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Consider a linear differential system

ẋ = A(t)x, x ∈ R2, t ∈ R, (1)

with piecewise continuous and bounded coefficient matrix A of the form

A(t) =

+∞∑
k=0

Ak(t), (2)

where Ak, k = 0, . . . ,+∞, are periodic matrices with the periods Tk. If each matrix Ak is every-
where continuous and series (2) converges uniformly on the entire time axis R, then the matrix A
is limit-periodic [1, p. 32] and, therefore, almost periodic. The problem on Lyapunov regularity
of linear systems with almost periodic coefficients was posed by N. P. Erugin at a mathematical
seminar at the Institute of Physics and Mathematics of Byelorussian Academy of Sciences in 1956.
The formulation of this problem was published in [3, pp. 121, 137], see also [4].

In [6], using some results of [5] V. M. Millionshchikov has proved the existence of some Lyapunov-
irregular linear system with limit periodic coefficients. To this end V. M. Millionshchikov has intro-
duced some special class of linear systems. A comprehensive study of systems from Millionshchikov
class was made by A. V. Lipntskii in [7–14]. In particular, an explicit example of Lyapunov-irregular
system from the Millionshchikov class is given in [7], see also [17].

On the other hand, it is well known [5,15,16], that the set of Lyapunov-regular (and even almost
reducible, for the definition of almost reducibility see [2]) systems with almost periodic coefficients
is large in some natural sense. However no effective tools to recognize these properties are known.

Our aim here is to give some sufficient conditions for linear systems from Millionshchikov class
to be Lyapunov regular or almost reducible. The conditions of regularity and almost reducibility
provided by Theorem 1 below are not coefficient, but may be useful in constructing systems from
Millionshchikov class with prescribed asymptotic properties.

In what follows we suppose that T0 = 2, Tk ∈ N, and Tk+1/Tk = mi ∈ N for all k = 0, . . . ,+∞.
We also suppose that mk > 1, k = 0, . . . ,+∞. Let

J =

(
0 −1
1 0

)
, D =

(
−1 0
0 1

)
.

Take some continuous function ω : [0, 1] → R such that ω(0) = ω(1) = 0 and
1∫
0

ω(t) dt = 1. Take

also a sequence φ : N → [0, π/2[ . As usually, the values of the sequence φ we denote by φk, k ∈ N.
Now let us define the matrices Ak by the following equalities:

A0(t) =

{
ω(t)D, for t ∈ [0, 1[ ,

0, for t ∈ [1, 2[ ,
(3)
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for k = 0 and

Ak(t) =

{
−φkω(t)J, for t ∈ [0, 1[ ,

0, for t ∈ [1, Ti[ ,
(4)

for all k = 1, . . . ,+∞.

Lemma 1. If
∞∑
k=1

φk < +∞, then system (1) with the coefficient matrix A defined by (3) and (4)

is limit periodic.

Let Sm(t) =
m∑
k=0

Ak(t), m = 1, . . . ,+∞, where Ak are defined by (3) and (4). It can be easily

seen that each matrix Sm is Tm-periodic. Now for arbitrary m ∈ N consider a periodic linear system

ż = Sm(t)z, z ∈ R2, t ∈ R. (5)

Denote the Cauchy matrix of system (5) by Zm. Then the monodromy matrix of system (5) can be
written as Zm(Tm, 0). Hence the eigenvalues of Zm(Tm, 0) are the Floquet multipliers of system (5).

Definition. We say that system (1) with the coefficient matrix A defined by (3) and (4) is a
real-type system if all Floquet multipliers of each corresponding system (5) with m ∈ N are real.

Remark. Note that the condition φk ∈ [0, π/2[ guarantees that the Floquet multipliers of system
(5) are positive.

Lemma 2. If system (1) with the coefficient matrix A defined by (3) and (4) is a real-type system,
then all eigenvectors of matrices Zm(Tm, 0), m ∈ N lie in the first quadrant, i.e. have positive
coordinates.

Suppose that system (1) with the coefficient matrix A defined by (3) and (4) is a real-type
system. Let ζm1 and ζm2 be some eigenvectors of Zm(Tm, 0), where each vector ζm2 corresponds to
greater eigenvalue of Zm(Tm, 0). Denote the angle between ζm1 and ζm2 by βm.

Theorem 1. The following statements are valid:

(i) If the angle βk is separated from zero, then system (1) is almost reducible.

(ii) If lim
k→∞

T−1
k lnβk = 0, then system (1) is Lyapunov regular.

To prove the first statement we use the fact that system (1) lies in the closure of the set of
reducible systems. The second statement is based on the following lemma.

Lemma 3. Let xmj be the solution of system (1) satisfying the condition xmj(jTm) = ζm2 for some
j ∈ N. Then the vectors xmj(t) lie between ζm1 and ζm2 for all t = (j + l)Tm, l ∈ N.
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