Nonlocal Boundary Value Problems for Second Order Linear Hyperbolic Systems

Tariel Kiguradze, Afrah Almutairi
Florida Institute of Technology, Melbourne, USA
E-mails: tkigurad@fit.edu; aalmutairi2018@my.fit.edu

In the rectangle $\Omega=\left[0, \omega_{1}\right] \times\left[0, \omega_{2}\right]$ consider the problem

$$
\begin{gather*}
u_{x y}=P_{0}(x, y) u+P_{1}(x, y) u_{x}+P_{2}(x, y) u_{y}+q(x, y), \tag{1}\\
\ell(u(\cdot, y))=\varphi(y), \quad h\left(u_{x}(x, \cdot)\right)=\psi(x), \tag{2}
\end{gather*}
$$

where $P_{j} \in C\left(\Omega ; \mathbb{R}^{n \times n}\right)(j=0,1,2), q \in C\left(\Omega ; \mathbb{R}^{n}\right), \varphi \in C^{1}\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{n}\right), \psi \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{n}\right)$, and ℓ : $C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ and $h: C\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ are bounded linear operators that are commutative, i.e., the operators ℓ and h satisfy the equality

$$
\begin{equation*}
\ell \circ h(z)=h \circ \ell(z) \quad \text { for } \quad z \in C\left(\Omega ; \mathbb{R}^{n}\right) . \tag{3}
\end{equation*}
$$

One may think that the boundary conditions

$$
\begin{equation*}
\ell(u(\cdot, y))=\varphi(y), \quad h(u(x, \cdot))=\Psi(x) \tag{2}
\end{equation*}
$$

are more natural than conditions (2). All the more so, conditions ($\widetilde{2}$) obviously imply conditions (2). The main reason for studying problem (1), (2) instead of problem (1), (2) is that problem (1), ($\widetilde{2})$ is ill-posed, since functions φ and ψ should satisfy certain compatibility conditions. Indeed, if $u \in C(\Omega)$ is an arbitrary function satisfying conditions ($\widetilde{2})$, then, in view of (3), we have

$$
\ell(\psi)=\ell \circ h(u)=h \circ \ell(u)=h(\varphi) .
$$

By a solution of problem (1), (2) we understand a classical solution, i.e., a function $u \in C^{1,1}(\Omega)$ satisfying equation (1) and boundary conditions (2) everywhere in Ω.

Along with problem (1), (2) consider its corresponding homogeneous problem

$$
\begin{gather*}
u_{x y}=P_{0}(x, y) u+P_{1}(x, y) u_{x}+P_{2}(x, y) u_{y} \tag{0}\\
\ell(u(\cdot, y))=0, \quad h\left(u_{x}(x, \cdot)\right)=0, \tag{0}
\end{gather*}
$$

as well as the problems

$$
\begin{gather*}
v^{\prime}=P_{2}\left(x, y^{*}\right) v, \tag{1}\\
\ell(v)=0 \tag{1}
\end{gather*}
$$

and

$$
\begin{gather*}
v^{\prime}=P_{2}\left(x^{*}, y\right) v, \tag{2}\\
h(v)=0 . \tag{2}
\end{gather*}
$$

Problems $\left(1_{1}\right),\left(2_{1}\right)$ are $\left(1_{2}\right),\left(2_{2}\right)$ called associated problems of problem (1), (2). Notice that problem $\left(1_{1}\right),\left(2_{1}\right)$ (problem $\left(1_{2}\right),\left(2_{2}\right)$) is a boundary value problem for a linear ordinary differential equation depending on a parameter y^{*} (a parameter x^{*}).

The concept of $\boldsymbol{\sigma}$-associated problems for n-dimensional periodic problems was introduced in [4], and for two-dimensional Dirichlet type problems in [3].

