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1 The result
This contribution is based on our recent paper [4] where we analyzed the set of positive regular
solutions of the quasilinear Neumann problem−

(
u′√

1 + (u′)2

)′
= λa(x)f(u), 0 < x < 1,

u′(0) = u′(1) = 0.

(1.1)

Here, λ ∈ R is a parameter and the functions a and f satisfy:

(a1) a ∈ L∞(0, 1),
1∫
0

a(x) dx < 0, and there is z ∈ (0, 1) such that a(x) > 0 almost everywhere in

(0, z) and a(x) < 0 almost everywhere in (z, 1);

(f1) f ∈ C0[0,+∞), f(s) > 0 if s > 0, and, for some constant p > 1, lim
s→0+

f(s)
sp = 1.

As a is sign indefinite and f is superlinear at zero, (1.1) is a superlinear indefinite elliptic problem.
These problems have attracted a huge amount of attention during the last few decades.

The problem (1.1) can be regarded as a simple prototype of its more sophisticated multidi-
mensional counterpart, which plays a central role in the mathematical analysis of a number of
important geometrical and physical issues, ranging from prescribed mean curvature problems for
cartesian surfaces in the Euclidean space, to the study of capillarity phenomena for compressible
or incompressible fluids, as well as to the analysis of reaction-diffusion processes where the flux
features saturation at high regimes.

Although the study of (1.1) is often settled in the space of bounded variation functions (see,
e.g., [5–8]), here we will be instead concerned with the regular solutions of (1.1), that is, functions
u ∈ W 2,1(0, 1) which fulfill the differential equation almost everywhere in (0, 1), as well as the
boundary conditions.

A function u ∈ C0[0, 1] is said to be positive if min
[0,1]

u ≥ 0 and max
[0,1]

u > 0, whereas it is said strictly

positive if min
[0,1]

u > 0. Here, the positive solutions of (1.1) are regarded as couples (λ, u). Naturally,
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for any given λ ≥ 0, a couple (λ, u) is said to be a positive, or strictly positive, solution of (1.1) if
u is a positive, or strictly positive, solution of (1.1), respectively. Note that, under conditions (a1)
and (f1), the strong maximum principle (see, e.g., [5, Theorem 2.1]) yields the strict positivity of
any positive regular solution of (1.1).

Subsequently, we denote by S + the set of all couples (λ, u) ∈ [0,∞)×C1[0, 1] such that (λ, u)
is a positive, and hence strictly positive, regular solution of (1.1).

The following result establishes the existence of an unbounded closed connected subset C+ of
S +, bifurcating from u = 0 as λ → +∞, and provides simultaneously some sharp information on
its localization. The existence of unstable solutions, however not necessarily belonging to C+, is
also detected.

Theorem 1.1. Assume (a1) and (f1). Then, there exists an unbounded closed connected subset
C+ of S + for which the following properties hold:

(i) there is λ∗ > 0 such that [λ∗,∞) ⊆ projR(C
+);

(ii) there are functions α and β, explicitly defined by (2.6) and (2.7) respectively, such that, for
every (λ, uλ) ∈ C+, one has

uλ(xλ) < λ
1

1−pα(xλ), for some xλ ∈ [0, z),

and
uλ(yλ) > λ

1
1−pβ(yλ), for some yλ ∈ [0, 1];

(iii) there is C > 0 such that, for every (λ, uλ) ∈ C+,

∥u′λ∥L∞(0,1) < Cλ
1

1−p .

Moreover, for every λ ∈ [λ∗,∞), there exists at least one Lyapunov unstable solution u ∈ S + of
(1.1) satisfying the conditions expressed by properties (ii) and (iii).

Theorem 1.1 is a substantial sharpening of some previous results obtained in [6–8]. Unlike in
these papers, here the proof exploits an alternative method based on viewing (1.1) as a perturbation
of a semilinear problem, on constructing some non-ordered lower and upper solutions, and on using
the Leray–Schauder degree. This approach, which appears of interest in its own, yields, in addition,
the localization and the instability information established by Theorem 1.1, which is a novel result
in the context of the problem (1.1).

