Periodic Solutions of a Pendulum Like Planar System

Alexander Lomtatidze
Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology Brno, Czech Republic
E-mail: lomtatidze@fme.vutbr.cz

We consider the periodic problem

$$
\begin{equation*}
u^{\prime}=f(t, u, v), \quad v^{\prime}=p(t) \sin u+q(t) ; \quad u(0)=u(\omega), \quad v(0)=v(\omega) . \tag{1}
\end{equation*}
$$

Here we assume that $p, q \in L([0, \omega]), p \not \equiv 0$, and $f \in \operatorname{Car}\left([0, \omega] \times \mathbb{R}^{2}\right)$ satisfies the conditions

$$
f(t, x, y) \operatorname{sgn} y \geq 0, \quad|f(t, x, y)| \leq h(t,|y|) \quad \text { for } t \in[0, \omega], \quad x, y \in \mathbb{R},
$$

where $h \in \operatorname{Car}\left([0, \omega] \times \mathbb{R}_{+}\right)$is non-decreasing in the second argument.
The theory of BVPs for non-autonomous and non-resonant systems is quite well developed (see, [3]). However, (1) is a resonant type problem. Some particular cases of (1) are studied in the literature, but usually under the assumption that $\int_{0}^{\omega} q(s) \mathrm{d} s=0$ (see, e.g., $[2,4]$). As for the case $\int_{0}^{\omega} q(s) \mathrm{d} s \neq 0$, there are only a few results available in the existing literature (see, $[1,5]$). Below we present new results concerning the existence, multiplicity, and localization of solutions of (1).

We use the following notation:

$$
\begin{gathered}
{[x]_{ \pm}=\frac{1}{2}(|x| \pm x),} \\
q_{0}(t)=\max \left\{\left\|[q]_{+}\right\|_{L},\left\|[q]_{-}\right\|_{L}\right\}, \quad H(y)=\int_{0}^{\omega} h(s,|y|) \mathrm{d} s, \\
a(\ell)=\frac{\pi}{2}+\frac{1}{4} H(\ell), \quad b(\ell)=\frac{\pi}{2}-\frac{1}{4} H(\ell), \\
\left.I_{a k}(\ell)=\right]-a(\ell)+2 k \pi, a(\ell)+2 k \pi\left[, \quad I_{b k}(\ell)=\right]-b(\ell)+2 k \pi, b(\ell)+2 k \pi[, \\
\left.J_{a k}(\ell)=\right]-a(\ell)+(2 k+1) \pi, a(\ell)+(2 k+1) \pi\left[, \quad I_{b k}(\ell)=\right]-b(\ell)+(2 k+1) \pi, b(\ell)+(2 k+1) \pi[, \\
B(\ell)=\left\{v \in C([0, \omega]):\|v\|_{C} \leq \ell, \quad v\left(t_{0}\right)=0 \text { for some } t_{0} \in[0, \omega]\right\} .
\end{gathered}
$$

Theorem 1. Let $\sigma \in\{-1,1\}, \ell \stackrel{\text { def }}{=}\left\|[\sigma p]_{-}\right\|_{L}+q_{0}$, and the conditions

$$
\begin{gather*}
H(\ell)<2 \pi \tag{2}\\
\left\|[\sigma p]_{-}\right\|_{L}+\left|\int_{0}^{\omega} q(s) \mathrm{d} s\right| \leq\left\|[\sigma p]_{+}\right\|_{L} \cos \frac{H(\ell)}{4} \tag{3}
\end{gather*}
$$

hold. Then, for any $k \in \mathbb{Z}$, problem (1) possesses a solution $\left(u_{k}, v_{k}\right)$ such that $v_{k} \in B(\ell)$, and

$$
\text { Range } u_{k} \subseteq \overline{I_{a k}(\ell)}, \quad \overline{I_{b k}(\ell)} \cap \text { Range } u_{k} \neq \varnothing \quad \text { if } \sigma=1,
$$

and

$$
\text { Range } u_{k} \subseteq \overline{J_{a k}(\ell)}, \quad \overline{J_{b k}(\ell)} \cap \text { Range } u_{k} \neq \varnothing \quad \text { if } \sigma=-1
$$

