f_{0}(s) d s\right| \geq\left|c_{n-1}\right|
$$

hold. Then problem (5), (2) has at least one solution.

References

[1] I. T. Kiguradze and T. Kusano, On periodic solutions of higher-order nonautonomous ordinary differential equations. (Russian) Differ. Uravn. 35 (1999), no. 1, 72-78; translation in Differential Equations 35 (1999), no. 1, 71-77.
[2] S. Mukhigulashvi and V. Novotná, Some two-point problems for second order integrodifferential equations with argument deviations. Topol. Methods Nonlinear Anal. 54 (2019), no. 2A, 459-476.
[3] S. Mukhigulashvili, N. Partsvania and B. Půža, On a periodic problem for higher-order differential equations with a deviating argument. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), no. 10, 3232-3241.