2 The proof
2.1 Reformulation of (1.1) as a perturbation of a semilinear problem
Since f(0) = 0 and we are focusing attention on the positive solutions of (1.1), without loss of
generality we can extend f to the whole of R as an even function. By performing the change of
variable

u = εv, ε = λ
1

1−p , (2.1)

and setting

h(s) =


f(s)

|s|p
if s ̸= 0,

1 if s = 0,
(2.2)
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the problem (1.1) can be equivalently written in the form{
−v′′ = a(x)|v|p h(εv) (1 + (εv′)2)

3
2 , 0 < x < 1,

v′(0) = v′(1) = 0.
(2.3)

Throughout the rest of this proof, for every r > 0, we consider the auxiliary function

ℓr(x, s) =


|s|p if s ≤ 0,

a(x) sp if 0 < s ≤ r,

a(x) sp (r + 1− s) if r < s ≤ r + 1,

−s+ r + 1 if s > r + 1,

as well as the associated problem{
−v′′ = ℓr(x, v)h(εv) (1 + (εv′)2)

3
2 , 0 < x < 1,

v′(0) = v′(1) = 0.
(2.4)

It is obvious that any solution v of (2.4), with 0 ≤ v ≤ r in [0, 1], solves (2.3). Moreover, due to
(2.2), the problem (2.4) perturbs, as ε > 0 separates away from 0, from the semilinear x problem{

−v′′ = ℓr(x, v), 0 < x < 1,

v′(0) = v′(1) = 0.
(2.5)

2.2 Existence of non-ordered strict lower and upper solutions of (2.5)
Construction of a lower solution α

Let µ1 > 0 be the principal eigenvalue of the linear weighted eigenvalue problemll − φ′′ = µa(x)φ, 0 < x <
z

2
,

φ′(0) = 0, φ
(z
2

)
= 0.

Denote by φ1 any positive eigenfunction associated to µ1 and let x ∈ (0, z2) be such that

φ1(x) + φ′
1(x)(x− x) = 0.

Then, we define, for c > 0,

α(x) =


cφ1(x) if 0 ≤ x < x,

cφ1(x) + cφ′
1(x)(x− x) if x ≤ x < z,

0 if z ≤ x ≤ 1.

(2.6)

Construction of an upper solution β

For every κ > 0, let us denote by zκ the unique solution of the linear problem
−z′′ =

(
a(x)−

1∫
0

a(t) dt

)
κp, 0 < x < 1,

z′(0) = z′(1) = 0,

1∫
0

z(t) dt = 0.
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Then, we define
β = zκ + κ. (2.7)

By making a suitable choice of c and �the following conclusions about α and β can be inferred.

Proposition 2.1. There exists a constant r0 > 0 such that, for all r ≥ r0, the problem (2.5) admits
a lower solution α and an upper solution β, respectively defined by (2.6) and (2.7), such that:

(i) β − α changes sign in [0, 1];

(ii) any solution v of (2.5) such that α ≤ v in [0, 1], satisfies α(x) < v(x) for all x ∈ [0, 1];

(iii) any solution v of (2.5) such that v ≤ β in [0, 1], satisfies v(x) < β(x) for all x ∈ [0, 1].

2.3 Positivity and a priori bounds for the solutions of (2.5)
Proposition 2.2. Fix any r > 0. Then, the following assertions hold:

(i) every solution of (2.5) is non-negative;

(ii) every positive solution of (2.5) is strictly positive.

Proposition 2.3. The following assertions hold:

(i) for every r > 0, any solution v of (2.5) satisfies

0 ≤ v(x) ≤ r + 1, for all x ∈ [0, 1],

and
∥v′∥L∞(0,1) < C = ∥a∥L1(0,1)(r + 1)p+1; (2.8)

(ii) for every r ≥ r0, any solution v of (2.5), with v(x0) ≤ α(x0) for some x0 ∈ [0, 1], satisfies

max
[0,1]

v < R = ∥α∥L∞(0,1) + ∥α′∥L∞(0,1). (2.9)

2.4 Existence of ordered strict lower and upper solutions of (2.5)
Proposition 2.4. Fix any r ≥ r0. The constants α1 = −1 and β1 = r + 2 are, respectively, a
lower solution and an upper solution of (2.5) satisfying

α1 < 0 ≤ α(x), β(x) ≤ r0 < β1, for all x ∈ [0, 1]. (2.10)

Moreover, every solution v of (2.5) is such that α1 < v(x) < β1, for all x ∈ [0, 1].

