Periodic Solutions of a Pendulum Like Planar System

Alexander Lomtatidze

Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology Brno, Czech Republic E-mail: lomtatidze@fme.vutbr.cz

We consider the periodic problem

$$u' = f(t, u, v), \quad v' = p(t)\sin u + q(t); \quad u(0) = u(\omega), \quad v(0) = v(\omega).$$
(1)

Here we assume that $p, q \in L([0, \omega]), p \neq 0$, and $f \in Car([0, \omega] \times \mathbb{R}^2)$ satisfies the conditions

 $f(t,x,y)\operatorname{sgn} y \ge 0, \quad |f(t,x,y)| \le h(t,|y|) \quad \text{for } t \in [0,\omega], \ x,y \in \mathbb{R},$

where $h \in Car([0, \omega] \times \mathbb{R}_+)$ is non-decreasing in the second argument.

The theory of BVPs for non-autonomous and non-resonant systems is quite well developed (see, [3]). However, (1) is a resonant type problem. Some particular cases of (1) are studied in the literature, but usually under the assumption that $\int_{0}^{\omega} q(s) ds = 0$ (see, e.g., [2,4]). As for the case ω

 $\int_{0}^{\omega} q(s) ds \neq 0$, there are only a few results available in the existing literature (see, [1,5]). Below we present new results concerning the existence, multiplicity, and localization of solutions of (1).

We use the following notation:

$$\begin{split} [x]_{\pm} &= \frac{1}{2} \left(|x| \pm x \right), \\ q_0(t) &= \max \left\{ \|[q]_+\|_L, \|[q]_-\|_L \right\}, \quad H(y) = \int_0^{\omega} h(s, |y|) \, \mathrm{d}s, \\ &a(\ell) = \frac{\pi}{2} + \frac{1}{4} \, H(\ell), \quad b(\ell) = \frac{\pi}{2} - \frac{1}{4} \, H(\ell), \\ &I_{ak}(\ell) =] - a(\ell) + 2k\pi, a(\ell) + 2k\pi[, \quad I_{bk}(\ell) =] - b(\ell) + 2k\pi, b(\ell) + 2k\pi[, \\ &J_{ak}(\ell) =] - a(\ell) + (2k+1)\pi, a(\ell) + (2k+1)\pi[, \quad I_{bk}(\ell) =] - b(\ell) + (2k+1)\pi, b(\ell) + (2k+1)\pi[, \\ &B(\ell) = \left\{ v \in C([0,\omega]) : \quad \|v\|_C \le \ell, \quad v(t_0) = 0 \text{ for some } t_0 \in [0,\omega] \right\}. \end{split}$$

Theorem 1. Let $\sigma \in \{-1,1\}$, $\ell \stackrel{\text{def}}{=} \|[\sigma p]_{-}\|_{L} + q_{0}$, and the conditions

$$H(\ell) < 2\pi,\tag{2}$$

$$\|[\sigma p]_{-}\|_{L} + \left| \int_{0}^{\omega} q(s) \, \mathrm{d}s \right| \le \|[\sigma p]_{+}\|_{L} \cos \frac{H(\ell)}{4} \tag{3}$$

hold. Then, for any $k \in \mathbb{Z}$, problem (1) possesses a solution (u_k, v_k) such that $v_k \in B(\ell)$, and Range $u_k \subseteq \overline{I_{ak}(\ell)}$, $\overline{I_{bk}(\ell)} \cap \text{Range } u_k \neq \emptyset$ if $\sigma = 1$,

and

$$\operatorname{Range} u_k \subseteq \overline{J_{ak}(\ell)}, \quad \overline{J_{bk}(\ell)} \cap \operatorname{Range} u_k \neq \varnothing \quad if \ \sigma = -1.$$

Remark 1. Inequality (3) is optimal for the solvability of (1) and cannot be replaced by

$$\left\| [\sigma p]_{-} \right\|_{L} + \left| \int_{0}^{\omega} q(s) \, \mathrm{d}s \right| \le (1+\varepsilon) \left\| [\sigma p]_{+} \right\|_{L} \cos \frac{H(\ell)}{4},$$

no matter how small $\varepsilon > 0$ is.

