Nonlocal Boundary Value Problems for Second Order Linear Hyperbolic Systems

Tariel Kiguradze, Afrah Almutairi

Florida Institute of Technology, Melbourne, USA E-mails: tkigurad@fit.edu; aalmutairi2018@my.fit.edu

In the rectangle $\Omega = [0, \omega_1] \times [0, \omega_2]$ consider the problem

$$u_{xy} = P_0(x, y)u + P_1(x, y)u_x + P_2(x, y)u_y + q(x, y),$$
(1)

$$\ell(u(\cdot, y)) = \varphi(y), \quad h(u_x(x, \cdot)) = \psi(x), \tag{2}$$

where $P_j \in C(\Omega; \mathbb{R}^{n \times n})$ $(j = 0, 1, 2), q \in C(\Omega; \mathbb{R}^n), \varphi \in C^1([0, \omega_2]; \mathbb{R}^n), \psi \in C([0, \omega_1]; \mathbb{R}^n)$, and $\ell : C([0, \omega_1]; \mathbb{R}^n) \to \mathbb{R}^n$ and $h : C([0, \omega_2]; \mathbb{R}^n) \to \mathbb{R}^n$ are bounded linear operators that are *commutative*, i.e., the operators ℓ and h satisfy the equality

$$\ell \circ h(z) = h \circ \ell(z) \quad \text{for} \quad z \in C(\Omega; \mathbb{R}^n).$$
 (3)

One may think that the boundary conditions

$$\ell(u(\,\cdot\,,y)) = \varphi(y), \quad h(u(x,\,\cdot\,)) = \Psi(x) \tag{2}$$

are more natural than conditions (2). All the more so, conditions $(\widetilde{2})$ obviously imply conditions (2). The main reason for studying problem (1), (2) instead of problem $(1), (\widetilde{2})$ is that problem $(1), (\widetilde{2})$ is ill-posed, since functions φ and ψ should satisfy certain compatibility conditions. Indeed, if $u \in C(\Omega)$ is an arbitrary function satisfying conditions ($\widetilde{2}$), then, in view of (3), we have

$$\ell(\psi) = \ell \circ h(u) = h \circ \ell(u) = h(\varphi).$$

By a solution of problem (1), (2) we understand a *classical* solution, i.e., a function $u \in C^{1,1}(\Omega)$ satisfying equation (1) and boundary conditions (2) everywhere in Ω .

Along with problem (1), (2) consider its corresponding homogeneous problem

$$u_{xy} = P_0(x, y)u + P_1(x, y)u_x + P_2(x, y)u_y,$$
(10)

$$\ell(u(\,\cdot\,,y)) = 0, \quad h(u_x(x,\,\cdot\,)) = 0, \tag{20}$$

as well as the problems

$$v' = P_2(x, y^*)v, (1_1)$$

$$\ell(v) = 0 \tag{21}$$

and

$$v' = P_2(x^*, y)v, (1_2)$$

$$h(v) = 0. \tag{22}$$

Problems $(1_1), (2_1)$ are $(1_2), (2_2)$ called **associated problems** of problem (1), (2). Notice that problem $(1_1), (2_1)$ (problem $(1_2), (2_2)$) is a boundary value problem for a linear ordinary differential equation depending on a parameter y^* (a parameter x^*).

The concept of σ -associated problems for *n*-dimensional periodic problems was introduced in [4], and for two-dimensional Dirichlet type problems in [3].

Definition 1. Problem (1), (2) is called *well-posed*, if it is uniquely solvable for arbitrary $\varphi \in C^1([0, \omega_2]; \mathbb{R}^n)$, $\psi \in C([0, \omega_1]; \mathbb{R}^n)$ and $q \in C(\Omega)$, and its solution u admits the estimate

$$\|u\|_{C^{1,1}(\Omega)} \le M\Big(\|\varphi\|_{C^{1}([0,\omega_{2}])} + \|\psi\|_{C([0,\omega_{1}])} + \|q\|_{C(\Omega)}\Big),$$

where M is a positive constant independent of φ , ψ and q.

Theorem 1. Let problem (1), (2) be solvable for arbitrary $\varphi \in C^1([0, \omega_2]; \mathbb{R}^n)$ and $\psi \in C([0, \omega_1]; \mathbb{R}^n)$. Then the problem

$$z' = 0, \quad \ell(z) = 0 \tag{4}$$

has only the trivial solution.

