Antiperiodic Problem for One Class of Nonlinear Partial Differential Equations

Sergo Kharibegashvili
Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University
Tbilisi, Georgia
E-mail: kharibegashvili@yahoo.co

In the plane of variables x and t consider a nonlinear partial differential equation of the form

$$
\begin{equation*}
L_{f} u:=\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{4} u}{\partial x^{4}}+\lambda \frac{\partial^{2} u}{\partial x^{2}}+f(u)=F \tag{1}
\end{equation*}
$$

where f, F are given, while u unknown function, $\lambda=$ const.
For the equation (1) we consider the following antiperiodic problem: find in the domain D_{T} : $0<x<l, 0<t<T$ a solution $u=u(x, t)$ of the equation (1) according to the boundary conditions

$$
\begin{gather*}
u(x, 0)=-u(x, T), \quad u_{t}(x, 0)=-u_{t}(x, T), \quad 0 \leq x \leq l \tag{2}\\
\frac{\partial^{i} u}{\partial x^{i}}(0, t)=-\frac{\partial^{i} u}{\partial x^{i}}(l, t), \quad 0 \leq t \leq T, \quad i=0,1,2,3 \tag{3}
\end{gather*}
$$

Note that to the study of antiperiodic problems for nonlinear partial differential equations, having a structure different from (1), is devoted numerous literature (see, for example, [1-7] and the references therein).

Denote by $C^{1,2}\left(\bar{D}_{T}\right)$ the space of functions continuous in \bar{D}_{T}, having in \bar{D}_{T} continuous partial derivatives $\frac{\partial^{i} u}{\partial t^{i}}, i=1,2, \frac{\partial^{j} u}{\partial x^{j}}, j=1,2,3,4$. Let

$$
\begin{aligned}
& C_{-}^{1,2}\left(\bar{D}_{T}\right):=\left\{u \in C^{1,2}\left(\bar{D}_{T}\right): \quad \frac{\partial^{i} u}{\partial t^{i}}(x, 0)=-\frac{\partial^{i} u}{\partial t^{i}}(x, T), \quad 0 \leq x \leq l, \quad i=0,1,\right. \\
&\left.\frac{\partial^{j} u}{\partial x^{j}}(0, t)=-\frac{\partial^{j} u}{\partial x^{j}}(l, t), \quad 0 \leq t \leq T, \quad j=0,1,2,3\right\} .
\end{aligned}
$$

Consider the Hilbert space $W_{-}^{1,2}\left(D_{T}\right)$ as a completion of the classical space $C_{-}^{1,2}\left(\bar{D}_{T}\right)$ with respect to the norm

$$
\begin{equation*}
\|u\|_{W_{-}^{1,2}\left(D_{T}\right)}^{2}=\int_{D_{T}}\left[u^{2}+\left(\frac{\partial u}{\partial t}\right)^{2}+\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2}\right] d x d t \tag{4}
\end{equation*}
$$

Remark 1. It follows from (4) that if $u \in W_{-}^{1,2}\left(D_{T}\right)$ then $u \in W_{2}^{1}\left(D_{T}\right)$ and $\frac{\partial^{2} u}{\partial x^{2}} \in L_{2}\left(D_{T}\right)$. Here $W_{2}^{1}\left(D_{T}\right)$ is the well-known Sobolev space consisting of the elements $L_{2}\left(D_{T}\right)$, having up to the first order generalized derivatives from $L_{2}\left(D_{T}\right)$.

Below, for function f in the equation (1) we require that

$$
\begin{equation*}
f \in C(\mathbb{R}), \quad|f(u)| \leq M_{1}+M_{2}|u|^{\alpha}, \quad \alpha=\text { const }>1, \quad u \in \mathbb{R}, \tag{5}
\end{equation*}
$$

where $M_{i}=$ const $\geq 0, i=1,2$.

Remark 2. As it is known, since the dimension of the domain $D_{T} \subset \mathbb{R}^{2}$ equals two, then the embedding operator

$$
I: W_{2}^{1}\left(D_{T}\right) \rightarrow L_{q}\left(D_{T}\right)
$$

is linear and compact operator for any fixed $q=$ const >1. At the same time the Nemitskii operator $K: L_{q}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)$, acting by formula $K u=f(u)$. where $u \in L_{q}\left(D_{T}\right)$, and function f satisfies the condition (5) is bounded and continuous, when $q \geq 2 \alpha$. Therefore, if we take $q=2 \alpha$ then the operator

$$
K_{0}=K I: W_{2}^{1}\left(D_{T}\right) \rightarrow L_{2}\left(D_{T}\right)
$$

will be continuous and compact. Whence, in particular, we have that if $u \in W_{2}^{1}\left(D_{T}\right)$, then $f(u) \in$ $L_{2}\left(D_{T}\right)$ and from $u_{n} \rightarrow u$ in the space $W_{2}^{1}\left(D_{T}\right)$ it follows $f\left(u_{n}\right) \rightarrow f(u)$ in the space $L_{2}\left(D_{T}\right)$.
Remark 3. Let $u \in C_{-}^{1,2}\left(\bar{D}_{T}\right)$ be a classical solution of the problem (1)-(3). Multiplying the both sides of the equation (1) by an arbitrary function $\varphi \in C_{-}^{1,2}\left(\bar{D}_{T}\right)$ and integrating obtained equality over the domain D_{T} with taking into account that the functions from the space $C_{-}^{1,2}\left(\bar{D}_{T}\right)$ satisfy the boundary conditions (2) and (3), we get

