Nonlocal Boundary Value Problems for Second Order Nonlinear Hyperbolic Systems

Tariel Kiguradze, Maram M. Alrumayh
Florida Institute of Technology, Melbourne, USA
E-mails: tkigurad@fit.edu; malsalem2017@my.fit.edu

In the rectangle Ω consider the boundary value problem

$$
\begin{gather*}
u_{x y}=f\left(x, y, u_{x}, u_{y}, u\right) \tag{1}\\
\ell(u(\cdot, y))=\varphi(y), \quad h\left(u_{x}(x, \cdot)\right)=\psi(x) \tag{2}
\end{gather*}
$$

where $\varphi \in C^{1}\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{n}\right), \psi \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{n}\right), \ell: C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ and $h: C\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ are bounded linear operators that are commutative, i.e., the operators ℓ and h satisfy the equality

$$
\ell \circ h(z)=h \circ \ell(z) \quad \text { for } \quad z \in C\left(\Omega ; \mathbb{R}^{n}\right)
$$

By $\mathbf{B}^{1}(z ; r)$ denote the closed ball of radius r centered at z in space $C^{1}\left(\Omega ; \mathbb{R}^{n}\right)$, i.e.,

$$
\mathbf{B}^{1}(z ; r)=\left\{\zeta \in C^{1}(\Omega):\|\zeta-z\|_{C^{1}(\Omega)} \leq r\right\}
$$

If $f(x, y, v, w, z)$ is differentiable with respect to the phase variables, set:

$$
\begin{gathered}
F_{1}(x, y, v, w, z)=\frac{\partial f(x, y, v, w, z)}{\partial v}, \quad F_{2}(x, y, v, w, z)=\frac{\partial f(x, y, v, w, z)}{\partial w} \\
F_{0}(x, y, v, w, z)=\frac{\partial f(x, y, v, w, z)}{\partial z} \\
P_{j}[u](x, y)=F_{j}\left(x, y, u_{x}(x, y), u_{y}(x, y), u(x, y)\right)(j=0,1,2)
\end{gathered}
$$

A vector function $(\widetilde{f}, \widetilde{\varphi}, \widetilde{\psi})$ s called an admissible perturbation if $\tilde{f} \in C\left(\Omega \times \mathbb{R}^{3 n} ; \mathbb{R}^{n}\right)$ is locally Lipschitz continuous with respect to the first $2 n$ phase variables, $\widetilde{\varphi_{\sim}} \in C^{1}\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{n}\right), \widetilde{\psi} \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{n}\right)$. Set: $\widetilde{F}_{1}(x, y, v, w, z)=\widetilde{f}_{v}(x, y, v, w, z)$ and $\widetilde{F}_{2}(x, y, v, w, z)=\widetilde{f}_{w}(x, y, v, w, z)$.

Definition 1. Let u_{0} be a solution of problem (1), (2), and $r>0$. Problem (1), (2) is said to be $\left(u_{0}, r\right)$-well-posed if:
(i) $u_{0}(x, y)$ is the unique solution of the problem in the ball $\mathbf{B}^{1}\left(u_{0} ; r\right)$;
(ii) There exist a positive constant δ_{0} and an increasing continuous function $\varepsilon:\left[0, \delta_{0}\right] \rightarrow[0,+\infty)$ such that $\varepsilon(0)=0$ and for any $\delta \in\left(0, \delta_{0}\right]$ and an arbitrary admissible perturbation $(\widetilde{f}, \widetilde{\varphi}, \widetilde{\psi})$ satisfying the following conditions

$$
\begin{gather*}
\left\|\widetilde{F}_{1}(x, y, v, w, z)\right\|+\left\|\widetilde{F}_{2}(x, y, v, w, z)\right\| \leq \delta_{0} \text { for }(x, y, v, w, z) \in \Omega \times \mathbb{R}^{3 n} \tag{3}\\
\|\widetilde{f}(x, y, v, w, z)\|<\delta \text { for }(x, y, v, w, z) \in \Omega \times \mathbb{R}^{3 n} \\
\|\widetilde{\varphi}\|_{C^{1}\left(\left[0, \omega_{2}\right]\right)}+\|\widetilde{\psi}\|_{C\left(\left[0, \omega_{1}\right]\right)} \leq \delta \tag{4}
\end{gather*}
$$

