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In the rectangle Ω = [0, ω1]× [0, ω2] consider the problem

uxy = P0(x, y)u+ P1(x, y)ux + P2(x, y)uy + q(x, y), (1)
ℓ(u( · , y)) = φ(y), h(ux(x, · )) = ψ(x), (2)

where Pj ∈ C(Ω;Rn×n) (j = 0, 1, 2), q ∈ C(Ω;Rn), φ ∈ C1([0, ω2];Rn), ψ ∈ C([0, ω1];Rn), and ℓ :
C([0, ω1];Rn) → Rn and h : C([0, ω2];Rn) → Rn are bounded linear operators that are commutative,
i.e., the operators ℓ and h satisfy the equality

ℓ ◦ h(z) = h ◦ ℓ(z) for z ∈ C(Ω;Rn). (3)

One may think that the boundary conditions

ℓ(u( · , y)) = φ(y), h(u(x, · )) = Ψ(x) (2̃)

are more natural than conditions (2). All the more so, conditions (2̃) obviously imply conditions
(2). The main reason for studying problem (1), (2) instead of problem (1), (2̃) is that problem
(1), (2̃) is ill-posed, since functions φ and ψ should satisfy certain compatibility conditions. Indeed,
if u ∈ C(Ω) is an arbitrary function satisfying conditions (2̃), then, in view of (3), we have

ℓ(ψ) = ℓ ◦ h(u) = h ◦ ℓ(u) = h(φ).

By a solution of problem (1), (2) we understand a classical solution, i.e., a function u ∈ C1,1(Ω)
satisfying equation (1) and boundary conditions (2) everywhere in Ω.

Along with problem (1), (2) consider its corresponding homogeneous problem

uxy = P0(x, y)u+ P1(x, y)ux + P2(x, y)uy, (10)
ℓ(u( · , y)) = 0, h(ux(x, · )) = 0, (20)

as well as the problems

v′ = P2(x, y
∗)v, (11)

ℓ(v) = 0 (21)

and

v′ = P2(x
∗, y)v, (12)

h(v) = 0. (22)

Problems (11), (21) are (12), (22) called associated problems of problem (1), (2). Notice that
problem (11), (21) (problem (12), (22)) is a boundary value problem for a linear ordinary differential
equation depending on a parameter y∗ (a parameter x∗).

The concept of σ-associated problems for n-dimensional periodic problems was introduced in [4],
and for two-dimensional Dirichlet type problems in [3].
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Definition 1. Problem (1), (2) is called well-posed, if it is uniquely solvable for arbitrary φ ∈
C1([0, ω2];Rn), ψ ∈ C([0, ω1];Rn) and q ∈ C(Ω), and its solution u admits the estimate

∥u∥C1,1(Ω) ≤M
(
∥φ∥C1([0,ω2]) + ∥ψ∥C([0,ω1]) + ∥q∥C(Ω)

)
,

where M is a positive constant independent of φ, ψ and q.

Theorem 1. Let problem (1), (2) be solvable for arbitrary φ ∈ C1([0, ω2];Rn) and ψ ∈ C([0, ω1];Rn).
Then the problem

z′ = 0, ℓ(z) = 0 (4)

has only the trivial solution.

Remark 1. If problem (4) has only the trivial solution, then problem (10), (20) is equivalent to
the homogeneous problem

uxy = P0(x, y)u+ P1(x, y)ux + P2(x, y)uy, (10)
ℓ(u( · , y)) = 0, h(u(x, · )) = 0. (2̃0)

Theorem 2. Let Pj (j = 1, 2) be constant matrices, let problem (11), (21) have a nontrivial solution,
and let the following conditions hold:

h(P0(x, · )z( · )) = h(P0(x, · ))h(z( · )) for every z ∈ C([0, ω2];Rn),

h(P1z( · )) = P1 h(z( · )) for every z ∈ C([0, ω2];Rn),

h(P2z( · )) = P2 h(z( · )) for every z ∈ C([0, ω2];Rn).

Then for solvability of problem (1), (2) it is necessary that the problem

v′ = P2v + (P0 + P2P1)Ψ(x) + h(q(x, · )),
ℓ(v) = h(φ′)− ℓ(P1Ψ)

is solvable, where Ψ is a solution of the problem

z′ = ψ(x), ℓ(z) = h(φ).