2.5 Degree computations
Fix any r ≥ max{r0, R}, where R is the constant defined in (2.9). Then, C being the constant
introduced in (2.8), define the following open bounded subsets of C1[0, 1]:

Ω1 =
{
v ∈ C1[0, 1] : α1 < v(x) < β1 for all x ∈ [0, 1], ∥v′∥∞ < C

}
,

Ω2 =
{
v ∈ C1[0, 1] : α1 < v(x) < β(x) for all x ∈ [0, 1], ∥v′∥∞ < C

}
,

Ω3 =
{
v ∈ C1[0, 1] : α(x) < v(x) < β1 for all x ∈ [0, 1], ∥v′∥∞ < C

}
,

Ω = Ω1 \ Ω2 ∪ Ω3 =
{
v ∈ Ω1 : v(x0) < α(x0) and β(y0) < v(y0) for some x0, y0 ∈ [0, 1]

}
.
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From (2.10), it follows that Ω2∪Ω3 ⊂ Ω1. Moreover, we have that Ω2∩Ω3 = ∅ by Proposition 2.1.
Let us denote by T : [0,∞)×C1[0, 1] → C1[0, 1] the operator sending each (ε, v) ∈ [0,∞)×C1[0, 1]

to the unique solution w ∈ W 2,∞(0, 1) of the linear problem−w′′ + w = ℓr(x, v)h(εv) (1 + (εv′)2)
3
2 + v, 0 < x < 1,

w′(0) = w′(1) = 0.

It is clear that T is completely continuous and that its fixed points are the solutions of the problem
(2.4). Moreover, by Propositions 2.1 and 2.3 and our choice of C, the operator T (0, · ) cannot have
fixed points on ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3. Thus, by the additivity property of the degree, we infer that

degLS
(
I − T (0, · ),O

)
= degLS

(
I − T (0, · ),Ω1

)
− degLS

(
I − T (0, · ),Ω2

)
− degLS

(
I − T (0, · ),Ω3

)
.

As, from, e.g., [1, Chapter III], we know that degLS(I − T (0, · ),Ωi) = 1, for i = 1, 2, 3, we can
conclude that degLS(I − T (0, · ),Ω) = −1. Therefore, by the existence property of the degree, the
problem (2.5) possesses a solution v ∈ Ω, where necessarily x0 ∈ [0, z), because α(x0) > v(x0) > 0
and α = 0 on [z, 1]. In addition, having chosen r > R, Proposition 2.3 guarantees that v(x) < r
for all x ∈ [0, 1] and therefore v is a solution of the problem (2.3) for ε = 0. Hence, if we define

O =
{
v ∈ Ω : min

[0,1]
v > 0, max

[0,1]
v < r

}
,

then every solution v ∈ Ω must belong to O. Thus, the excision property of the degree yields

degLS
(
I − T (0, · ),O

)
= −1.

2.6 Existence of a continuum and conclusion of the proof
The boundedness of ∂O in C1[0, 1] and the complete continuity of the operator T guarantee the
existence of some ε∗ > 0 such that T (ε, · ) has no fixed points on ∂O for all ε ∈ [0, ε∗]. Consequently,
the homotopy property of the degree implies that degLS(I − T (0, ε),O) = −1 for all ε ∈ [0, ε∗],
and hence the existence of at least one solution v = vε ∈ O of the problem (2.3) for all ε ∈ [0, ε∗].
Actually, the Leray–Schauder continuation theorem [3, p. 63] provides us with a continuum K + of
solutions (ε, vε) of (2.3) with ε ∈ [0, ε∗] and vε ∈ O.

The change of variables (2.1) then implies the existence of a closed connected set C+ of solutions
(λ, uλ) of (1.1), where λ = ε1−p ∈ [λ∗,∞), with λ∗ = (ε∗)1−p, and

uλ = εvε = λ
1

1−p vε.

It is apparent that every (λ, uλ) ∈ C+ is strictly positive and satisfies conditions (ii) and (iii).
Finally, adapting the results in [2], we can prove the existence, for each ε ∈ [0, ε∗], of a Lyapunov

unstable solution v ∈ O of (2.4). Consequently, for every λ ∈ [λ∗,∞) there is at least one unstable
solution uλ of (1.1) which is strictly positive and satisfies (ii) and (iii). This concludes the proof of
Theorem 1.1.
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