Definition 1. Problem (1), (2) is called well-posed, if it is uniquely solvable for arbitrary $\varphi \in$ $C^{1}\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{n}\right), \psi \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{n}\right)$ and $q \in C(\Omega)$, and its solution u admits the estimate

$$
\|u\|_{C^{1,1}(\Omega)} \leq M\left(\|\varphi\|_{C^{1}\left(\left[0, \omega_{2}\right]\right)}+\|\psi\|_{C\left(\left[0, \omega_{1}\right]\right)}+\|q\|_{C(\Omega)}\right),
$$

where M is a positive constant independent of φ, ψ and q.
Theorem 1. Let problem (1), (2) be solvable for arbitrary $\varphi \in C^{1}\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{n}\right)$ and $\psi \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{n}\right)$. Then the problem

$$
\begin{equation*}
z^{\prime}=0, \quad \ell(z)=0 \tag{4}
\end{equation*}
$$

has only the trivial solution.
Remark 1. If problem (4) has only the trivial solution, then problem $\left(1_{0}\right),\left(2_{0}\right)$ is equivalent to the homogeneous problem

$$
\begin{gather*}
u_{x y}=P_{0}(x, y) u+P_{1}(x, y) u_{x}+P_{2}(x, y) u_{y}, \tag{0}\\
\ell(u(\cdot, y))=0, \quad h(u(x, \cdot))=0 . \tag{0}
\end{gather*}
$$

Theorem 2. Let $P_{j}(j=1,2)$ be constant matrices, let problem $\left(1_{1}\right),\left(2_{1}\right)$ have a nontrivial solution, and let the following conditions hold:

$$
\begin{aligned}
h\left(P_{0}(x, \cdot) z(\cdot)\right) & =h\left(P_{0}(x, \cdot)\right) h(z(\cdot)) \text { for every } z \in C\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{n}\right), \\
h\left(P_{1} z(\cdot)\right) & =P_{1} h(z(\cdot)) \text { for every } z \in C\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{n}\right), \\
h\left(P_{2} z(\cdot)\right) & =P_{2} h(z(\cdot)) \text { for every } z \in C\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{n}\right) .
\end{aligned}
$$

Then for solvability of problem (1), (2) it is necessary that the problem

$$
\begin{gathered}
v^{\prime}=P_{2} v+\left(P_{0}+P_{2} P_{1}\right) \Psi(x)+h(q(x, \cdot)), \\
\ell(v)=h\left(\varphi^{\prime}\right)-\ell\left(P_{1} \Psi\right)
\end{gathered}
$$

is solvable, where Ψ is a solution of the problem

$$
z^{\prime}=\psi(x), \quad \ell(z)=h(\varphi) .
$$

Theorem 3. Let $P_{j}(j=1,2)$ be constant matrices, let problem $\left(1_{2}\right),\left(2_{2}\right)$ have a nontrivial solution, and let along with (4) the following conditions hold:

$$
\begin{aligned}
\ell\left(P_{0}(\cdot, y) z(\cdot)\right) & =\ell\left(P_{0}(\cdot, y)\right) \ell(z(\cdot)) \text { for every } z \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{n}\right), \\
\ell\left(P_{1} z(\cdot)\right) & =P_{1} \ell(z(\cdot)) \text { for every } z \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{n}\right), \\
\ell\left(P_{2} z(\cdot)\right) & =P_{2} \ell(z(\cdot)) \text { for every } z \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{n}\right) .
\end{aligned}
$$

Then for solvability of problem (1), (2) it is necessary that the problem

$$
\begin{gather*}
v^{\prime}=P_{1} v+\left(P_{0}+P_{1} P_{2}\right) \varphi(y)+h(q(\cdot, y)), \tag{5}\\
h(v)=\ell(\psi)-h\left(P_{2} \varphi\right) \tag{6}
\end{gather*}
$$

is solvable.

Remark 2. Solvability of the ill-posed nonhomogenous problem (5), (6) means additional compatibility conditions between the boundary values φ and ψ, matrices P_{0}, P_{1} and P_{2}, and the vector function q. Indeed, consider the problem

$$
\begin{gather*}
u_{x y}=P_{0}(x, y) u+q(x, y), \tag{7}\\
u(0, y)=\varphi(y), \quad u_{x}(x, 0)=u_{x}\left(x, \omega_{2}\right) . \tag{8}
\end{gather*}
$$

Let u be a solution of problem (7), (8). Set $v(y)=u_{x}(0, y)$. Then v is a solution of the problem

$$
\begin{gather*}
v^{\prime}=P_{0}(0, y) \varphi(y)+q(0, y), \tag{9}\\
v(0)=v\left(\omega_{2}\right) . \tag{10}
\end{gather*}
$$

