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In the plane of variables x and t consider a nonlinear partial differential equation of the form

Lfu :=
∂2u

∂t2
− ∂4u

∂x4
+ λ

∂2u

∂x2
+ f(u) = F, (1)

where f , F are given, while u unknown function, λ = const.
For the equation (1) we consider the following antiperiodic problem: find in the domain DT :

0 < x < l, 0 < t < T a solution u = u(x, t) of the equation (1) according to the boundary conditions

u(x, 0) = −u(x, T ), ut(x, 0) = −ut(x, T ), 0 ≤ x ≤ l, (2)
∂iu

∂xi
(0, t) = −∂iu

∂xi
(l, t), 0 ≤ t ≤ T, i = 0, 1, 2, 3. (3)

Note that to the study of antiperiodic problems for nonlinear partial differential equations,
having a structure different from (1), is devoted numerous literature (see, for example, [1–7] and
the references therein).

Denote by C1,2(DT ) the space of functions continuous in DT , having in DT continuous partial
derivatives ∂iu

∂ti
, i = 1, 2, ∂ju

∂xj , j = 1, 2, 3, 4. Let

C1,2
− (DT ) :=

{
u ∈ C1,2(DT ) :

∂iu

∂ti
(x, 0) = −∂iu

∂ti
(x, T ), 0 ≤ x ≤ l, i = 0, 1,

∂ju

∂xj
(0, t) = −∂ju

∂xj
(l, t), 0 ≤ t ≤ T, j = 0, 1, 2, 3

}
.

Consider the Hilbert space W 1,2
− (DT ) as a completion of the classical space C1,2

− (DT ) with
respect to the norm

∥u∥2
W 1,2

− (D
T
)
=

∫
D

T

[
u2 +

(∂u
∂t

)2
+

(∂u
∂x

)2
+
(∂2u

∂x2

)2]
dx dt. (4)

Remark 1. It follows from (4) that if u ∈ W 1,2
− (DT ) then u ∈ W 1

2 (DT ) and ∂2u
∂x2 ∈ L2(DT ). Here

W 1
2 (DT ) is the well-known Sobolev space consisting of the elements L2(DT ), having up to the first

order generalized derivatives from L2(DT ).

Below, for function f in the equation (1) we require that

f ∈ C(R), |f(u)| ≤ M1 +M2|u|α, α = const > 1, u ∈ R, (5)

where Mi = const ≥ 0, i = 1, 2.
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Remark 2. As it is known, since the dimension of the domain DT ⊂ R2 equals two, then the
embedding operator

I : W 1
2 (DT ) → Lq(DT )

is linear and compact operator for any fixed q = const > 1. At the same time the Nemitskii
operator K : Lq(DT ) → L2(DT ), acting by formula Ku = f(u). where u ∈ Lq(DT ), and function f
satisfies the condition (5) is bounded and continuous, when q ≥ 2α. Therefore, if we take q = 2α
then the operator

K0 = KI : W 1
2 (DT ) → L2(DT )

will be continuous and compact. Whence, in particular, we have that if u ∈ W 1
2 (DT ), then f(u) ∈

L2(DT ) and from un → u in the space W 1
2 (DT ) it follows f(un) → f(u) in the space L2(DT ).

Remark 3. Let u ∈ C1,2
− (DT ) be a classical solution of the problem (1)–(3). Multiplying the both

sides of the equation (1) by an arbitrary function φ ∈ C1,2
− (DT ) and integrating obtained equality

over the domain DT with taking into account that the functions from the space C1,2
− (DT ) satisfy

the boundary conditions (2) and (3), we get∫
D

T

[∂u
∂t

∂φ

∂t
+

∂2u

∂x2
∂2φ

∂x2
+ λ

∂u

∂x

∂φ

∂x

]
dx dt−

∫
D

T

f(u)φ dx dt = −
∫
D

T

Fφ dx dt ∀φ ∈ C1,2
− (DT ). (6)

We take the equality (6) as a basis of definition of a weak generalized solution of the problem
(1)–(3).