the problem

$$
\begin{align*}
u_{x y} & =f\left(x, y, u_{x}, u_{y}, u\right)+\widetilde{f}\left(x, y, u_{x}, u_{y}, u\right), \tag{1}\\
\ell(u(\cdot, y)) & =\varphi(y)+\widetilde{\varphi}(y), \quad h\left(u_{x}(x, \cdot)\right)=\psi(x)+\widetilde{\psi}(x) \tag{2}
\end{align*}
$$

has at least one solution in the ball $\mathbf{B}^{1}\left(u_{0} ; r\right)$, and each such solution belongs to the ball $\mathbf{B}^{1}\left(u_{0} ; \varepsilon(\delta)\right)$.

Definition 2. Let u_{0} be a solution of problem (1), (2), and $r>0$. Problem (1), (2) is said to be strongly $\left(u_{0}, r\right)$-well-posed if:
(i) Problem (1), (2) is $\left(u_{0}, r\right)$-well-posed;
(ii) There exist positive numbers M_{0} and δ_{0} such that for arbitrary $\delta \in\left(\underset{\sim}{0}, \delta_{0}\right)$ an arbitrary admissible perturbation $(\widetilde{f}, \widetilde{\varphi}, \widetilde{\psi})$ satisfying inequalities (3), (4), problem $(\widetilde{1}),(\widetilde{2})$ has at least one solution in the ball $\mathbf{B}^{1}\left(u_{0} ; r\right)$, and each such solution belongs to the ball $\mathbf{B}^{1}\left(u_{0} ; M_{0} \delta\right)$.

Definition 3. Problem (1), (2) is called well-posed if it is $\left(u_{0}, r\right)$-well-posed for every $r>0$.
Definition 4. A solution u_{0} of problem (1), (2) is called strongly isolated, if problem (1), (2) is strongly $\left(u_{0}, r\right)$-well-posed for some $r>0$.

The concepts of strong well-posedness and a strongly isolated solution of a boundary value problem for a nonlinear ordinary differential system were introduced in [1]. Definitions 2 and 4 are adaptations of the idea of Definitions 3.1 and 3.2 from [1] to problem (1), (2).

The linear case of system (1), i.e. the system

$$
\begin{equation*}
u_{x y}=P_{1}(x, y) u_{x}+P_{2}(x, y) u_{y}+P_{0}(x, y) u+q(x, y) \tag{5}
\end{equation*}
$$

was studied in [2].
Along with problem (5), (2) consider its corresponding homogeneous problem

$$
\begin{gather*}
u_{x y}=P_{1}(x, y) u_{x}+P_{2}(x, y) u_{y}+P_{0}(x, y) u, \tag{0}\\
\quad \ell(u(\cdot, y))=0, \quad h\left(u_{x}(x, \cdot)\right)=0 . \tag{0}
\end{gather*}
$$

Definition 5. Problem (5), (2) is called well-posed, if it is uniquely solvable for arbitrary $\varphi \in$ $C^{1}\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{n}\right), \psi \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{n}\right)$ and $q \in C(\Omega)$, and its solution u admits the estimate

$$
\|u\|_{C^{1,1}(\Omega)} \leq M\left(\|\varphi\|_{C^{1}\left(\left[0, \omega_{2}\right]\right)}+\|\psi\|_{C\left(\left[0, \omega_{1}\right]\right)}+\|q\|_{C(\Omega)}\right)
$$

where M is a positive constant independent of φ, ψ and q.
Remark 1. Notice that for the linear problem (5), (2) ($\left.u_{0}, r\right)$-well-posedness is equivalent to the strong well-posedness. Furthermore, for problem (5), (2), Definitions 1, 2 and 3 are equivalent to Definition 5.

Theorem 1. Let f be a continuously differentiable function with respect to the phase variables v, w and z, and let problem (1), (2) be strongly $\left(u_{0}, r\right)$-well-posed for some $r>0$. Then problem $\left(5_{0}\right),\left(2_{0}\right)$ is well-posed, where $P_{j}(x, y)=P_{j}\left[u_{0}\right](x, y)(j=0,1,2)$.