Theorem 1 guarantees that problem (1) possesses infinitely many solutions (u_k, v_k) . However, it may happen that $u_{k+1} \equiv u_k + 2\pi$ (for example, if $f(t, x + 2\pi, y) \equiv f(t, x, y)$). Introduce the following definition.

Definition 1. Solutions (u_1, v_1) and (u_2, v_2) of (1) are said to be geometrically distinct (g.d.) if $u_1 - u_2 \neq 2\pi n$ for $n \in \mathbb{Z}$.

Theorem 2. Let $\sigma \in \{-1, 1\}$, $\ell \stackrel{\text{def}}{=} \frac{1}{2} (\|p\|_L + \|q\|_L)$, inequality (2) hold, and

$$\|[\sigma p]_{-}\|_{L} + \left| \int_{0}^{\omega} q(s) \, \mathrm{d}s \right| < \|[\sigma p]_{+}\|_{L} \cos \frac{H(\ell)}{4}.$$

Then, for any $k \in \mathbb{Z}$, problem (1) possesses a pair of g.d. solutions (u_{1k}, v_{1k}) and (u_{2k}, v_{2k}) such that $v_{ik} \in B(\ell)$ for i = 1, 2, and

 $\operatorname{Range} u_{1k} \subset I_{ak}(\ell), \ I_{bk}(\ell) \cap \operatorname{Range} u_{1k} \neq \varnothing, \ and \ \operatorname{Range} u_{2k} \subset J_{ak}(\ell), \ J_{bk}(\ell) \cap \operatorname{Range} u_{2k} \neq \varnothing.$

Definition 2. Solutions (u_1, v_1) and (u_2, v_2) of (1) are said to be consecutive if $u_1(t) \le u_2(t)$ for $t \in [0, \omega]$, $u_1 \ne u_2$, and problem (1) has no solution (u, v) satisfying $u_1(t) \le u(t) \le u_2(t)$ for $t \in [0, \omega]$, $u \ne u_1$, and $u \ne u_2$.

It is worth mentioning that a pair of consecutive solutions may not be geometrically distinct and vice versa.

In order to formulate the next theorem, we need to introduce the following hypothesis:

the function $f(t, x, \cdot) : \mathbb{R} \to \mathbb{R}$ is non-decreasing for a. e. $t \in [0, \omega]$ and all $x \in \mathbb{R}$, $\max \left\{ t \in [0, \omega] : f(t, x, y) \neq 0 \right\} > 0 \text{ for } x, y \in \mathbb{R}, \ y \neq 0,$ for every $\varepsilon > 0$ and r > 0 there exists $f_{\varepsilon r} \in L([0, \omega])$ such that $|f(t, x_2, y) - f(t, x_1, y)| \leq f_{\varepsilon r}(t) \text{ for } t \in [0, \omega], \ |x_2 - x_1| \leq \varepsilon, \ |y| \leq r.$ (A)

Theorem 3. Let $\sigma \in \{-1,1\}$, $\ell \stackrel{\text{def}}{=} \|[\sigma p]_-\|_L + q_0$, $\ell^* \stackrel{\text{def}}{=} \frac{1}{2} (\|p\|_L + \|q\|_L)$, and hypothesis (A) hold. Let, moreover, $H(\ell^*) < \pi$ and

$$\left\| [\sigma p]_{-} \right\|_{L} - \left\| [\sigma p]_{+} \right\|_{L} \cos \frac{H(\ell^{*})}{2} < \left| \int_{0}^{\omega} q(s) \, \mathrm{d}s \right| \le \left\| [\sigma p]_{+} \right\|_{L} \cos \frac{H(\ell)}{4} - \left\| [\sigma p]_{-} \right\|_{L}$$

