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We consider the periodic problem
W = fltuv), o =p(H)sinu+gt); u(0) = u(w), v(0) = v(w). 1)
Here we assume that p,q € L([0,w]), p #Z 0, and f € Car([0,w] x R?) satisfies the conditions
ft,z,y)sgny >0, [f(t,z,9) < h(t,ly[) for t€[0,0], =,y €R,

where h € Car([0,w] x Ry) is non-decreasing in the second argument.
The theory of BVPs for non-autonomous and non-resonant systems is quite well developed
(see, [3]). However, (1) is a resonant type problem. Some particular cases of (1) are studied in the
w

literature, but usually under the assumption that [ ¢(s)ds = 0 (see, e.g., [2,4]). As for the case
0

[ q(s)ds # 0, there are only a few results available in the existing literature (see, [1,5]). Below we
0

present new results concerning the existence, multiplicity, and localization of solutions of (1).
We use the following notation:

(el = 5 (ol £ 2),
anlt) = masx (gl Nl b H@) = [ syl ds
0
al) =3+ L HO, W) =5 LH),
Lk (0) =] — a(l) 4+ 2km,a(f) 4+ 2kn[, Ipy(f) =] —b(L) + 2k, b(L) + 2kn |,
Jur(0) =] = a(f) + 2k + V), a(f) + (2k + Dl, Ip(€) =] — b(6) + (2k + 1), b(€) + (2k + 1),

B() = {v e 0([0,w]) = vlle <2 w(te) =0 for some to € [O,w]}.

Theorem 1. Let 0 € {—1,1}, ¢ e |lepl=|l, + qo, and the conditions

H(f) < 2m, 2)
llop]-I, + ‘/q ) ds Hf)
0

hold. Then, for any k € Z, problem (1) possesses a solution (ug,vy) such that vy, € B(¢), and
Rangeuy C Ix(0), Ipp(f) NRangeuy # @ if o =1,

3)

< [lfopl+ |l cos

and

Rangeuy C Jok(€), Ju(£) NRangeuy, # @ if o = —1.
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Remark 1. Inequality (3) is optimal for the solvablity of (1) and cannot be replaced by

w
llopl_1l, + \/q
0

no matter how small € > 0 is.

(1+9lforl, cos 1.

Theorem 1 guarantees that problem (1) possesses infinitely many solutions (ug,vy). However,
it may happen that upi1 = ur + 27 (for example, if f(¢t,z + 2m,y) = f(¢,z,y)). Introduce the
following definition.

Definition 1. Solutions (u1,v1) and (ug2,v2) of (1) are said to be geometrically distinct (g.d.) if
u1 — ug # 2mn for n € Z.

Theorem 2. Let o € {—1,1}, A 5 (P, + lglll,), inequality (2) hold, and

o), + 1 / o(s) ds
0

Then, for any k € Z, problem (1) possesses a pair of g.d. solutions (u1x,v1x) and (ugk,ve) such
that vy, € B(0) fori=1,2, and

H(0)

< lllov4 ], cos =

Rangeuyy C Lo (€), Ip(¢) NRangeuyr # &, and Rangeusy C Jai(€), Jop(€) N Range ugy # .

Definition 2. Solutions (u1,v;) and (u2,v2) of (1) are said to be consecutive if uy(t) < ua(t) for
t € [0,w], u1 # ug, and problem (1) has no solution (u,v) satisfying ui(t) < u(t) < we(t) for
t €[0,w], u# uy, and u Z us.

It is worth mentioning that a pair of consecutive solutions may not be geometrically distinct
and vice versa.
In order to formulate the next theorem, we need to introduce the following hypothesis:

the function f(¢,z,-): R — R is non-decreasing for a.e. t € [0,w] and all z € R,
mes {t € [0,w] : f(t,z,y) #0} >0 for z,y € R, y #0,
for every € >0 and r > 0 there exists f., € L([0,w]) such that
[f(t, 22, y) = f(t,21,y)| < for(t) for t€[0,0], |z —m[<e, [y[<r

(A)

Theorem 3. Leto € {—1,1}, ¢ def Ilopl=Il, +qo, * f S (IP)l. +11lll,), and hypothesis (A) hold.