Theorem 2. Let f be a continuously differentiable function with respect to the phase variables v, w and z, and let there exist matrix functions $P_{i j} \in C\left(\Omega ; \mathbb{R}^{n \times n}\right)(i=1,2 ; j=0,1,2)$ such that
$\left(A_{0}\right)$

$$
P_{1 j}(x, y) \leq F_{j}(x, y, v, w, z) \leq P_{2 j}(x, y) \text { for }(x, y, v, w, z) \in \Omega \times \mathbb{R}^{3 n}(j=0,1,2,) ;
$$

$\left(A_{1}\right)$ for every $x^{*} \in\left[0, \omega_{1}\right]$ and arbitrary measurable matrix function $P_{1}:\left[0, \omega_{2}\right] \rightarrow \mathbb{R}^{n \times n}$ satisfying the inequalities

$$
P_{11}\left(x^{*}, y\right) \leq P_{1}(y) \leq P_{21}\left(x^{*}, y\right) \text { for } y \in\left[0, \omega_{2}\right] \text {, }
$$

the homogeneous problem

$$
v^{\prime}=P_{1}(y) v, \quad h(v)=0
$$

has only the trivial solution;
$\left(A_{2}\right)$ for every $y^{*} \in\left[0, \omega_{2}\right]$ and arbitrary measurable matrix function $P_{2}:\left[0, \omega_{1}\right] \rightarrow \mathbb{R}^{n \times n}$ satisfying the inequalities

$$
P_{12}\left(x, y^{*}\right) \leq P_{2}(x) \leq P_{22}\left(x, y^{*}\right) \text { for } x \in\left[0, \omega_{1}\right] \text {, }
$$

the homogeneous problem

$$
v^{\prime}=P_{2}(x) v, \quad \ell(v)=0
$$

has only the trivial solution;
$\left(A_{3}\right)$ for arbitrary measurable matrix function $P_{j}: \Omega \rightarrow \mathbb{R}^{n \times n}(j=0,1,2)$ satisfying the inequalities

$$
P_{1 j}(x, y) \leq P_{j}(x, y) \leq P_{2 j}(x, y) \text { for }(x, y) \in \Omega(j=0,1,2) \text {, }
$$

problem $\left(5_{0}\right),\left(2_{0}\right)$ has only the trivial solution.
Then problem (1), (2) is strongly well-posed.
Remark 2. Conditions $\left(A_{1}\right)$ and $\left(A_{2}\right)$ of Theorem 2 are key and cannot be weakened. Violation of either of conditions $\left(A_{1}\right)$ and $\left(A_{2}\right)$ may lead to additional compatibility conditions between the boundary values (2) and the right-hand side of system (1).

Indeed, consider the problem

$$
\begin{gather*}
u_{x y}=P_{2} u_{y}+q(x, y, u), \tag{6}\\
u(0, y)=\varphi(y), \quad u_{x}(x, 0)-u_{x}\left(x, \omega_{2}\right)=0, \tag{7}
\end{gather*}
$$

where $P_{2} \in \mathbb{R}^{n \times n}$ is an arbitrary matrix, and $\varphi \in C^{1}\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{n}\right)$ and $q \in C\left(\Omega \times \mathbb{R} ; \mathbb{R}^{n}\right)$ satisfy the equalities

$$
\varphi(0)=\varphi\left(\omega_{2}\right), \quad q(x, 0, z)=q\left(x, \omega_{2}, z\right) .
$$

Let u be a solution of problem (6), (7). Set $v(y)=u_{x}(0, y)-P_{2} u(0, y)$. Then v is a solution of the problem

$$
\begin{align*}
& v^{\prime}=q(0, y, \varphi(y)), \tag{8}\\
& v(0)-v\left(\omega_{2}\right)=0 \tag{9}
\end{align*}
$$