Remark 1. Inequality (3) is optimal for the solvablity of (1) and cannot be replaced by

$$
\left\|[\sigma p]_{-}\right\|_{L}+\left|\int_{0}^{\omega} q(s) \mathrm{d} s\right| \leq(1+\varepsilon)\left\|[\sigma p]_{+}\right\|_{L} \cos \frac{H(\ell)}{4},
$$

no matter how small $\varepsilon>0$ is.
Theorem 1 guarantees that problem (1) possesses infinitely many solutions (u_{k}, v_{k}). However, it may happen that $u_{k+1} \equiv u_{k}+2 \pi$ (for example, if $f(t, x+2 \pi, y) \equiv f(t, x, y)$). Introduce the following definition.

Definition 1. Solutions $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ of (1) are said to be geometrically distinct (g.d.) if $u_{1}-u_{2} \not \equiv 2 \pi n$ for $n \in \mathbb{Z}$.

Theorem 2. Let $\left.\left.\sigma \in\{-1,1\}, \ell \stackrel{\text { def }}{=} \frac{1}{2}(\| p]\left\|_{L}+\right\| q\right] \|_{L}\right)$, inequality (2) hold, and

$$
\left\|[\sigma p]_{-}\right\|_{L}+\left|\int_{0}^{\omega} q(s) \mathrm{d} s\right|<\left\|[\sigma p]_{+}\right\|_{L} \cos \frac{H(\ell)}{4}
$$

Then, for any $k \in \mathbb{Z}$, problem (1) possesses a pair of g.d. solutions $\left(u_{1 k}, v_{1 k}\right)$ and ($u_{2 k}, v_{2 k}$) such that $v_{i k} \in B(\ell)$ for $i=1,2$, and

Range $u_{1 k} \subset I_{a k}(\ell), \quad I_{b k}(\ell) \cap$ Range $u_{1 k} \neq \varnothing, \quad$ and Range $u_{2 k} \subset J_{a k}(\ell), \quad J_{b k}(\ell) \cap$ Range $u_{2 k} \neq \varnothing$.
Definition 2. Solutions (u_{1}, v_{1}) and (u_{2}, v_{2}) of (1) are said to be consecutive if $u_{1}(t) \leq u_{2}(t)$ for $t \in[0, \omega], u_{1} \not \equiv u_{2}$, and problem (1) has no solution (u, v) satisfying $u_{1}(t) \leq u(t) \leq u_{2}(t)$ for $t \in[0, \omega], u \not \equiv u_{1}$, and $u \not \equiv u_{2}$.

It is worth mentioning that a pair of consecutive solutions may not be geometrically distinct and vice versa.

In order to formulate the next theorem, we need to introduce the following hypothesis:
the function $f(t, x, \cdot): \mathbb{R} \rightarrow \mathbb{R}$ is non-decreasing for a.e. $t \in[0, \omega]$ and all $x \in \mathbb{R}$, $\operatorname{mes}\{t \in[0, \omega]: f(t, x, y) \neq 0\}>0$ for $x, y \in \mathbb{R}, y \neq 0$,
for every $\varepsilon>0$ and $r>0$ there exists $f_{\varepsilon r} \in L([0, \omega])$ such that

$$
\begin{equation*}
\left|f\left(t, x_{2}, y\right)-f\left(t, x_{1}, y\right)\right| \leq f_{\varepsilon r}(t) \text { for } t \in[0, \omega],\left|x_{2}-x_{1}\right| \leq \varepsilon,|y| \leq r . \tag{A}
\end{equation*}
$$

Theorem 3. Let $\left.\left.\sigma \in\{-1,1\}, \ell \stackrel{\text { def }}{=}\left\|[\sigma p]_{-}\right\|_{L}+q_{0}, \ell^{*} \stackrel{\text { def }}{=} \frac{1}{2}(\| p]\left\|_{L}+\right\| q\right] \|_{L}\right)$, and hypothesis (A) hold. Let, moreover, $H\left(\ell^{*}\right)<\pi$ and

$$
\left\|[\sigma p]_{-}\right\|_{L}-\left\|[\sigma p]_{+}\right\|_{L} \cos \frac{H\left(\ell^{*}\right)}{2}<\left|\int_{0}^{\omega} q(s) \mathrm{d} s\right| \leq\left\|[\sigma p]_{+}\right\|_{L} \cos \frac{H(\ell)}{4}-\left\|[\sigma p]_{-}\right\|_{L} .
$$