Then, for any $k \in \mathbb{Z}$, problem (1) possesses a pair of consecutive solutions (u_{1k}, v_{1k}) and (u_{2k}, v_{2k}) such that either (u_{1k}, v_{1k}) or (u_{2k}, v_{2k}) is Lyapunov unstable, $v_{ik} \in B(\ell)$ for i = 1, 2, and

$$\operatorname{Range}(u_{1k} - 2k\pi) \subseteq \left[-a(\ell), \frac{\pi}{2} \right[, \quad \operatorname{Range}(u_{2k} - 2k\pi) \subset \left] \frac{\pi}{2}, \frac{5\pi}{2} \right[\quad if \ \sigma \int_{0}^{\infty} q(s) \, \mathrm{d}s \ge 0,$$

and

$$\operatorname{Range}(u_{1k} - 2k\pi) \subset \left[-\frac{5\pi}{2}, -\frac{\pi}{2} \right[, \quad \operatorname{Range}(u_{2k} - 2k\pi) \subseteq \left[-\frac{\pi}{2}, a(\ell) \right] \quad if \ \sigma \int_{0}^{\pi} q(s) \, \mathrm{d}s \le 0.$$

Moreover, if, for $i \in \{1,2\}$, the inequality $(-1)^i \sigma \int_0^{\omega} q(s) ds \ge 0$ holds, then, for every solution (u,v) of problem (1), the condition

$$\left\{ (-1)^i \frac{\pi}{2} + 2\pi n : n \in \mathbb{Z} \right\} \cap \operatorname{Range} u \neq \emptyset$$

is satisfied.

Now, we consider a particular case of (1), namely, the problem

$$u' = h(t)\varphi(v), \quad v' = p(t)\sin u + q(t); \quad u(0) = u(\omega), \quad v(0) = v(\omega),$$
(4)

where $\varphi : \mathbb{R} \to \mathbb{R}$ is an increasing continuous function satisfying the conditions $\varphi(-y) = -\varphi(y)$ and $\varphi(y) > 0$ for y > 0, and $h \in L([0, \omega])$ is a non-trivial non-negative function. Moreover, we assume that

$$\varphi^*(x,y) \stackrel{\text{def}}{=} \frac{\varphi(x) - \varphi(y)}{x - y}$$
 is continuous

and we put

$$\varphi_r^* \stackrel{\text{def}}{=} \max\left\{\varphi^*(x, y) : x, y \in [-r, r]\right\}.$$

Definition 3. A pair of solutions (u_1, v_1) and (u_2, v_2) of (4) is called a fundamental system of solutions if, for any solution (u, v) of (4), there exists $k \in \mathbb{Z}$ such that either $u \equiv u_1 + 2k\pi$ or $u \equiv u_2 + 2k\pi$.

Theorem 4. Let
$$\sigma \in \{-1, 1\}$$
, $\ell^* \stackrel{\text{def}}{=} \frac{1}{2} (\|p\|_L + \|q\|_L)$, and
 $\sigma p(t) \ge 0 \quad \text{for } t \in [0, \omega].$ (5)

Let, moreover,

$$\|h\|_{L}\varphi(\ell^{*}) < \pi, \quad \varphi_{\ell^{*}}^{*}\|h\|_{L}\|p\|_{L} \le 16, \quad and \quad \left|\int_{0}^{\omega} q(s) \,\mathrm{d}s\right| < \|p\|_{L} \cos \frac{\|h\|_{L}\varphi(\ell^{*})}{2}$$

Then, problem (4) possesses a fundamental system of solutions (u_1, v_1) and (u_2, v_2) such that $v_1, v_2 \in B(\ell^*)$, and

Range
$$u_1 \subset \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[and \text{Range } u_2 \subset \left] \frac{\pi}{2}, \frac{3\pi}{2} \right[.$$

Moreover, for $\sigma = 1$, (u_1, v_1) is unstable, while for $\sigma = -1$, (u_2, v_2) is unstable.

