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In the rectangle Ω consider the boundary value problem

uxy = f(x, y, ux, uy, u), (1)
ℓ
(
u( · , y)

)
= φ(y), h

(
ux(x, · )

)
= ψ(x), (2)

where φ ∈ C1([0, ω2];Rn), ψ ∈ C([0, ω1];Rn), ℓ : C([0, ω1];Rn) → Rn and h : C([0, ω2];Rn) → Rn

are bounded linear operators that are commutative, i.e., the operators ℓ and h satisfy the equality

ℓ ◦ h(z) = h ◦ ℓ(z) for z ∈ C(Ω;Rn).

By B1(z; r) denote the closed ball of radius r centered at z in space C1(Ω;Rn), i.e.,

B1(z; r) =
{
ζ ∈ C1(Ω) : ∥ζ − z∥C1(Ω) ≤ r

}
.

If f(x, y, v, w, z) is differentiable with respect to the phase variables, set:

F1(x, y, v, w, z) =
∂f(x, y, v, w, z)

∂v
, F2(x, y, v, w, z) =

∂f(x, y, v, w, z)

∂w
,

F0(x, y, v, w, z) =
∂f(x, y, v, w, z)

∂z
,

Pj [u](x, y) = Fj

(
x, y, ux(x, y), uy(x, y), u(x, y)

)
(j = 0, 1, 2).

A vector function (f̃ , φ̃, ψ̃) s called an admissible perturbation if f̃ ∈ C(Ω×R3n;Rn) is locally Lip-
schitz continuous with respect to the first 2n phase variables, φ̃ ∈ C1([0, ω2];Rn), ψ̃ ∈ C([0, ω1];Rn).
Set: F̃1(x, y, v, w, z) = f̃v(x, y, v, w, z) and F̃2(x, y, v, w, z) = f̃w(x, y, v, w, z).

Definition 1. Let u0 be a solution of problem (1), (2), and r > 0. Problem (1), (2) is said to be
(u0, r)-well-posed if:

(i) u0(x, y) is the unique solution of the problem in the ball B1(u0; r);

(ii) There exist a positive constant δ0 and an increasing continuous function ε : [0, δ0] → [0,+∞)
such that ε(0) = 0 and for any δ ∈ (0, δ0] and an arbitrary admissible perturbation (f̃ , φ̃, ψ̃)
satisfying the following conditions

∥F̃1(x, y, v, w, z)∥+ ∥F̃2(x, y, v, w, z)∥ ≤ δ0 for (x, y, v, w, z) ∈ Ω× R3n, (3)
∥f̃(x, y, v, w, z)∥ < δ for (x, y, v, w, z) ∈ Ω× R3n,

∥φ̃∥C1([0,ω2]) + ∥ψ̃∥C([0,ω1]) ≤ δ,
(4)



REPORTS OF QUALITDE, Volume 2, 2023 103

the problem

uxy = f(x, y, ux, uy, u) + f̃(x, y, ux, uy, u), (1̃)
ℓ
(
u( · , y)

)
= φ(y) + φ̃(y), h

(
ux(x, · )

)
= ψ(x) + ψ̃(x) (2̃)

has at least one solution in the ball B1(u0; r), and each such solution belongs to the ball
B1(u0; ε(δ)).

Definition 2. Let u0 be a solution of problem (1), (2), and r > 0. Problem (1), (2) is said to be
strongly (u0, r)-well-posed if:

(i) Problem (1), (2) is (u0, r)-well-posed;

(ii) There exist positive numbers M0 and δ0 such that for arbitrary δ ∈ (0, δ0) an arbitrary
admissible perturbation (f̃ , φ̃, ψ̃) satisfying inequalities (3), (4), problem (1̃), (2̃) has at least
one solution in the ball B1(u0; r), and each such solution belongs to the ball B1(u0;M0 δ).

Definition 3. Problem (1), (2) is called well-posed if it is (u0, r)-well-posed for every r > 0.