Then, for any $k \in \mathbb{Z}$, problem (1) possesses a pair of consecutive solutions ($u_{1 k}, v_{1 k}$) and ($u_{2 k}, v_{2 k}$) such that either $\left(u_{1 k}, v_{1 k}\right)$ or $\left(u_{2 k}, v_{2 k}\right)$ is Lyapunov unstable, $v_{i k} \in B(\ell)$ for $i=1,2$, and

$$
\text { Range }\left(u_{1 k}-2 k \pi\right) \subseteq\left[-a(\ell), \frac{\pi}{2}\left[, \quad \text { Range }\left(u_{2 k}-2 k \pi\right) \subset\right] \frac{\pi}{2}, \frac{5 \pi}{2}\left[\quad \text { if } \sigma \int_{0}^{\omega} q(s) \mathrm{d} s \geq 0\right.\right.
$$

and

$$
\text { Range } \left.\left.\left(u_{1 k}-2 k \pi\right) \subset\right]-\frac{5 \pi}{2},-\frac{\pi}{2}\left[, \quad \text { Range }\left(u_{2 k}-2 k \pi\right) \subseteq\right]-\frac{\pi}{2}, a(\ell)\right] \quad \text { if } \sigma \int_{0}^{\omega} q(s) \mathrm{d} s \leq 0
$$

Moreover, if, for $i \in\{1,2\}$, the inequality $(-1)^{i} \sigma \int_{0}^{\omega} q(s) \mathrm{d} s \geq 0$ holds, then, for every solution (u, v) of problem (1), the condition

$$
\left\{(-1)^{i} \frac{\pi}{2}+2 \pi n: n \in \mathbb{Z}\right\} \cap \text { Range } u \neq \varnothing
$$

is satisfied.
Now, we consider a particular case of (1), namely, the problem

$$
\begin{equation*}
u^{\prime}=h(t) \varphi(v), \quad v^{\prime}=p(t) \sin u+q(t) ; \quad u(0)=u(\omega), \quad v(0)=v(\omega), \tag{4}
\end{equation*}
$$

where $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is an increasing continuous function satisfying the conditions $\varphi(-y)=-\varphi(y)$ and $\varphi(y)>0$ for $y>0$, and $h \in L([0, \omega])$ is a non-trivial non-negative function. Moreover, we assume that

$$
\varphi^{*}(x, y) \stackrel{\text { def }}{=} \frac{\varphi(x)-\varphi(y)}{x-y} \text { is continuous }
$$

and we put

$$
\varphi_{r}^{*} \stackrel{\text { def }}{=} \max \left\{\varphi^{*}(x, y): x, y \in[-r, r]\right\} .
$$

Definition 3. A pair of solutions $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ of (4) is called a fundamental system of solutions if, for any solution (u, v) of (4), there exists $k \in \mathbb{Z}$ such that either $u \equiv u_{1}+2 k \pi$ or $u \equiv u_{2}+2 k \pi$.

Theorem 4. Let $\left.\left.\sigma \in\{-1,1\}, \ell^{*} \stackrel{\text { def }}{=} \frac{1}{2}(\| p]\left\|_{L}+\right\| q\right] \|_{L}\right)$, and

$$
\begin{equation*}
\sigma p(t) \geq 0 \quad \text { for } t \in[0, \omega] . \tag{5}
\end{equation*}
$$

Let, moreover,

$$
\|h\|_{L} \varphi\left(\ell^{*}\right)<\pi, \quad \varphi_{\ell^{*}}^{*}\|h\|_{L}\|p\|_{L} \leq 16, \quad \text { and } \quad\left|\int_{0}^{\omega} q(s) \mathrm{d} s\right|<\|p\|_{L} \cos \frac{\|h\|_{L} \varphi\left(\ell^{*}\right)}{2} .
$$

Then, problem (4) possesses a fundamental system of solutions $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) such that $v_{1}, v_{2} \in B\left(\ell^{*}\right)$, and

$$
\text { Range } \left.u_{1} \subset\right]-\frac{\pi}{2}, \frac{\pi}{2}\left[\quad \text { and } \quad \text { Range } u_{2} \subset\right] \frac{\pi}{2}, \frac{3 \pi}{2}[
$$