Remark 1. If problem (4) has only the trivial solution, then problem $(1_0), (2_0)$ is equivalent to the homogeneous problem

$$u_{xy} = P_0(x, y) u + P_1(x, y) u_x + P_2(x, y) u_y,$$
(10)

$$\ell(u(\cdot, y)) = 0, \quad h(u(x, \cdot)) = 0.$$
(20)

Theorem 2. Let P_j (j = 1, 2) be constant matrices, let problem $(1_1), (2_1)$ have a nontrivial solution, and let the following conditions hold:

$$\begin{split} h(P_0(x, \cdot)z(\cdot)) &= h(P_0(x, \cdot)) h(z(\cdot)) \ \text{for every} \ z \in C([0, \omega_2]; \mathbb{R}^n), \\ h(P_1z(\cdot)) &= P_1 h(z(\cdot)) \ \text{for every} \ z \in C([0, \omega_2]; \mathbb{R}^n), \\ h(P_2z(\cdot)) &= P_2 h(z(\cdot)) \ \text{for every} \ z \in C([0, \omega_2]; \mathbb{R}^n). \end{split}$$

Then for solvability of problem (1), (2) it is necessary that the problem

$$v' = P_2 v + (P_0 + P_2 P_1) \Psi(x) + h(q(x, \cdot)),$$

$$\ell(v) = h(\varphi') - \ell(P_1 \Psi)$$

is solvable, where Ψ is a solution of the problem

$$z' = \psi(x), \quad \ell(z) = h(\varphi).$$

Theorem 3. Let P_j (j = 1, 2) be constant matrices, let problem $(1_2), (2_2)$ have a nontrivial solution, and let along with (4) the following conditions hold:

$$\begin{split} \ell(P_0(\,\cdot\,,y)z(\,\cdot\,)) &= \ell(P_0(\,\cdot\,,y))\,\ell(z(\,\cdot\,)) \ \ for \ every \ z \in C([0,\omega_1];\mathbb{R}^n),\\ \ell(P_1z(\,\cdot\,)) &= P_1\,\ell(z(\,\cdot\,)) \ \ for \ every \ z \in C([0,\omega_1];\mathbb{R}^n),\\ \ell(P_2z(\,\cdot\,)) &= P_2\,\ell(z(\,\cdot\,)) \ \ for \ every \ z \in C([0,\omega_1];\mathbb{R}^n). \end{split}$$

Then for solvability of problem (1), (2) it is necessary that the problem

$$v' = P_1 v + (P_0 + P_1 P_2)\varphi(y) + h(q(\cdot, y)),$$
(5)

$$h(v) = \ell(\psi) - h(P_2 \varphi) \tag{6}$$

is solvable.

Remark 2. Solvability of the ill-posed nonhomogenous problem (5), (6) means additional compatibility conditions between the boundary values φ and ψ , matrices P_0 , P_1 and P_2 , and the vector function q. Indeed, consider the problem

$$u_{xy} = P_0(x, y)u + q(x, y),$$
(7)

$$u(0,y) = \varphi(y), \quad u_x(x,0) = u_x(x,\omega_2).$$
 (8)

Let u be a solution of problem (7), (8). Set $v(y) = u_x(0, y)$. Then v is a solution of the problem

$$v' = P_0(0, y) \varphi(y) + q(0, y), \tag{9}$$

$$v(0) = v(\omega_2). \tag{10}$$

In other words the solvability of (9), (10) is necessary for the solvability of problem (7), (8). Problem (9), (10) itself is ill-posed. It is solvable if and only if the following equality holds

$$\int_{0}^{\omega_{2}} \left(P_{0}(0,t) \,\varphi(t) + q(0,t) \right) dt = 0.$$

Remark 3. Solvability of the ill-posed nonhomogenous problem (5), (6) is necessary for solvability of problem (1), (2), but by no means sufficient. Indeed, consider the two-dimensional problem

$$v_{1xy} = w - q_1(x),$$

$$w_{2xy} = -v + q_2(x),$$

$$v(0, y) = 0, \quad v(\omega_1, y) = 0,$$

$$v_x(x, 0) = v_x(x, \omega_2), \quad w_x(x, 0) = w_x(x, \omega_2).$$
(12)

Let us show that the corresponding homogeneous problem has only the trivial solution. Let

$$\begin{pmatrix} v(x,y)\\w(x,y) \end{pmatrix}$$

be an arbitrary solution of the homogeneous system

$$v_{1xy} = w, \tag{13}$$

$$w_{2xy} = -v, \tag{14}$$

satisfying conditions (12). Multiply (13) by w, integrate over Ω . After integrating by parts and taking into account conditions (12), we arrive at the equality

$$-\int_{0}^{\omega_{1}}\int_{0}^{\omega_{2}}v_{x}(x,y)w_{y}(x,y)\,dy\,dx = \int_{0}^{\omega_{1}}\int_{0}^{\omega_{2}}w^{2}(x,y)\,dy\,dx.$$
(15)

Similarly, after multiplying (14) by v and integrating over Ω , we get

$$-\int_{0}^{\omega_{1}}\int_{0}^{\omega_{2}}w_{y}(x,y)v_{x}(x,y)\,dy\,dx = -\int_{0}^{\omega_{1}}\int_{0}^{\omega_{2}}v^{2}(x,y)\,dy\,dx.$$
(16)