Definition 4. A solution u0 of problem (1), (2) is called strongly isolated, if problem (1), (2) is
strongly (u0, r)-well-posed for some r > 0.

The concepts of strong well-posedness and a strongly isolated solution of a boundary value
problem for a nonlinear ordinary differential system were introduced in [1]. Definitions 2 and 4 are
adaptations of the idea of Definitions 3.1 and 3.2 from [1] to problem (1), (2).

The linear case of system (1), i.e. the system

uxy = P1(x, y)ux + P2(x, y)uy + P0(x, y)u+ q(x, y) (5)

was studied in [2].
Along with problem (5), (2) consider its corresponding homogeneous problem

uxy = P1(x, y)ux + P2(x, y)uy + P0(x, y)u, (50)
ℓ(u( · , y)) = 0, h(ux(x, · )) = 0. (20)

Definition 5. Problem (5), (2) is called well-posed, if it is uniquely solvable for arbitrary φ ∈
C1([0, ω2];Rn), ψ ∈ C([0, ω1];Rn) and q ∈ C(Ω), and its solution u admits the estimate

∥u∥C1,1(Ω) ≤M
(
∥φ∥C1([0,ω2]) + ∥ψ∥C([0,ω1]) + ∥q∥C(Ω)

)
,

where M is a positive constant independent of φ, ψ and q.

Remark 1. Notice that for the linear problem (5), (2) (u0, r)-well-posedness is equivalent to the
strong well-posedness. Furthermore, for problem (5), (2), Definitions 1, 2 and 3 are equivalent to
Definition 5.

Theorem 1. Let f be a continuously differentiable function with respect to the phase variables
v, w and z, and let problem (1), (2) be strongly (u0, r)-well-posed for some r > 0. Then problem
(50), (20) is well-posed, where Pj(x, y) = Pj [u0](x, y) (j = 0, 1, 2).

Theorem 2. Let f be a continuously differentiable function with respect to the phase variables v,
w and z, and let there exist matrix functions Pij ∈ C(Ω;Rn×n) (i = 1, 2; j = 0, 1, 2) such that
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(A0)

P1j(x, y) ≤ Fj(x, y, v, w, z) ≤ P2j(x, y) for (x, y, v, w, z) ∈ Ω× R3n (j = 0, 1, 2, );

(A1) for every x∗ ∈ [0, ω1] and arbitrary measurable matrix function P1 : [0, ω2] → Rn×n satisfying
the inequalities

P11(x
∗, y) ≤ P1(y) ≤ P21(x

∗, y) for y ∈ [0, ω2],

the homogeneous problem
v′ = P1(y)v, h(v) = 0

has only the trivial solution;

(A2) for every y∗ ∈ [0, ω2] and arbitrary measurable matrix function P2 : [0, ω1] → Rn×n satisfying
the inequalities

P12(x, y
∗) ≤ P2(x) ≤ P22(x, y

∗) for x ∈ [0, ω1],

the homogeneous problem
v′ = P2(x)v, ℓ(v) = 0

has only the trivial solution;

(A3) for arbitrary measurable matrix function Pj : Ω → Rn×n (j = 0, 1, 2) satisfying the inequalities

P1j(x, y) ≤ Pj(x, y) ≤ P2j(x, y) for (x, y) ∈ Ω (j = 0, 1, 2),

problem (50), (20) has only the trivial solution.

Then problem (1), (2) is strongly well-posed.

Remark 2. Conditions (A1) and (A2) of Theorem 2 are key and cannot be weakened. Violation
of either of conditions (A1) and (A2) may lead to additional compatibility conditions between the
boundary values (2) and the right-hand side of system (1).

Indeed, consider the problem

uxy = P2 uy + q(x, y, u), (6)
u(0, y) = φ(y), ux(x, 0)− ux(x, ω2) = 0, (7)

where P2 ∈ Rn×n is an arbitrary matrix, and φ ∈ C1([0, ω2];Rn) and q ∈ C(Ω× R;Rn) satisfy the
equalities

φ(0) = φ(ω2), q(x, 0, z) = q(x, ω2, z).