Theorem 3. Let Pj (j = 1, 2) be constant matrices, let problem (12), (22) have a nontrivial solution,
and let along with (4) the following conditions hold:

ℓ(P0( · , y)z( · )) = ℓ(P0( · , y)) ℓ(z( · )) for every z ∈ C([0, ω1];Rn),

ℓ(P1z( · )) = P1 ℓ(z( · )) for every z ∈ C([0, ω1];Rn),

ℓ(P2z( · )) = P2 ℓ(z( · )) for every z ∈ C([0, ω1];Rn).

Then for solvability of problem (1), (2) it is necessary that the problem

v′ = P1v + (P0 + P1P2)φ(y) + h(q( · , y)), (5)
h
(
v) = ℓ(ψ)− h(P2 φ) (6)

is solvable.
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Remark 2. Solvability of the ill-posed nonhomogenous problem (5), (6) means additional compa-
tibility conditions between the boundary values φ and ψ, matrices P0, P1 and P2, and the vector
function q. Indeed, consider the problem

uxy = P0(x, y)u+ q(x, y), (7)
u(0, y) = φ(y), ux(x, 0) = ux(x, ω2). (8)

Let u be a solution of problem (7), (8). Set v(y) = ux(0, y). Then v is a solution of the problem

v′ = P0(0, y)φ(y) + q(0, y), (9)
v(0) = v(ω2). (10)

In other words the solvability of (9), (10) is necessary for the solvability of problem (7), (8). Problem
(9), (10) itself is ill-posed. It is solvable if and only if the following equality holds

ω2∫
0

(
P0(0, t)φ(t) + q(0, t)

)
dt = 0.

Remark 3. Solvability of the ill-posed nonhomogenous problem (5), (6) is necessary for solvability
of problem (1), (2), but by no means sufficient. Indeed, consider the two-dimensional problem

v1xy = w − q1(x),

w2xy = −v + q2(x),
(11)

v(0, y) = 0, v(ω1, y) = 0,

vx(x, 0) = vx(x, ω2), wx(x, 0) = wx(x, ω2).
(12)

Let us show that the corresponding homogeneous problem has only the trivial solution. Let(
v(x, y)
w(x, y)

)
be an arbitrary solution of the homogeneous system

v1xy = w, (13)
w2xy = −v, (14)

satisfying conditions (12). Multiply (13) by w, integrate over Ω. After integrating by parts and
taking into account conditions (12), we arrive at the equality

−
ω1∫
0

ω2∫
0

vx(x, y)wy(x, y) dy dx =

ω1∫
0

ω2∫
0

w2(x, y) dy dx. (15)

Similarly, after multiplying (14) by v and integrating over Ω, we get

−
ω1∫
0

ω2∫
0

wy(x, y)vx(x, y) dy dx = −
ω1∫
0

ω2∫
0

v2(x, y) dy dx. (16)

After subtracting (16) from (15) we arrive at the equality
ω1∫
0

ω2∫
0

(v2(x, y) + w2(x, y)) dy dx = 0.
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Consequently the homogeneous problem (13), (14), (12) has only the trivial solution. Therefore,
problem (11), (12) has at most one solution. Hence, the only possible (ω2-periodic with respec to
the second variable) solution of problem (11), (12) should be independent of y. Consequently,(

v(x, y)
w(x, y)

)
=

(
q1(x)
q2(x)

)
is the only possible solution of problem (11), (12). It is clear that u is a weak solution but not a
classical one, if q1 and q2 are nowhere differentiable continuous functions.

Theorem 4. Let the following conditions hold:

(A0) problem (3) has only the trivial solution;

(A1) problem (11), (21) has only the trivial solution for every y∗ ∈ [0, ω2];

(A2) problem (12), (22) have only the trivial solution for every x∗ ∈ [0, ω1].

Then problem (1), (2) has the Fredholm property, i.e. the following assertions hold:

(i) problem (10), (20) has a finite dimensional space of solutions;

(ii) if problem (10), (20) has only the trivial solution, then problem (1), (2) is uniquely solvable,
and its solution u admits estimate

∥u∥C1,1(Ω) ≤M
(
∥q∥C(Ω) + ∥φ∥C1([0,ω2]) + ∥ψ∥C([0,ω1])

)
, (17)

where M is a positive constant independent of φ, ψ and q.