Definition 1. Let a function f satisfy the condition (5). A function u ∈ W 1,2
− (DT ) is named a

weak generalized solution of the problem (1)–(3), if the integral equality (6) holds for any function
φ ∈ W 1,2

− (DT ), i.e.∫
D

T

[∂u
∂t

∂φ

∂t
+

∂2u

∂x2
∂2φ

∂x2
+λ

∂u

∂x

∂φ

∂x

]
dx dt−

∫
D

T

f(u)φ dx dt = −
∫
D

T

Fφ dx dt ∀φ ∈ W 1,2
− (DT ). (7)

Note that due to Remark 2 the integral
∫

D
T

f(u)φ dx dt in the left-hand side of the equality (7)

is defined correctly since from u ∈ W 1,2
− (DT ) it follows that f(u) ∈ L2(DT ), and since φ ∈ L2(DT ),

then f(u)φ ∈ L1(DT ).
It is easy to see that if a weak generalized solution u of the problem (1)–(3) in the sense of

Definition 1 belongs to the class C1,2
− (DT ), then it is a classical solution to this problem.

Under fulfillment of the condition
λ ≥ 0 (8)

in the space C1,2
− (DT ) together with the scalar product

(u, v)0 =

∫
D

T

[
uv +

∂u

∂t

∂v

∂t
+

∂u

∂x

∂v

∂x
+

∂2u

∂x2
∂2v

∂x2

]
dx dt (9)

with norm ∥ · ∥0 = ∥ · ∥
W 1,2

− (D
T
)
, defined by the right-hand side of the equality (4), let us consider

the following scalar product

(u, v)1 =

∫
D

T

[∂u
∂t

∂v

∂t
+

∂2u

∂x2
∂2v

∂x2
+ λ

∂u

∂x

∂v

∂x

]
dx dt (10)
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with the norm
∥u∥21 =

∫
D

T

[(∂u
∂t

)2
+
(∂2u

∂x2

)2
+ λ

(∂u
∂x

)2]
dx, dt, (11)

where u, v ∈ C1,2
− (DT ).

The following inequalities

c1∥u∥0 ≤ ∥u∥1 ≤ c2∥u∥0 ∀u ∈ C1,2
− (DT )

with positive constants c1 and c2, independent of u, are valid. Whence due to (8)–(11) it follows
that if we complete the space C1,2

− (DT ) with respect to the norm (11), then we obtain the same
Hilbert space W 1,2

− (DT ) with the equivalent scalar products (9) and (10). Using this circumstance,
one can prove the unique solvability of the linear problem corresponding to (1)–(3), when f = 0,
i.e. for any F ∈ L2(DT ) there exists a unique solution u = L−1

0 F ∈ W 1,2
− (DT ) to this problem,

where the linear operator
L−1
0 : L2(DT ) → W 1,2

− (DT )

is continuous.

Remark 4. From the above reasoning, it follows that the nonlinear problem (1)–(3) is reduced
equivalently to the functional equation

u = L−1
0 [f(u)− F ] (12)

in the Hilbert space W 1,2
− (DT ).

Supposing that
lim

|u|→∞
sup

f(u)

u
≤ 0, (13)

it can be proved a priori estimate for the solution of the functional equation (12) in the space
W 1,2

− (DT ), whence, due to Remarks 2 and 4, it follows the existence of the solution of the equation
(12), and, therefore, of the problem (1)–(3) in the specified space. Thus, the following theorem is
valid.

Theorem 1. Let the conditions (5), (8) and (13) be fulfilled. Then for any F ∈ L2(DT ) the problem
(1)–(3) has at least one weak generalized solution u in the space W 1,2

− (DT ).

Note that the monotonicity of the function f can provide the uniqueness of the solution of the
problem (1)–(3).

Theorem 2. If the conditions (5), (8) are fulfilled and f is a non-strictly decreasing function, i.e.

(f(s2)− f(s1))(s2 − s1) ≤ 0 ∀ s1, s2 ∈ R, (14)

then for any F ∈ L2(DT ) the problem (1)–(3) can not have more than one weak generalized solution
in the space W 1,2

− (DT ).

These theorems imply the following theorem.

Theorem 3. Let the conditions (5), (8) and (13), (14) be fulfilled. Then for any F ∈ L2(DT ) the
problem (1)–(3) has a unique weak generalized solution u in the space W 1,2

− (DT ).

Note that if the condition (13) is violated, then the problem (1)–(3) may be unsolvable. Indeed,
there is valid the following theorem.
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Theorem 4. Let the function f satisfy the conditions (5), (8) and

f(u) ≤ −|u|α ∀u ∈ R, α = const > 1, (15)

and the function F = µF0, where F0 ∈ L2(DT ), F0 > 0 in the domain DT , µ = const > 0. Then
there exists a number µ0 = µ0(F0, α) > 0 such that for µ > µ0 the problem (1)–(3) can not have a
weak generalized solution in the space W 1,2

− (DT ).

It is easy to see that when the condition (15) is fulfilled, then the condition (13) is violated.
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