Let u be a solution of problem (6), (7). Set v(y) = ux(0, y)− P2 u(0, y). Then v is a solution of
the problem

v′ = q(0, y, φ(y)), (8)
v(0)− v(ω2) = 0. (9)

In other words the solvability of (8), (9) is necessary for the solvability of problem (6), (7). Problem
(8), (9) itself is ill-posed. It is solvable if and only if the following equality holds

ω2∫
0

q
(
0, t, φ(t)

)
dt = 0.
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Remark 3. The fulfillment of additional compatibility conditions is necessary for solvability of
problem (1), (2), but by no means sufficient. Indeed, consider the two-dimensional problem

u1xy = u32 − cosx,

u2xy = −u51 + sinx,
(10)

u1(0, y) = 0, u1(ω1, y) = 0,

u1x(x, 0) = u1x(x, ω2), u2x(x, 0) = u2x(x, ω2).
(11)

Let us show that problem (10), (11) has at most one solution. Indeed, let

u(x, y) =

(
u1(x, y)
u2(x, y)

)
and ũ(x, y) =

(
ũ1(x, y)
ũ2(x, y)

)
be arbitrary solutions of problem (10), (11). Then, in view of (10), we have(

u1(x, y)− ũ1(x, y)
)
xy

= u32(x, y)− ũ32(x, y), (12)(
u2(x, y)− ũ2(x, y)

)
xy

= −
(
u51(x, y)− ũ51(x, y)

)
. (13)

Multiply (12) by u2 − ũ2, integrate over Ω. After integrating by parts and taking into account
conditions (11), we arrive at the equality

−
ω1∫
0

ω2∫
0

(
u1(x, y)− ũ1(x, y)

)
x

(
u2(x, y)− ũ2(x, y)

)
y
dy dx

=

ω1∫
0

ω2∫
0

(
u32(x, y)− ũ32(x, y)

)(
u2(x, y)− ũ2(x, y)

)
dy dx. (14)

Similarly, after multiplying (13) by u1 − ũ1 and integrating over Ω, we get

−
ω1∫
0

ω2∫
0

(
u2(x, y)− ũ2(x, y)

)
y

(
u1(x, y)− ũ1(x, y)

)
x
dy dx

= −
ω1∫
0

ω2∫
0

(
u51(x, y)− ũ51(x, y)

)(
u1(x, y)− ũ1(x, y)

)
dy dx. (15)

After subtracting (15) from (14) we arrive at the equality

ω1∫
0

ω2∫
0

(
u32(x, y)− ũ32(x, y)

)(
u2(x, y)− ũ2(x, y)

)
dy dx

+

ω1∫
0

ω2∫
0

(
u51(x, y)− ũ51(x, y)

)(
u1(x, y)− ũ1(x, y)

)
dy dx = 0.

The latter equality implies uk(x, y) ≡ ũk(x, y) (k = 1, 2), i.e., u = ũ. In other words, problem
(10), (11) has at most one solution. Therefore, due to uniqueness, the only possible solution of
problem (10), (11) should be independent of y. Consequently,

u(x) =

(
cos

1
2 x

sin
1
5 x

)
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is the only possible solution of problem (10), (11). It is clear that u is a weak solution but not
a classical one since u is not differentiable at points x = π

2 m (m = 0, 1, 2, 3, 4). Thus problem
(10), (11) has no (classical) solution despite the fact that the right-hand side of system (10) and
the boundary values are analytic functions.

Consider the system
uxy = f(x, y, ux, uy, u) + q(x, y, u). (16)

Theorem 3. Let f satisfy all of the conditions of Theorem 2, and q(x, y, z) be an arbitrary
continuous function such that

lim
∥z∥→+∞

∥q(x, y, z)∥
∥z∥

= 0 (17)

uniformly on Ω. Then problem (16), (2) has at least one solution.