As an example, we consider the so-called relativistic problem

$$u' = h(t) \frac{v}{\sqrt{1+v^2}}, \quad v' = p(t) \sin u + q(t); \quad u(0) = u(\omega), \quad v(0) = v(\omega).$$
(6)

It is clear that $H(y) = \|h\|_L \frac{|y|}{\sqrt{1+y^2}}$ in this case. Therefore, taking into account that $H(y) < \|h\|_L$ and the monotonicity of the cosine function, we get from Theorem 3 the following corollary.

 ω

Corollary 1. Let $\sigma \in \{-1, 1\}, \|h\|_{L} \leq 2\pi, and$

$$\left| \int_{0}^{\omega} q(s) \, \mathrm{d}s \right| \le \| [\sigma p]_{+} \|_{L} \cos \frac{\|h\|_{L}}{4} - \| [\sigma p]_{-} \|_{L}.$$

Then, problem (6) possesses a pair of g.d. solutions (u_1, v_1) and (u_2, v_2) . If, moreover, $||h||_L < \pi$ and

$$\left|\int_{0}^{\infty} q(s) \,\mathrm{d}s\right| \ge \|[\sigma p]_{-}\|_{L} - \|[\sigma p]_{+}\|_{L} \cos\frac{\|h\|_{L}}{4}$$

then (u_1, v_1) and (u_2, v_2) are consecutive solutions and at least one of them is unstable.

Theorem 4 implies the following corollary.

Corollary 2. Let $\sigma \in \{-1, 1\}$ and (5) be fulfilled. Let, moreover,

$$||h||_{L} \le \pi$$
, $||h||_{L} ||p||_{L} \le 16$, and $\left| \int_{0}^{\omega} q(s) \, \mathrm{d}s \right| \le ||p||_{L} \cos \frac{||h||_{L}}{2}$.

Then, the conclusions of Theorem 4 hold for problem (6).

At last we mention that the above theorems also guarantee a localization of the second component of solutions (see, the conditions like $v \in B(\ell)$). Therefore, our results can be applied to some singular problems as well. For example, let us consider the so-called mean curvature problem

$$u' = f(t, u) \frac{v}{\sqrt{1 - v^2}}, \ v' = p(t) \sin u + q(t); \ u(0) = u(\omega), \ v(0) = v(\omega),$$

where $f \in Car([0,\omega] \times \mathbb{R})$ and $0 \leq f(t,x) \leq h(t)$ for $t \in [0,\omega]$, $x \in \mathbb{R}$. Theorem 1 yields the following corollary.

Corollary 3. Let $\sigma \in \{-1,1\}$, $\ell \stackrel{\text{def}}{=} ||[\sigma p]_-||_L + q_0$, $\ell < 1$, and inequalities (2) and (3) be satisfied with $H(\ell) \stackrel{\text{def}}{=} \frac{\|h\|_L \ell}{\sqrt{1-\ell^2}}$. Then, problem (6) possesses infinitely many solutions.

Acknowledgements

The research is supported by the internal grant # FSI-S-23-8161 of FME BUT.

References

- C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded φ-Laplacians. J. Dynam. Differential Equations 22 (2010), no. 3, 463–471.
- H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum. Differential Integral Equations 23 (2010), no. 9-10, 801–810.
- [3] I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Translated in J. Soviet Math. 43 (1988), no. 2, 2259–2339. Itogi Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30 (Russian), 3–103, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987.

- [4] J. Mawhin, Global results for the forced pendulum equation. Handbook of differential equations, 533–589, Elsevier/North-Holland, Amsterdam, 2004.
- [5] G. Tarantello, On the number of solutions for the forced pendulum equation. J. Differential Equations 80 (1989), no. 1, 79–93.