Moreover, for $\sigma=1,\left(u_{1}, v_{1}\right)$ is unstable, while for $\sigma=-1,\left(u_{2}, v_{2}\right)$ is unstable.
As an example, we consider the so-called relativistic problem

$$
\begin{equation*}
u^{\prime}=h(t) \frac{v}{\sqrt{1+v^{2}}}, \quad v^{\prime}=p(t) \sin u+q(t) ; \quad u(0)=u(\omega), \quad v(0)=v(\omega) . \tag{6}
\end{equation*}
$$

It is clear that $H(y)=\|h\|_{L} \frac{|y|}{\sqrt{1+y^{2}}}$ in this case. Therefore, taking into account that $H(y)<\|h\|_{L}$ and the monotonicity of the cosine function, we get from Theorem 3 the following corollary.

Corollary 1. Let $\sigma \in\{-1,1\},\|h\|_{L} \leq 2 \pi$, and

$$
\left|\int_{0}^{\omega} q(s) \mathrm{d} s\right| \leq\left\|[\sigma p]_{+}\right\|_{L} \cos \frac{\|h\|_{L}}{4}-\left\|[\sigma p]_{-}\right\|_{L} .
$$

Then, problem (6) possesses a pair of g.d. solutions (u_{1}, v_{1}) and (u_{2}, v_{2}). If, moreover, $\|h\|_{L}<\pi$ and

$$
\left|\int_{0}^{\omega} q(s) \mathrm{d} s\right| \geq\left\|[\sigma p]_{-}\right\|_{L}-\left\|[\sigma p]_{+}\right\|_{L} \cos \frac{\|h\|_{L}}{4},
$$

then $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are consecutive solutions and at least one of them is unstable.
Theorem 4 implies the following corollary.
Corollary 2. Let $\sigma \in\{-1,1\}$ and (5) be fulfilled. Let, moreover,

$$
\|h\|_{L} \leq \pi, \quad\|h\|_{L}\|p\|_{L} \leq 16, \quad \text { and } \quad\left|\int_{0}^{\omega} q(s) \mathrm{d} s\right| \leq\|p\|_{L} \cos \frac{\|h\|_{L}}{2} .
$$

Then, the conclusions of Theorem 4 hold for problem (6).
At last we mention that the above theorems also guarantee a localization of the second component of solutions (see, the conditions like $v \in B(\ell)$). Therefore, our results can be applied to some singular problems as well. For example, let us consider the so-called mean curvature problem

$$
u^{\prime}=f(t, u) \frac{v}{\sqrt{1-v^{2}}}, \quad v^{\prime}=p(t) \sin u+q(t) ; \quad u(0)=u(\omega), \quad v(0)=v(\omega),
$$

where $f \in \operatorname{Car}([0, \omega] \times \mathbb{R})$ and $0 \leq f(t, x) \leq h(t)$ for $t \in[0, \omega], x \in \mathbb{R}$. Theorem 1 yields the following corollary.

Corollary 3. Let $\sigma \in\{-1,1\}, \ell \stackrel{\text { def }}{=}\left\|[\sigma p]_{-}\right\|_{L}+q_{0}, \ell<1$, and inequalities (2) and (3) be satisfied with $H(\ell) \stackrel{\text { def }}{=} \frac{\|h\|_{L} \ell}{\sqrt{1-\ell^{2}}}$. Then, problem (6) possesses infinitely many solutions.

Acknowledgements

The research is supported by the internal grant \# FSI-S-23-8161 of FME BUT.

References

[1] C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded ϕ-Laplacians. J. Dynam. Differential Equations 22 (2010), no. 3, 463-471.
[2] H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum. Differential Integral Equations 23 (2010), no. 9-10, 801-810.
[3] I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Translated in J. Soviet Math. 43 (1988), no. 2, 2259-2339. Itogi Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30 (Russian), 3-103, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987.
[4] J. Mawhin, Global results for the forced pendulum equation. Handbook of differential equations, 533-589, Elsevier/North-Holland, Amsterdam, 2004.
[5] G. Tarantello, On the number of solutions for the forced pendulum equation. J. Differential Equations 80 (1989), no. 1, 79-93.