For the quasi-linear system

uxy = P1(x, y)ux + P2(x, y)uy + P0(x, y)u+ q(x, y, u) (18)

Theorem 2 immediately implies

Corollary 1. Let problem (50), (20) be well-posed, and let q(x, y, z) be an arbitrary continuous
function satisfying condition (17) uniformly on Ω. Then problem (18), (2) has at least one solution.

Let n = 2m, u = (v, w), and v, w ∈ Rm. For the system

vxy = A1(y)wx +B1(x)wy + f1(x, y, w) + q1
(
x, y, v, w

)
,

wxy = A2(y)vx +B2(x)vy + f2(x, y, v) + q2
(
x, y, v, w

) (19)

consider the boundary conditions of Nicoletti type

w(0, y) = 0, v(ω1, y) = 0, wx(x, 0) = 0, vx(x, ω2) = 0, (20)

and the periodic boundary conditions

v(0, y) = v(ω1, y), w(0, y) = w(ω1, y), vx(x, 0) = vx(x, ω2), wx(x, 0) = wx(x, ω2). (21)

Here fi =
(
fik
)m
k=1

∈ C(Ω × Rm;Rm) (i = 1, 2), qi ∈ C(Ω × R2m;Rm) (i = 1, 2), and Ai ∈
C([0, ω2];Rm×m) and Bi ∈ C([0, ω1];Rm×m) are symmetric matrix functions.

Corollary 2. Let A1 ∈ C([0, ω2];Rm×m), A2 ∈ C([0, ω2];Rm×m), B1 ∈ C([0, ω1];Rm×m) and
B2 ∈ C([0, ω1];Rm×m) be positive semi-definite symmetric matrix functions, and let there exist
δ > 0 such that the following conditions hold:

f1k(x, y, w1, . . . , wm)wk ≥ δ w2
kf1(x, y, w) · w ≥ δ∥w∥2 for (x, y, w1, . . . , wm) ∈ Ω× Rm, (22)

f2k(x, y, v1, . . . , vm) vk ≤ −δ v2kf2(x, y, v) · v ≤ −δ∥v∥2 for (x, y, v1, . . . , vm) ∈ Ω× Rm, (23)

lim
∥v∥, ∥w∥→+∞

∥q1(x, y, v, w)∥+ ∥q2(x, y, v, w)∥
∥v∥+ ∥w∥

= 0 uniformly on Ω. (24)

Then problem (19), (20) has at least one solution.

Corollary 3. Let A1 ∈ C([0, ω2];Rm×m), A2 ∈ C([0, ω2];Rm×m), B1 ∈ C([0, ω1];Rm×m) and
B2 ∈ C([0, ω1];Rm×m) be positive definite symmetric matrix functions, and let there exist δ > 0
such that conditions (22)–(24) hold. Then problem (19), (21) has at least one solution.
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Remark 4. In Theorem 2 it is assumed that the function f(x, y, v, w, z) has at most linear growth
with respect to the phase variables v, w and z. Corollaries 2 and 3 cover the case where the right-
hand side of system (19) has an arbitrary growth order in some phase variables. As an example,
consider the systems

vxy = y2wx + (1 + x2)wy + w + sinh(w) + sin(x2 y3)w
4
5 ,

wxy = sin2 x vy − 2v − sinh(v3) + ln(1 + x2y2 + v6 + w8
) (25)

and
vxy = (1 + y2)wx + (1 + x4)xyw + sinh(w) + sin(x2 y3)w

4
5 ,

wxy = ey vx + (1 + sin2 x) vy − 2v − sinh(v3) + ln(1 + x2y2 + v6 + w8
)
.

(26)

System (25) satisfies all of the conditions of Corollary 2, and system (26) satisfies all of the
conditions of Corollary 3. Therefore, by Corollaries 2 and 3, problems (25), (20) and (26), (21) are
solvable.
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