In other words the solvability of (8), (9) is necessary for the solvability of problem (6), (7). Problem $(8),(9)$ itself is ill-posed. It is solvable if and only if the following equality holds

$$
\int_{0}^{\omega_{2}} q(0, t, \varphi(t)) d t=0
$$

Remark 3. The fulfillment of additional compatibility conditions is necessary for solvability of problem (1), (2), but by no means sufficient. Indeed, consider the two-dimensional problem

$$
\begin{gather*}
u_{1 x y}=u_{2}^{3}-\cos x \tag{10}\\
u_{2 x y}=-u_{1}^{5}+\sin x \\
u_{1}(0, y)=0, \quad u_{1}\left(\omega_{1}, y\right)=0 \\
u_{1 x}(x, 0)=u_{1 x}\left(x, \omega_{2}\right), \quad u_{2 x}(x, 0)=u_{2 x}\left(x, \omega_{2}\right) . \tag{11}
\end{gather*}
$$

Let us show that problem $(10),(11)$ has at most one solution. Indeed, let

$$
u(x, y)=\binom{u_{1}(x, y)}{u_{2}(x, y)} \quad \text { and } \quad \widetilde{u}(x, y)=\binom{\widetilde{u}_{1}(x, y)}{\widetilde{u}_{2}(x, y)}
$$

be arbitrary solutions of problem (10), (11). Then, in view of (10), we have

$$
\begin{align*}
\left(u_{1}(x, y)-\widetilde{u}_{1}(x, y)\right)_{x y} & =u_{2}^{3}(x, y)-\widetilde{u}_{2}^{3}(x, y) \tag{12}\\
\left(u_{2}(x, y)-\widetilde{u}_{2}(x, y)\right)_{x y} & =-\left(u_{1}^{5}(x, y)-\widetilde{u}_{1}^{5}(x, y)\right) \tag{13}
\end{align*}
$$

Multiply (12) by $u_{2}-\widetilde{u}_{2}$, integrate over Ω. After integrating by parts and taking into account conditions (11), we arrive at the equality

$$
\begin{align*}
&-\int_{0}^{\omega_{1}} \int_{0}^{\omega_{2}}\left(u_{1}(x, y)-\widetilde{u}_{1}(x, y)\right)_{x}\left(u_{2}(x, y)-\widetilde{u}_{2}(x, y)\right)_{y} d y d x \\
&=\int_{0}^{\omega_{1}} \int_{0}^{\omega_{2}}\left(u_{2}^{3}(x, y)-\widetilde{u}_{2}^{3}(x, y)\right)\left(u_{2}(x, y)-\widetilde{u}_{2}(x, y)\right) d y d x \tag{14}
\end{align*}
$$

Similarly, after multiplying (13) by $u_{1}-\widetilde{u}_{1}$ and integrating over Ω, we get

$$
\begin{align*}
&-\int_{0}^{\omega_{1}} \int_{0}^{\omega_{2}}\left(u_{2}(x, y)-\widetilde{u}_{2}(x, y)\right)_{y}\left(u_{1}(x, y)-\widetilde{u}_{1}(x, y)\right)_{x} d y d x \\
&=-\int_{0}^{\omega_{1}} \int_{0}^{\omega_{2}}\left(u_{1}^{5}(x, y)-\widetilde{u}_{1}^{5}(x, y)\right)\left(u_{1}(x, y)-\widetilde{u}_{1}(x, y)\right) d y d x . \tag{15}
\end{align*}
$$

After subtracting (15) from (14) we arrive at the equality

$$
\begin{aligned}
\int_{0}^{\omega_{1}} \int_{0}^{\omega_{2}}\left(u_{2}^{3}(x, y)-\widetilde{u}_{2}^{3}(x, y)\right)\left(u_{2}(x, y)\right. & \left.-\widetilde{u}_{2}(x, y)\right) d y d x \\
& +\int_{0}^{\omega_{1}} \int_{0}^{\omega_{2}}\left(u_{1}^{5}(x, y)-\widetilde{u}_{1}^{5}(x, y)\right)\left(u_{1}(x, y)-\widetilde{u}_{1}(x, y)\right) d y d x=0 .
\end{aligned}
$$

The latter equality implies $u_{k}(x, y) \equiv \widetilde{u}_{k}(x, y)(k=1,2)$, i.e., $u=\widetilde{u}$. In other words, problem (10),(11) has at most one solution. Therefore, due to uniqueness, the only possible solution of problem (10), (11) should be independent of y. Consequently,

$$
u(x)=\binom{\cos ^{\frac{1}{2}} x}{\sin ^{\frac{1}{5}} x}
$$

is the only possible solution of problem (10), (11). It is clear that u is a weak solution but not a classical one since u is not differentiable at points $x=\frac{\pi}{2} m(m=0,1,2,3,4)$. Thus problem (10), (11) has no (classical) solution despite the fact that the right-hand side of system (10) and the boundary values are analytic functions.