$$
\begin{equation*}
\int_{D_{T}}\left[\frac{\partial u}{\partial t} \frac{\partial \varphi}{\partial t}+\frac{\partial^{2} u}{\partial x^{2}} \frac{\partial^{2} \varphi}{\partial x^{2}}+\lambda \frac{\partial u}{\partial x} \frac{\partial \varphi}{\partial x}\right] d x d t-\int_{D_{T}} f(u) \varphi d x d t=-\int_{D_{T}} F \varphi d x d t \quad \forall \varphi \in C_{-}^{1,2}\left(\bar{D}_{T}\right) . \tag{6}
\end{equation*}
$$

We take the equality (6) as a basis of definition of a weak generalized solution of the problem (1)-(3).

Definition 1. Let a function f satisfy the condition (5). A function $u \in W_{-}^{1,2}\left(D_{T}\right)$ is named a weak generalized solution of the problem (1)-(3), if the integral equality (6) holds for any function $\varphi \in W_{-}^{1,2}\left(\bar{D}_{T}\right)$, i.e.

$$
\begin{equation*}
\int_{D_{T}}\left[\frac{\partial u}{\partial t} \frac{\partial \varphi}{\partial t}+\frac{\partial^{2} u}{\partial x^{2}} \frac{\partial^{2} \varphi}{\partial x^{2}}+\lambda \frac{\partial u}{\partial x} \frac{\partial \varphi}{\partial x}\right] d x d t-\int_{D_{T}} f(u) \varphi d x d t=-\int_{D_{T}} F \varphi d x d t \quad \forall \varphi \in W_{-}^{1,2}\left(D_{T}\right) . \tag{7}
\end{equation*}
$$

Note that due to Remark 2 the integral $\int_{D_{T}} f(u) \varphi d x d t$ in the left-hand side of the equality (7) is defined correctly since from $u \in W_{-}^{1,2}\left(D_{T}\right)$ it follows that $f(u) \in L_{2}\left(D_{T}\right)$, and since $\varphi \in L_{2}\left(D_{T}\right)$, then $f(u) \varphi \in L_{1}\left(D_{T}\right)$.

It is easy to see that if a weak generalized solution u of the problem (1)-(3) in the sense of Definition 1 belongs to the class $C_{-}^{1,2}\left(\bar{D}_{T}\right)$, then it is a classical solution to this problem.

Under fulfillment of the condition

$$
\begin{equation*}
\lambda \geq 0 \tag{8}
\end{equation*}
$$

in the space $C_{-}^{1,2}\left(\bar{D}_{T}\right)$ together with the scalar product

$$
\begin{equation*}
(u, v)_{0}=\int_{D_{T}}\left[u v+\frac{\partial u}{\partial t} \frac{\partial v}{\partial t}+\frac{\partial u}{\partial x} \frac{\partial v}{\partial x}+\frac{\partial^{2} u}{\partial x^{2}} \frac{\partial^{2} v}{\partial x^{2}}\right] d x d t \tag{9}
\end{equation*}
$$

with norm $\|\cdot\|_{0}=\|\cdot\|_{W_{-}^{1,2}\left(D_{T}\right)}$, defined by the right-hand side of the equality (4), let us consider the following scalar product

$$
\begin{equation*}
(u, v)_{1}=\int_{D_{T}}\left[\frac{\partial u}{\partial t} \frac{\partial v}{\partial t}+\frac{\partial^{2} u}{\partial x^{2}} \frac{\partial^{2} v}{\partial x^{2}}+\lambda \frac{\partial u}{\partial x} \frac{\partial v}{\partial x}\right] d x d t \tag{10}
\end{equation*}
$$

with the norm

$$
\begin{equation*}
\|u\|_{1}^{2}=\int_{D_{T}}\left[\left(\frac{\partial u}{\partial t}\right)^{2}+\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2}+\lambda\left(\frac{\partial u}{\partial x}\right)^{2}\right] d x, d t \tag{11}
\end{equation*}
$$

where $u, v \in C_{-}^{1,2}\left(\bar{D}_{T}\right)$.
The following inequalities

$$
c_{1}\|u\|_{0} \leq\|u\|_{1} \leq c_{2}\|u\|_{0} \quad \forall u \in C_{-}^{1,2}\left(\bar{D}_{T}\right)
$$

