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Studying the propagation of an electromagnetic field into a substance, along with its math-
ematical modeling, investigation, and numerical solution, stands as one of the important tasks
in applied mathematics. Typically, this phenomenon is associated with the generation of ther-
mal energy, leading to alterations in the permeability of the medium and influencing the diffusion
process. The mathematical representation of this process, like numerous other applied problems,
results in the nonlinear partial differential and integro-differential equations and systems thereof. In
a quasistationary scenario, the corresponding system of Maxwell equations takes the form outlined
in [9]:
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where H = (Hy, H, H3) is a vector of the magnetic field, 6 is temperature, ¢, and v, characterize
the heat capacity and electrical conductivity of the medium which are functions of #. As demon-
strated in [3], the system represented by equations (1) and (2) can be rewritten into the following
nonlinear parabolic-type integro-differential equation

aaijx[a(O/tVXH2dT>VXH:|, (3)

where the function a = a(S) is defined for S € [0, 00).
Assuming that the magnetic field has the form H = (0,0,U), and U = U(z,t), we get the
following nonlinear integro-differential equation:

i b Gy ] 0

The aim of the current note is to extend the investigation initiated in [8] and employ a Deep
Neural Network (DNN) for the nonlinear equation (4) featuring the diffusion coefficient a(S) =
(I1+SP,0<p<Ll

Thus, our goal is to apply DNN for the approximate solution of the following nonlinear initial-
boundary value problem

t

0

U0,4) = U(1,¢) =0, €0, T,
U(z,0) = Up(z), = €0, 1],
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where Q = (0, 1) x (0, T), T'= const > 0, f and Uy are the given functions.

Qualitative and quantitative properties, as well as the numerical solution for the problem (5)
and its even more intricate nonlinear counterparts, have been extensively explored in the literature
(refer to, for instance, [1,3-12,14] and the references therein). As previously stated, our objective
is to investigate an alternative approach to solving partial differential equations (PDEs) through
Machine Learning methods. Specifically, we aim to train the DNN to serve as a surrogate model
capable of predicting the solution of the PDE at any given point (z, t) € 2. DNNs can consist
of multiple layers, including input and output layers, and may feature any number of inner layers

referred to as hidden layers (see, for example, Fig. 1). The deep of the network is determined by
the number of hidden layers (columns of yellow circles — neurons).
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Figure 1. Example of the Neural Network architectures.

The DNN constructs approximation for the solution of problem (5) u(z,t,p) = U(x,t), where
u(x,t, p) represents the function obtained from the DNN, and p is the variable encompassing all
DNN parameters that need for optimization during the training process. As highlighted in [8],the
training of the DNN necessitates a substantial amount of training data, serving as the DNN’s
input. Nevertheless, utilizing the DNN for approximating solutions to PDEs offers an advantage by
incorporating physics, thus reducing the size of the required training data (see, for example, [2,13]).
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Figure 2. Exact and numerical solutions (p = 0).

Following the methodology outlined in [2,8,13], we can construct the residual of the nonlinear
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Figure 3. Exact and numerical solutions (p = 0.5).

problem (5) to be assessed at a designated set of training points

ou(x,t, 0

o

<W)Q dT)p W] — f(z,1). (6)
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Figure 4. Difference between exact and numerical solutions and learning rate (p = 0.5).

Additionally, a cost function F(z,t,p) encompassing the residual (6), along with initial and
boundary conditions can be built and minimized by a Deep Neural Network during the training.

In the test experiments, we adopted the same example and parameters as provided in [8]. The
right-hand side f(x,t) of the problem (5) was selected to yield an exact solution as follows U(x,t) =
(1 —z)exp(—x —t), accompanied by the corresponding initial solution Uy(x) = z(1 — x) exp(—=x).
The training of the neural network was conducted using the NumPy library for scientific computing
and the TensorFlow library for machine learning.

In Fig. 2 we replicated results of the numerical experiment given in [8] that is for the case p = 0
in the problem (5).

The results of the numerical experiment for p = 0.5 is given on Fig. 3. The difference between
exact and numerical solutions is given in Fig. 4 (left). In the same figure, the DNN learning rate
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for 1500 epochs is given on the right.
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