After subtracting (16) from (15) we arrive at the equality

$$\int_{0}^{\omega_{1}} \int_{0}^{\omega_{2}} (v^{2}(x,y) + w^{2}(x,y)) \, dy \, dx = 0.$$

Consequently the homogeneous problem (13), (14), (12) has only the trivial solution. Therefore, problem (11), (12) has at most one solution. Hence, the only possible (ω_2 -periodic with respec to the second variable) solution of problem (11), (12) should be independent of y. Consequently,

$$\begin{pmatrix} v(x,y)\\ w(x,y) \end{pmatrix} = \begin{pmatrix} q_1(x)\\ q_2(x) \end{pmatrix}$$

is the only possible solution of problem (11), (12). It is clear that u is a weak solution but not a classical one, if q_1 and q_2 are nowhere differentiable continuous functions.

Theorem 4. Let the following conditions hold:

- (A_0) problem (3) has only the trivial solution;
- (A₁) problem (1₁), (2₁) has only the trivial solution for every $y^* \in [0, \omega_2]$;
- (A₂) problem (1₂), (2₂) have only the trivial solution for every $x^* \in [0, \omega_1]$.

Then problem (1), (2) has the Fredholm property, i.e. the following assertions hold:

- (i) problem (1_0) , (2_0) has a finite dimensional space of solutions;
- (ii) if problem $(1_0), (2_0)$ has only the trivial solution, then problem (1), (2) is uniquely solvable, and its solution u admits estimate

$$\|u\|_{C^{1,1}(\Omega)} \le M\Big(\|q\|_{C(\Omega)} + \|\varphi\|_{C^{1}([0,\omega_{2}])} + \|\psi\|_{C([0,\omega_{1}])}\Big),\tag{17}$$

where M is a positive constant independent of φ , ψ and q.

Definition 2. Problem (1), (2) is called *well-posed*, if it is uniquely solvable for arbitrary $\varphi \in$ $C^1([0,\omega_2];\mathbb{R}^n), \psi \in C([0,\omega_1];\mathbb{R}^n)$ and $q \in C(\Omega;\mathbb{R}^n)$, and its solution u admits the estimate (17), where M is a positive constant independent of φ , ψ and q.

Theorem 5. Let problem (1), (2) be well-posed. Then conditions (A_1) and (A_2) of Theorem 4 hold.

Remark 4. Consider the problem

$$u_{xy} = p(x) u_x + p(x) u_y - p^2(x) u + q(x, y),$$
(18)

$$u_{xy} = p(x) u_x + p(x) u_y - p^2(x) u + q(x, y),$$
(18)
$$u(0, x) = 2u(\omega_1, y), \quad u_x(x, 0) = u_x(x, 0),$$
(19)

where $p \in C^{\infty}([0, \omega_1])$ is a *nonnegative* function and $q \in C^{\infty}(\Omega)$. Let

$$q(x,y) = p(x) \,\widetilde{q}(x,y).$$

Set: $I_p = \{x \in [0, \omega_1] : p(x) = 0\}$. Then:

- (i) problem (18), (19) is well-posed if and only if $I_p = \emptyset$. Moreover, if $I_p = \emptyset$, then a unique solution of problem (18), (19) belongs to $C^{\infty}(\Omega)$;
- (ii) if $\tilde{q} \in L^{\infty}([0, \omega_1])$, then problem (18), (19) has a unique weak solution if and only if mes $I_p = 0$, and has infinite dimensional set of nonclassical weak solutions otherwise. If $\tilde{q} \in C([0, \omega_2])$ and mes $I_p = 0$, then that unique weak solution is a classical solution;
- (iii) If $\tilde{q} \in C([0, \omega_2])$, then problem (18), (19) has a unique classical solution if and only if I_p is nowhere dense in $[0, \omega_1]$, and has *infinite dimensional set* of classical solutions otherwise;

- (iv) problem (18), (19) has a unique classical solution and infinite dimensional set of weak solutions if I_p is a nowhere dense set of a positive measure;
- (v) if q(x,y) = 1 and $I_p \neq \emptyset$, then problem (18), (19) has no classical solution despite the fact that the coefficients of equation (18) belong to $C^{\infty}(\Omega)$.