Consider the system

$$
\begin{equation*}
u_{x y}=f\left(x, y, u_{x}, u_{y}, u\right)+q(x, y, u) . \tag{16}
\end{equation*}
$$

Theorem 3. Let f satisfy all of the conditions of Theorem 2, and $q(x, y, z)$ be an arbitrary continuous function such that

$$
\begin{equation*}
\lim _{\|z\| \rightarrow+\infty} \frac{\|q(x, y, z)\|}{\|z\|}=0 \tag{17}
\end{equation*}
$$

uniformly on Ω. Then problem (16), (2) has at least one solution.
For the quasi-linear system

$$
\begin{equation*}
u_{x y}=P_{1}(x, y) u_{x}+P_{2}(x, y) u_{y}+P_{0}(x, y) u+q(x, y, u) \tag{18}
\end{equation*}
$$

Theorem 2 immediately implies
Corollary 1. Let problem $\left(5_{0}\right),\left(2_{0}\right)$ be well-posed, and let $q(x, y, z)$ be an arbitrary continuous function satisfying condition (17) uniformly on Ω. Then problem (18), (2) has at least one solution.

Let $n=2 m, u=(v, w)$, and $v, w \in \mathbb{R}^{m}$. For the system

$$
\begin{align*}
v_{x y} & =A_{1}(y) w_{x}+B_{1}(x) w_{y}+f_{1}(x, y, w)+q_{1}(x, y, v, w), \tag{19}\\
w_{x y} & =A_{2}(y) v_{x}+B_{2}(x) v_{y}+f_{2}(x, y, v)+q_{2}(x, y, v, w)
\end{align*}
$$

consider the boundary conditions of Nicoletti type

$$
\begin{equation*}
w(0, y)=0, \quad v\left(\omega_{1}, y\right)=0, \quad w_{x}(x, 0)=0, \quad v_{x}\left(x, \omega_{2}\right)=0 \tag{20}
\end{equation*}
$$

and the periodic boundary conditions

$$
\begin{equation*}
v(0, y)=v\left(\omega_{1}, y\right), \quad w(0, y)=w\left(\omega_{1}, y\right), \quad v_{x}(x, 0)=v_{x}\left(x, \omega_{2}\right), \quad w_{x}(x, 0)=w_{x}\left(x, \omega_{2}\right) . \tag{21}
\end{equation*}
$$

Here $f_{i}=\left(f_{i k}\right)_{k=1}^{m} \in C\left(\Omega \times \mathbb{R}^{m} ; \mathbb{R}^{m}\right)(i=1,2), q_{i} \in C\left(\Omega \times \mathbb{R}^{2 m} ; \mathbb{R}^{m}\right)(i=1,2)$, and $A_{i} \in$ $C\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{m \times m}\right)$ and $B_{i} \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{m \times m}\right)$ are symmetric matrix functions.

Corollary 2. Let $A_{1} \in C\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{m \times m}\right)$, $A_{2} \in C\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{m \times m}\right)$, $B_{1} \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{m \times m}\right)$ and $B_{2} \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{m \times m}\right)$ be positive semi-definite symmetric matrix functions, and let there exist $\delta>0$ such that the following conditions hold:

$$
\begin{gather*}
f_{1 k}\left(x, y, w_{1}, \ldots, w_{m}\right) w_{k} \geq \delta w_{k}^{2} f_{1}(x, y, w) \cdot w \geq \delta\|w\|^{2} \quad \text { for }\left(x, y, w_{1}, \ldots, w_{m}\right) \in \Omega \times \mathbb{R}^{m}, \tag{22}\\
f_{2 k}\left(x, y, v_{1}, \ldots, v_{m}\right) v_{k} \leq-\delta v_{k}^{2} f_{2}(x, y, v) \cdot v \leq-\delta\|v\|^{2} \text { for }\left(x, y, v_{1}, \ldots, v_{m}\right) \in \Omega \times \mathbb{R}^{m}, \tag{23}\\
\lim _{\|v\|,\|w\|+\infty} \frac{\left\|q_{1}(x, y, v, w)\right\|+\left\|q_{2}(x, y, v, w)\right\|}{\|v\|+\|w\|}=0 \quad \text { uniformly on } \Omega . \tag{24}
\end{gather*}
$$