with positive constants c_{1} and c_{2}, independent of u, are valid. Whence due to (8)-(11) it follows that if we complete the space $C_{-}^{1,2}\left(\bar{D}_{T}\right)$ with respect to the norm (11), then we obtain the same Hilbert space $W_{-}^{1,2}\left(D_{T}\right)$ with the equivalent scalar products (9) and (10). Using this circumstance, one can prove the unique solvability of the linear problem corresponding to (1)-(3), when $f=0$, i.e. for any $F \in L_{2}\left(D_{T}\right)$ there exists a unique solution $u=L_{0}^{-1} F \in W_{-}^{1,2}\left(D_{T}\right)$ to this problem, where the linear operator

$$
L_{0}^{-1}: L_{2}\left(D_{T}\right) \rightarrow W_{-}^{1,2}\left(D_{T}\right)
$$

is continuous.
Remark 4. From the above reasoning, it follows that the nonlinear problem (1)-(3) is reduced equivalently to the functional equation

$$
\begin{equation*}
u=L_{0}^{-1}[f(u)-F] \tag{12}
\end{equation*}
$$

in the Hilbert space $W_{-}^{1,2}\left(D_{T}\right)$.
Supposing that

$$
\begin{equation*}
\lim _{|u| \rightarrow \infty} \sup \frac{f(u)}{u} \leq 0 \tag{13}
\end{equation*}
$$

it can be proved a priori estimate for the solution of the functional equation (12) in the space $W_{-}^{1,2}\left(D_{T}\right)$, whence, due to Remarks 2 and 4 , it follows the existence of the solution of the equation (12), and, therefore, of the problem (1)-(3) in the specified space. Thus, the following theorem is valid.

Theorem 1. Let the conditions (5), (8) and (13) be fulfilled. Then for any $F \in L_{2}\left(D_{T}\right)$ the problem (1)-(3) has at least one weak generalized solution u in the space $W_{-}^{1,2}\left(D_{T}\right)$.

Note that the monotonicity of the function f can provide the uniqueness of the solution of the problem (1)-(3).

Theorem 2. If the conditions (5), (8) are fulfilled and f is a non-strictly decreasing function, i.e.

$$
\begin{equation*}
\left(f\left(s_{2}\right)-f\left(s_{1}\right)\right)\left(s_{2}-s_{1}\right) \leq 0 \quad \forall s_{1}, s_{2} \in \mathbb{R}, \tag{14}
\end{equation*}
$$

then for any $F \in L_{2}\left(D_{T}\right)$ the problem (1)-(3) can not have more than one weak generalized solution in the space $W_{-}^{1,2}\left(\bar{D}_{T}\right)$.

These theorems imply the following theorem.
Theorem 3. Let the conditions (5), (8) and (13), (14) be fulfilled. Then for any $F \in L_{2}\left(D_{T}\right)$ the problem (1)-(3) has a unique weak generalized solution u in the space $W_{-}^{1,2}\left(D_{T}\right)$.

Note that if the condition (13) is violated, then the problem (1)-(3) may be unsolvable. Indeed, there is valid the following theorem.

Theorem 4. Let the function f satisfy the conditions (5), (8) and

$$
\begin{equation*}
f(u) \leq-|u|^{\alpha} \quad \forall u \in \mathbb{R}, \quad \alpha=\text { const }>1, \tag{15}
\end{equation*}
$$

and the function $F=\mu F_{0}$, where $F_{0} \in L_{2}\left(D_{T}\right), F_{0}>0$ in the domain $D_{T}, \mu=$ const >0. Then there exists a number $\mu_{0}=\mu_{0}\left(F_{0}, \alpha\right)>0$ such that for $\mu>\mu_{0}$ the problem (1)-(3) can not have a weak generalized solution in the space $W_{-}^{1,2}\left(D_{T}\right)$.

It is easy to see that when the condition (15) is fulfilled, then the condition (13) is violated.

Acknowledgements

The work was supported by the Shota Rustavely National Science Foundation, Grant \# FR-217307.

References

[1] S. Boussandel, Existence of solutions for nonlinear nonmonotone evolution equations in Banach spaces with anti-periodic boundary conditions. Appl. Math. 63 (2018), no. 5, 523-539.
[2] Y. Chen, Anti-periodic solutions for semilinear evolution equations. J. Math. Anal. Appl. 315 (2006), no. 1, 337-348.
[3] Y. Chen, J. J. Nieto and D. O'Regan, Anti-periodic solutions for evolution equations associated with maximal monotone mappings. Appl. Math. Lett. 24 (2011), no. 3, 302-307.
[4] W. Dimbour and V. Valmorin, Asymptotically antiperiodic solutions for a nonlinear differential equation with piecewise constant argument in a Banach space. Applied Mathematics 7 (2016), 1726-1733.
[5] Q. Liu, Existence of anti-periodic mild solutions for semilinear evolution equations. J. Math. Anal. Appl. 377 (2011), no. 1, 110-120.
[6] J. Liu, X. Song and L. Zhang, Existence of anti-periodic mild solutions to semilinear nonautonomous evolution equations. J. Math. Anal. Appl. 425 (2015), no. 1, 295-306.
[7] L. Zhenhai, Anti-periodic solutions to nonlinear evolution equations. J. Funct. Anal. 258 (2010), no. 6, 2026-2033.