Theorem 6. Let conditions (A_0) , (A_1) , (A_2) of Theorem 4 hold, and let $P_2 \in C^{0,1}(\Omega)$ be such that

$$h(v) = 0 \implies h(P_2(\cdot, y)v(\cdot)) = 0 \text{ for } y \in [0, \omega_2]$$

for every function $v \in C([0, \omega_2])$. Then there exists $\varepsilon > 0$ such that if

$$\left\|P(x,y) + P_1(x,y)P_2(x,y) - P_{2y}(x,y)\right\| \le \varepsilon \text{ for } (x,y) \in \Omega,$$

then problem (1), (2) is well-posed. In particular, if

$$P(x,y) + P_1(x,y) P_2(x,y) - P_{2y}(x,y) = 0,$$

then the solution of problem $(1), (2_0)$ admits the representation

$$u(x_1, x_2) = \int_{0}^{\omega_1} \int_{0}^{\omega_2} G_1(x, s, y) G_2(y, t, s) q(s, t) dt ds,$$

where G_j is Green's matrix of problem $(1_j), (2_j)$ (j = 1, 2).

Let n = 2m, u = (v, w), and $v, w \in \mathbb{R}^m$. For the system

$$v_{xy} = A_1(y)w_x + B_1(x)w_y + Q_1(x,y)w + q_1(x,y),$$

$$w_{xy} = A_2(y)v_x + B_2(x)v_y + Q_2(x,y)v + q_2(x,y,)$$
(20)

consider the following boundary conditions of Nicoletti type

$$w(0,y) = 0, \quad v(\omega_1, y) = 0, \quad w_x(x,0) = 0, \quad v_x(x,\omega_2) = 0,$$
 (21)

and the periodic boundary conditions

$$v(0, y) = v(\omega_1, y), \quad w(0, y) = w(\omega_1, y),$$

$$v_x(x, 0) = v_x(x, \omega_2), \quad w_x(x, 0) = w_x(x, \omega_2).$$
(22)

Corollary 1. Let $A_1 \in C([0, \omega_2]; \mathbb{R}^{m \times m})$, $A_2 \in C([0, \omega_2]; \mathbb{R}^{m \times m})$, $B_1 \in C([0, \omega_1]; \mathbb{R}^{m \times m})$ and $B_2 \in C([0, \omega_1]; \mathbb{R}^{m \times m})$ be positive semi-definite symmetric matrix functions, and let there exist $\delta > 0$ such that the following conditions hold:

$$Q_1(x,y) \, w \cdot w \ge \delta \|w\|^2 \quad for \quad (x,y,w) \in \Omega \times \mathbb{R}^m, \tag{23}$$

$$Q_2(x,y) v \cdot v \le -\delta \|v\|^2 \text{ for } (x,y,w) \in \Omega \times \mathbb{R}^m.$$

$$(24)$$

Then problem (20), (21) is well-posed.

Corollary 2. Let $A_1 \in C([0, \omega_2]; \mathbb{R}^{m \times m})$, $A_2 \in C([0, \omega_2]; \mathbb{R}^{m \times m})$, $B_1 \in C([0, \omega_1]; \mathbb{R}^{m \times m})$ and $B_2 \in C([0, \omega_1]; \mathbb{R}^{m \times m})$ be positive definite symmetric matrix functions, and let there exist $\delta > 0$ such that conditions (23) and (24) hold. Then problem (20), (22) is well-posed.

References

- I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Translated in J. Soviet Math. 43 (1988), no. 2, 2259–2339. Itogi Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30 (Russian), 3–103, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987.
- [2] T. Kiguradze, Some boundary value problems for systems of linear partial differential equations of hyperbolic type. Mem. Differential Equations Math. Phys. 1 (1994), 1–144.
- [3] T. Kiguradze and R. Alhuzally, On a two-dimensional Dirichlet type problem for a linear hyperbolic equation of fourth order. *Georgian Math. J.* **31** (2024), no. 1 (to appear).
- [4] T. Kiguradze and N. Al Jaber, Multi-dimensional periodic problems for higher-order linear hyperbolic equations. *Georgian Math. J.* 26 (2019), no. 2, 235–256.
- [5] T. Kiguradze and R. Ben-Rabha, On strong well-posedness of initial-boundary value problems for higher order nonlinear hyperbolic equations with two independent variables. *Georgian Math. J.* 24 (2017), no. 3, 409–428.
- [6] T. Kiguradze, R. Ben-Rabha and N. Al-Jaber, Nonlocal boundary value problems for higher order linear hyperbolic equations with two independent variables. *Mem. Differential Equations Math. Phys.* **90** (2023) (to appear).
- [7] T. I. Kiguradze and T. Kusano, On the well-posedness of initial-boundary value problems for higher-order linear hyperbolic equations with two independent variables. (Russian) *Differ. Uravn.* **39** (2003), no. 4, 516–526; translation in *Differ. Equ.* **39** (2003), no. 4, 553–563.
- [8] T. I. Kiguradze and T. Kusano, Bounded and periodic in a strip solutions of nonlinear hyperbolic systems with two independent variables. *Comput. Math. Appl.* 49 (2005), no. 2-3, 335–364.