In other words the solvability of (9), (10) is necessary for the solvability of problem (7), (8). Problem (9), (10) itself is ill-posed. It is solvable if and only if the following equality holds

$$
\int_{0}^{\omega_{2}}\left(P_{0}(0, t) \varphi(t)+q(0, t)\right) d t=0 .
$$

Remark 3. Solvability of the ill-posed nonhomogenous problem (5), (6) is necessary for solvability of problem (1), (2), but by no means sufficient. Indeed, consider the two-dimensional problem

$$
\begin{gather*}
v_{1 x y}=w-q_{1}(x) \tag{11}\\
w_{2 x y}=-v+q_{2}(x) \\
v(0, y)=0, \quad v\left(\omega_{1}, y\right)=0 \\
v_{x}(x, 0)=v_{x}\left(x, \omega_{2}\right), \quad w_{x}(x, 0)=w_{x}\left(x, \omega_{2}\right) \tag{12}
\end{gather*}
$$

Let us show that the corresponding homogeneous problem has only the trivial solution. Let

$$
\binom{v(x, y)}{w(x, y)}
$$

be an arbitrary solution of the homogeneous system

$$
\begin{align*}
v_{1 x y} & =w, \tag{13}\\
w_{2 x y} & =-v, \tag{14}
\end{align*}
$$

satisfying conditions (12). Multiply (13) by w, integrate over Ω. After integrating by parts and taking into account conditions (12), we arrive at the equality

$$
\begin{equation*}
-\int_{0}^{\omega_{1}} \int_{0}^{\omega_{2}} v_{x}(x, y) w_{y}(x, y) d y d x=\int_{0}^{\omega_{1}} \int_{0}^{\omega_{2}} w^{2}(x, y) d y d x \tag{15}
\end{equation*}
$$

Similarly, after multiplying (14) by v and integrating over Ω, we get

$$
\begin{equation*}
-\int_{0}^{\omega_{1}} \int_{0}^{\omega_{2}} w_{y}(x, y) v_{x}(x, y) d y d x=-\int_{0}^{\omega_{1}} \int_{0}^{\omega_{2}} v^{2}(x, y) d y d x \tag{16}
\end{equation*}
$$

After subtracting (16) from (15) we arrive at the equality

$$
\int_{0}^{\omega_{1}} \int_{0}^{\omega_{2}}\left(v^{2}(x, y)+w^{2}(x, y)\right) d y d x=0
$$

Consequently the homogeneous problem (13), (14), (12) has only the trivial solution. Therefore, problem (11), (12) has at most one solution. Hence, the only possible (ω_{2}-periodic with respec to the second variable) solution of problem (11), (12) should be independent of y. Consequently,

$$
\binom{v(x, y)}{w(x, y)}=\binom{q_{1}(x)}{q_{2}(x)}
$$

is the only possible solution of problem (11), (12). It is clear that u is a weak solution but not a classical one, if q_{1} and q_{2} are nowhere differentiable continuous functions.

Theorem 4. Let the following conditions hold:
(A_{0}) problem (3) has only the trivial solution;
$\left(A_{1}\right)$ problem $\left(1_{1}\right),\left(2_{1}\right)$ has only the trivial solution for every $y^{*} \in\left[0, \omega_{2}\right]$;
$\left(A_{2}\right)$ problem $\left(1_{2}\right),\left(2_{2}\right)$ have only the trivial solution for every $x^{*} \in\left[0, \omega_{1}\right]$.
Then problem (1), (2) has the Fredholm property, i.e. the following assertions hold:
(i) problem $\left(1_{0}\right),\left(2_{0}\right)$ has a finite dimensional space of solutions;
(ii) if problem $\left(1_{0}\right),\left(2_{0}\right)$ has only the trivial solution, then problem (1), (2) is uniquely solvable, and its solution u admits estimate

$$
\begin{equation*}
\|u\|_{C^{1,1}(\Omega)} \leq M\left(\|q\|_{C(\Omega)}+\|\varphi\|_{C^{1}\left(\left[0, \omega_{2}\right]\right)}+\|\psi\|_{C\left(\left[0, \omega_{1}\right]\right)}\right), \tag{17}
\end{equation*}
$$

where M is a positive constant independent of φ, ψ and q.
Definition 2. Problem (1), (2) is called well-posed, if it is uniquely solvable for arbitrary $\varphi \in$ $C^{1}\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{n}\right), \psi \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{n}\right)$ and $q \in C\left(\Omega ; \mathbb{R}^{n}\right)$, and its solution u admits the estimate (17), where M is a positive constant independent of φ, ψ and q.