Definition 2. Problem (1), (2) is called well-posed, if it is uniquely solvable for arbitrary φ ∈
C1([0, ω2];Rn), ψ ∈ C([0, ω1];Rn) and q ∈ C(Ω;Rn), and its solution u admits the estimate (17),
where M is a positive constant independent of φ, ψ and q.

Theorem 5. Let problem (1), (2) be well-posed. Then conditions (A1) and (A2) of Theorem 4 hold.

Remark 4. Consider the problem

uxy = p(x)ux + p(x)uy − p2(x)u+ q(x, y), (18)
u(0, x) = 2u(ω1, y), ux(x, 0) = ux(x, 0), (19)

where p ∈ C∞([0, ω1]) is a nonnegative function and q ∈ C∞(Ω). Let

q(x, y) = p(x) q̃(x, y).

Set: Ip = {x ∈ [0, ω1] : p(x) = 0}. Then:

(i) problem (18), (19) is well-posed if and only if Ip = ∅. Moreover, if Ip = ∅, then a unique
solution of problem (18), (19) belongs to C∞(Ω);

(ii) if q̃ ∈ L∞([0, ω1]), then problem (18), (19) has a unique weak solution if and only if mes Ip = 0,
and has infinite dimensional set of nonclassical weak solutions otherwise. If q̃ ∈ C([0, ω2])
and mes Ip = 0, then that unique weak solution is a classical solution;

(iii) If q̃ ∈ C([0, ω2]), then problem (18), (19) has a unique classical solution if and only if Ip is
nowhere dense in [0, ω1], and has infinite dimensional set of classical solutions otherwise;
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(iv) problem (18), (19) has a unique classical solution and infinite dimensional set of weak solutions
if Ip is a nowhere dense set of a positive measure;

(v) if q(x, y) = 1 and Ip ̸= ∅, then problem (18), (19) has no classical solution despite the fact
that the coefficients of equation (18) belong to C∞(Ω).

Theorem 6. Let conditions (A0), (A1), (A2) of Theorem 4 hold, and let P2 ∈ C0,1(Ω) be such that

h(v) = 0 =⇒ h(P2( · , y)v( · )) = 0 for y ∈ [0, ω2]

for every function v ∈ C([0, ω2]). Then there exists ε > 0 such that if∥∥P (x, y) + P1(x, y)P2(x, y)− P2 y(x, y)
∥∥ ≤ ε for (x, y) ∈ Ω,

then problem (1), (2) is well-posed. In particular, if

P (x, y) + P1(x, y)P2(x, y)− P2 y(x, y) = O,

then the solution of problem (1), (20) admits the representation

u(x1, x2) =

ω1∫
0

ω2∫
0

G1(x, s, y)G2(y, t, s) q(s, t) dt ds,

where Gj is Green’s matrix of problem (1j), (2j) (j = 1, 2).

Let n = 2m, u = (v, w), and v, w ∈ Rm. For the system

vxy = A1(y)wx +B1(x)wy +Q1(x, y)w + q1(x, y),

wxy = A2(y)vx +B2(x)vy +Q2(x, y)v + q2(x, y, )
(20)

consider the following boundary conditions of Nicoletti type

w(0, y) = 0, v(ω1, y) = 0, wx(x, 0) = 0, vx(x, ω2) = 0, (21)

and the periodic boundary conditions

v(0, y) = v(ω1, y), w(0, y) = w(ω1, y),

vx(x, 0) = vx(x, ω2), wx(x, 0) = wx(x, ω2).
(22)

Corollary 1. Let A1 ∈ C([0, ω2];Rm×m), A2 ∈ C([0, ω2];Rm×m), B1 ∈ C([0, ω1];Rm×m) and
B2 ∈ C([0, ω1];Rm×m) be positive semi-definite symmetric matrix functions, and let there exist
δ > 0 such that the following conditions hold:

Q1(x, y)w · w ≥ δ∥w∥2 for (x, y, w) ∈ Ω× Rm, (23)
Q2(x, y) v · v ≤ −δ∥v∥2 for (x, y, w) ∈ Ω× Rm. (24)

Then problem (20), (21) is well-posed.

Corollary 2. Let A1 ∈ C([0, ω2];Rm×m), A2 ∈ C([0, ω2];Rm×m), B1 ∈ C([0, ω1];Rm×m) and
B2 ∈ C([0, ω1];Rm×m) be positive definite symmetric matrix functions, and let there exist δ > 0
such that conditions (23) and (24) hold. Then problem (20), (22) is well-posed.
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