Let, moreover, H({*) < 7 and
)
< q(s)ds
0

Then, for any k € Z, problem (1) possesses a pair of consecutive solutions (uig,vix) and (ugk, vor)
such that either (uyk,vig) or (usk,vor) is Lyapunov unstable, vy, € B({) fori=1,2, and

lfop]-[l, = llopl+], cos < [llopl+ll, cos = lllop)-1l,.-

Range(uyy — 2km) C {— a(?), g {, Range(ugy, — 2km) C ]ﬂ- 57T if J/q )ds >0,
0
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and

Range(uqx — 2km) C ] - — —g[, Range(ugy, — 2km) C } - g ,a(ﬁ)] if U/q(s) ds <0.
0

Moreover, if, fori € {1,2}, the inequality (—1)‘c [ q(s)ds > 0 holds, then, for every solution (u,v)
0
of problem (1), the condition

{(—l)i g +27n: n€ Z} N Range u # @

1s satisfied.

Now, we consider a particular case of (1), namely, the problem
u' = h(t)p(v), v =p(t)sinu+q(t); u(0)=u(w), v(0)=1(w), (4)

where ¢ : R — R is an increasing continuous function satisfying the conditions p(—y) = —¢(y) and
o(y) > 0 for y > 0, and h € L([0,w]) is a non-trivial non-negative function. Moreover, we assume
that

SO*(% y) def M is continuous

r—y
and we put
s def *
Pr = maX{SO (':Evy) XL,y € [_T7T]}‘
Definition 3. A pair of solutions (uj,v1) and (ug2,v2) of (4) is called a fundamental system of
solutions if, for any solution (u,v) of (4), there exists k& € Z such that either v = u; + 2k7 or
u = ug + 2km.

« def
Theorem 4. Let o € {~1,1}, ¢* = 5 (llp]ll, + lld]ll,,), and
op(t) >0 for t e [0,w]. (5)

Let, moreover,

Il ()

< [lpl, cos 1

Il < gillnl, Ipl, <16, and ] [ats)as
0

Then, problem (4) possesses a fundamental system of solutions (uj,v1) and (ug,ve) such that
vy,v3 € B(£*), and

T T 37
Range u; C} — 5,5[ and Range us C}§,7[
Moreover, for o =1, (u1,v1) is unstable, while for o = —1, (ua,v2) is unstable.
As an example, we consider the so-called relativistic problem
u' = h(t) Y "=pt)sinu+q(t); u(0) =u(w), v(0)=rvw). (6)

7
V1+ 02

: — lyl
It is clear that H(y) = ||h||, T
and the monotonicity of the cosine function, we get from Theorem 3 the following corollary.

in this case. Therefore, taking into account that H(y) < ||h,
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Corollary 1. Let 0 € {—1,1}, [|h||, <27, and

Then, problem (6) possesses a pair of g.d. solutions (ui,v1) and (ug,v2). If, moreover, |||, <
and

17 IIL

< |llop]+l, cos ==

= lllopl-1l-

w

' /Q(S) ds

0

15 HL

> |lopl-lI, = lllopl+ll, cos ==,

then (u1,v1) and (ug,v2) are consecutive solutions and at least one of them is unstable.
Theorem 4 implies the following corollary.

Corollary 2. Let o € {—1,1} and (5) be fulfilled. Let, moreover,

w

1Pl <m0 ARl pl, <16, and ’/ (s)ds
0

17 HL

< llplly cos ==

Then, the conclusions of Theorem 4 hold for problem (6).

At last we mention that the above theorems also guarantee a localization of the second compo-
nent of solutions (see, the conditions like v € B({)). Therefore, our results can be applied to some
singular problems as well. For example, let us consider the so-called mean curvature problem

v /

e Y = p(Bsinu gt u(0) = ufw), v(0) = vfw),

where f € Car([0,w] x R) and 0 < f(t,z) < h(t) for t € [0,w], z € R. Theorem 1 yields the
following corollary.

u' = f(t,u)

Corollary 3. Let o € {—1,1}, ¢ o llopl=|l, + o, £ < 1, and inequalities (2) and (3) be satisfied
with H (L) def ”TE;@? . Then, problem (6) possesses infinitely many solutions.
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