Theorem 5. Let problem (1), (2) be well-posed. Then conditions $\left(A_{1}\right)$ and $\left(A_{2}\right)$ of Theorem 4 hold.
Remark 4. Consider the problem

$$
\begin{gather*}
u_{x y}=p(x) u_{x}+p(x) u_{y}-p^{2}(x) u+q(x, y) \tag{18}\\
u(0, x)=2 u\left(\omega_{1}, y\right), \quad u_{x}(x, 0)=u_{x}(x, 0) \tag{19}
\end{gather*}
$$

where $p \in C^{\infty}\left(\left[0, \omega_{1}\right]\right)$ is a nonnegative function and $q \in C^{\infty}(\Omega)$. Let

$$
q(x, y)=p(x) \widetilde{q}(x, y) .
$$

Set: $I_{p}=\left\{x \in\left[0, \omega_{1}\right]: p(x)=0\right\}$. Then:
(i) problem (18), (19) is well-posed if and only if $I_{p}=\varnothing$. Moreover, if $I_{p}=\varnothing$, then a unique solution of problem (18), (19) belongs to $C^{\infty}(\Omega)$;
(ii) if $\widetilde{q} \in L^{\infty}\left(\left[0, \omega_{1}\right]\right)$, then problem (18), (19) has a unique weak solution if and only if mes $I_{p}=0$, and has infinite dimensional set of nonclassical weak solutions otherwise. If $\widetilde{q} \in C\left(\left[0, \omega_{2}\right]\right)$ and mes $I_{p}=0$, then that unique weak solution is a classical solution;
(iii) If $\widetilde{q} \in C\left(\left[0, \omega_{2}\right]\right)$, then problem (18), (19) has a unique classical solution if and only if I_{p} is nowhere dense in $\left[0, \omega_{1}\right]$, and has infinite dimensional set of classical solutions otherwise;
(iv) problem (18), (19) has a unique classical solution and infinite dimensional set of weak solutions if I_{p} is a nowhere dense set of a positive measure;
(v) if $q(x, y)=1$ and $I_{p} \neq \varnothing$, then problem (18), (19) has no classical solution despite the fact that the coefficients of equation (18) belong to $C^{\infty}(\Omega)$.

Theorem 6. Let conditions $\left(A_{0}\right),\left(A_{1}\right),\left(A_{2}\right)$ of Theorem 4 hold, and let $P_{2} \in C^{0,1}(\Omega)$ be such that

$$
h(v)=0 \Longrightarrow h\left(P_{2}(\cdot, y) v(\cdot)\right)=0 \text { for } y \in\left[0, \omega_{2}\right]
$$

for every function $v \in C\left(\left[0, \omega_{2}\right]\right)$. Then there exists $\varepsilon>0$ such that if

$$
\left\|P(x, y)+P_{1}(x, y) P_{2}(x, y)-P_{2 y}(x, y)\right\| \leq \varepsilon \text { for }(x, y) \in \Omega
$$

then problem (1), (2) is well-posed. In particular, if

$$
P(x, y)+P_{1}(x, y) P_{2}(x, y)-P_{2 y}(x, y)=\mathrm{O},
$$

then the solution of problem (1), $\left(2_{0}\right)$ admits the representation

$$
u\left(x_{1}, x_{2}\right)=\int_{0}^{\omega_{1}} \int_{0}^{\omega_{2}} G_{1}(x, s, y) G_{2}(y, t, s) q(s, t) d t d s
$$

where G_{j} is Green's matrix of problem $\left(1_{j}\right),\left(2_{j}\right)(j=1,2)$.
Let $n=2 m, u=(v, w)$, and $v, w \in \mathbb{R}^{m}$. For the system