Then problem (19), (20) has at least one solution.
Corollary 3. Let $A_{1} \in C\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{m \times m}\right)$, $A_{2} \in C\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{m \times m}\right)$, $B_{1} \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{m \times m}\right)$ and $B_{2} \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{m \times m}\right)$ be positive definite symmetric matrix functions, and let there exist $\delta>0$ such that conditions (22)-(24) hold. Then problem (19), (21) has at least one solution.

Remark 4. In Theorem 2 it is assumed that the function $f(x, y, v, w, z)$ has at most linear growth with respect to the phase variables v, w and z. Corollaries 2 and 3 cover the case where the righthand side of system (19) has an arbitrary growth order in some phase variables. As an example, consider the systems

$$
\begin{align*}
v_{x y} & =y^{2} w_{x}+\left(1+x^{2}\right) w_{y}+w+\sinh (w)+\sin \left(x^{2} y^{3}\right) w^{\frac{4}{5}} \tag{25}\\
w_{x y} & =\sin ^{2} x v_{y}-2 v-\sinh \left(v^{3}\right)+\ln \left(1+x^{2} y^{2}+v^{6}+w^{8}\right)
\end{align*}
$$

and

$$
\begin{align*}
v_{x y} & =\left(1+y^{2}\right) w_{x}+\left(1+x^{4}\right) x_{y} w+\sinh (w)+\sin \left(x^{2} y^{3}\right) w^{\frac{4}{5}} \tag{26}\\
w_{x y} & =e^{y} v_{x}+\left(1+\sin ^{2} x\right) v_{y}-2 v-\sinh \left(v^{3}\right)+\ln \left(1+x^{2} y^{2}+v^{6}+w^{8}\right)
\end{align*}
$$

System (25) satisfies all of the conditions of Corollary 2, and system (26) satisfies all of the conditions of Corollary 3. Therefore, by Corollaries 2 and 3 , problems (25), (20) and (26), (21) are solvable.

References

[1] I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Translated in J. Soviet Math. 43 (1988), no. 2, 2259-2339. Itogi Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30 (Russian), 3-103, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987.
[2] T. Kiguradze, Some boundary value problems for systems of linear partial differential equations of hyperbolic type. Mem. Differential Equations Math. Phys. 1 (1994), 1-144.
[3] T. Kiguradze, On periodic in the plane solutions of nonlinear hyperbolic equations. Nonlinear Anal. 39 (2000), no. 2, Ser. A: Theory Methods, 173-185.
[4] T. Kiguradze and R. Alhuzally, On a two-dimensional Dirichlet type problem for a linear hyperbolic equation of fourth order. Georgian Math. J. 31 (2024), no. 1 (to appear).
[5] T. Kiguradze and N. Al Jaber, Multi-dimensional periodic problems for higher-order linear hyperbolic equations. Georgian Math. J. 26 (2019), no. 2, 235-256.
[6] T. Kiguradze and R. Ben-Rabha, On strong well-posedness of initial-boundary value problems for higher order nonlinear hyperbolic equations with two independent variables. Georgian Math. J. 24 (2017), no. 3, 409-428.
[7] T. Kiguradze, R. Ben-Rabha and N. Al-Jaber, Nonlocal boundary value problems for higher order linear hyperbolic equations with two independent variables. Mem. Differential Equations Math. Phys. 90 (2023) (to appear).
[8] T. I. Kiguradze and T. Kusano, On the well-posedness of initial-boundary value problems for higher-order linear hyperbolic equations with two independent variables. (Russian) Differ. Uravn. 39 (2003), no. 4, 516-526; translation in Differ. Equ. 39 (2003), no. 4, 553-563.