$$
\begin{align*}
v_{x y} & =A_{1}(y) w_{x}+B_{1}(x) w_{y}+Q_{1}(x, y) w+q_{1}(x, y), \\
w_{x y} & =A_{2}(y) v_{x}+B_{2}(x) v_{y}+Q_{2}(x, y) v+q_{2}(x, y,) \tag{20}
\end{align*}
$$

consider the following boundary conditions of Nicoletti type

$$
\begin{equation*}
w(0, y)=0, \quad v\left(\omega_{1}, y\right)=0, \quad w_{x}(x, 0)=0, \quad v_{x}\left(x, \omega_{2}\right)=0 \tag{21}
\end{equation*}
$$

and the periodic boundary conditions

$$
\begin{array}{cc}
v(0, y)=v\left(\omega_{1}, y\right), & w(0, y)=w\left(\omega_{1}, y\right) \tag{22}\\
v_{x}(x, 0)=v_{x}\left(x, \omega_{2}\right), & w_{x}(x, 0)=w_{x}\left(x, \omega_{2}\right) .
\end{array}
$$

Corollary 1. Let $A_{1} \in C\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{m \times m}\right)$, $A_{2} \in C\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{m \times m}\right)$, $B_{1} \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{m \times m}\right)$ and $B_{2} \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{m \times m}\right)$ be positive semi-definite symmetric matrix functions, and let there exist $\delta>0$ such that the following conditions hold:

$$
\begin{align*}
Q_{1}(x, y) w \cdot w & \geq \delta\|w\|^{2} \quad \text { for }(x, y, w) \in \Omega \times \mathbb{R}^{m} \tag{23}\\
Q_{2}(x, y) v \cdot v & \leq-\delta\|v\|^{2} \text { for }(x, y, w) \in \Omega \times \mathbb{R}^{m} . \tag{24}
\end{align*}
$$

Then problem (20), (21) is well-posed.
Corollary 2. Let $A_{1} \in C\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{m \times m}\right)$, $A_{2} \in C\left(\left[0, \omega_{2}\right] ; \mathbb{R}^{m \times m}\right)$, $B_{1} \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{m \times m}\right)$ and $B_{2} \in C\left(\left[0, \omega_{1}\right] ; \mathbb{R}^{m \times m}\right)$ be positive definite symmetric matrix functions, and let there exist $\delta>0$ such that conditions (23) and (24) hold. Then problem (20), (22) is well-posed.

References

[1] I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Translated in J. Soviet Math. 43 (1988), no. 2, 2259-2339. Itogi Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30 (Russian), 3-103, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987.
[2] T. Kiguradze, Some boundary value problems for systems of linear partial differential equations of hyperbolic type. Mem. Differential Equations Math. Phys. 1 (1994), 1-144.
[3] T. Kiguradze and R. Alhuzally, On a two-dimensional Dirichlet type problem for a linear hyperbolic equation of fourth order. Georgian Math. J. 31 (2024), no. 1 (to appear).
[4] T. Kiguradze and N. Al Jaber, Multi-dimensional periodic problems for higher-order linear hyperbolic equations. Georgian Math. J. 26 (2019), no. 2, 235-256.
[5] T. Kiguradze and R. Ben-Rabha, On strong well-posedness of initial-boundary value problems for higher order nonlinear hyperbolic equations with two independent variables. Georgian Math. J. 24 (2017), no. 3, 409-428.
[6] T. Kiguradze, R. Ben-Rabha and N. Al-Jaber, Nonlocal boundary value problems for higher order linear hyperbolic equations with two independent variables. Mem. Differential Equations Math. Phys. 90 (2023) (to appear).
[7] T. I. Kiguradze and T. Kusano, On the well-posedness of initial-boundary value problems for higher-order linear hyperbolic equations with two independent variables. (Russian) Differ. Uravn. 39 (2003), no. 4, 516-526; translation in Differ. Equ. 39 (2003), no. 4, 553-563.
[8] T. I. Kiguradze and T. Kusano, Bounded and periodic in a strip solutions of nonlinear hyperbolic systems with two independent variables. Comput. Math. Appl. 49 (2005), no. 2-3, 335-364.

