On the Solvability of a Periodic Problem in an Infinite Stripe for Second Order Hyperbolic Equations

Otar Jokhadze, Sergo Kharibegashvili
Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University
Tbilisi, Georgia
E-mails: ojokhadze@yahoo.com; kharibegashvili@yahoo.co

In the infinite stripe $D_{T}:=\left\{(x, t) \in \mathbb{R}^{2}, x \in \mathbb{R}, 0<t<T\right\}$ of the plane of independent variables x, t we consider the problem of finding a regular solution $u=u(x, t)$ of the hyperbolic equation

$$
\begin{equation*}
a u_{t t}+2 b u_{t x}+c u_{x x}=f(x, t), \quad(x, t) \in D_{T}, \quad a, b, c:=\text { const }, \quad a \neq 0, \tag{1}
\end{equation*}
$$

satisfying the periodic boundary conditions with respect to the variable t

$$
\begin{equation*}
u(x, 0)=u(x, T), \quad u_{t}(x, 0)=u_{t}(x, T), \quad x \in \mathbb{R}:=(-\infty,+\infty) \tag{2}
\end{equation*}
$$

For hyperbolic equations and systems time periodic problems have been the subject of research by many authors (see, for example, works [2-6] and the references therein), in which questions of existence, absence, uniqueness and representation of solutions are studied.

Assuming that

$$
\begin{equation*}
b^{2}-a c>0, \quad f \in C^{1}\left(\bar{D}_{T}\right), \tag{3}
\end{equation*}
$$

the regular solution $u \in C^{2}\left(\bar{D}_{T}\right)$ of the equation (1) can be represented in the form

$$
\begin{align*}
u(x, t)=\frac{\lambda_{2} \varphi\left(x-\lambda_{1} t\right)-\lambda_{1} \varphi\left(x-\lambda_{2} t\right)}{\lambda_{2}-\lambda_{1}} & \\
& +\frac{1}{\lambda_{2}-\lambda_{1}} \int_{x-\lambda_{2} t}^{x-\lambda_{1} t} \psi(\tau) d \tau+\frac{1}{a\left(\lambda_{2}-\lambda_{1}\right)} \int_{D_{x, t}} f(\xi, \tau) d \xi d \tau, \tag{4}
\end{align*}
$$

where $\lambda_{i}, i=1,2$ by virtue (3) are the different real roots of the quadratic equation $a \lambda^{2}-2 b \lambda+c=0$ and $D_{x, t}$ is the triangular domain bounded by an axis $O x$ and characteristic lines of the equation (1) coming from the point $(x, t) \in D_{T}$ and

$$
\varphi(x):=u(x, 0), \quad \psi(x):=u_{t}(x, 0), \quad x \in \mathbb{R} .
$$

By applying the representation (4), the problem (1), (2) is equivalently reduced to a system of functional equations

$$
\left\{\begin{align*}
\psi(x) & +\frac{1}{\lambda_{2}-\lambda_{1}}\left[\lambda_{1} \psi\left(x-\lambda_{1} T\right)-\lambda_{2} \psi\left(x-\lambda_{2} T\right)+\lambda_{1} \lambda_{2} \varphi^{\prime}\left(x-\lambda_{1} T\right)-\lambda_{1} \lambda_{2} \varphi^{\prime}\left(x-\lambda_{2} T\right)\right] \\
& =\frac{1}{a\left(\lambda_{2}-\lambda_{1}\right)} \int_{0}^{T}\left\{-\lambda_{1} f\left[x-\lambda_{1}(T-\tau), \tau\right]+\lambda_{2} f\left[x-\lambda_{2}(T-\tau), \tau\right]\right\} d \tau, \tag{5}\\
\varphi^{\prime}(x) & +\frac{1}{\lambda_{2}-\lambda_{1}}\left[-\lambda_{2} \varphi^{\prime}\left(x-\lambda_{1} T\right)+\lambda_{1} \varphi^{\prime}\left(x-\lambda_{2} T\right)-\psi\left(x-\lambda_{1} T\right)+\psi\left(x-\lambda_{2} T\right)\right] \\
& =\frac{1}{a\left(\lambda_{2}-\lambda_{1}\right)} \int_{0}^{T}\left\{f\left[x-\lambda_{1}(T-\tau), \tau\right]-f\left[x-\lambda_{2}(T-\tau), \tau\right]\right\} d \tau .
\end{align*}\right.
$$

In the notation $v:=\left(\psi, \varphi^{\prime}\right)$ we write the system of equations (5) in the form

$$
\begin{equation*}
v(x)+\sum_{i=1}^{2} A_{i} v\left(x-\lambda_{i} T\right)=F(x), \quad x \in \mathbb{R} \tag{6}
\end{equation*}
$$

where

$$
A_{1}:=\frac{1}{\lambda_{2}-\lambda_{1}}\left\|\begin{array}{cc}
\lambda_{1} & \lambda_{1} \lambda_{2} \tag{7}\\
-1 & -\lambda_{2}
\end{array}\right\|, \quad A_{2}:=\frac{1}{\lambda_{2}-\lambda_{1}}\left\|\begin{array}{cc}
-\lambda_{2} & -\lambda_{1} \lambda_{2} \\
1 & \lambda_{1}
\end{array}\right\|
$$

and

$$
F(x):=\frac{1}{a\left(\lambda_{2}-\lambda_{1}\right)}\| \|_{0}^{T}\left\{-\lambda_{1} f\left[x-\lambda_{1}(T-\tau), \tau\right]+\lambda_{2} f\left[x-\lambda_{2}(T-\tau), \tau\right]\right\} d \tau \|
$$

If we introduce the notations

$$
\begin{equation*}
\omega_{i}:=A_{i} v, \quad i=1,2 \tag{8}
\end{equation*}
$$

by virtue of (7) and taking into account the facts that: $A_{1} A_{2}=A_{2} A_{1}=O$ and $A_{i}^{2}:=-A_{i}$, $i=1,2$, from the equation (6) with respect to the unknown functions $\omega_{i}, i=1,2$, we get the following independent from each other equations

$$
\begin{equation*}
\omega_{i}(x)-A_{i} \omega_{i}\left(x-\lambda_{i} T\right)=A_{i} F(x), \quad x \in \mathbb{R}, \quad i=1,2 \tag{9}
\end{equation*}
$$

For arbitrary $\alpha, \beta \in \mathbb{R}$ let's introduce the following spaces:

$$
\begin{aligned}
& C_{\alpha, \beta}(\mathbb{R}):=\left\{v \in C(\mathbb{R}): \sup _{x \in(-\infty, 0)} e^{-\alpha x}|v(x)|+\sup _{x \in(0,+\infty)} e^{-\beta x}|v(x)|<+\infty\right\} \\
& C_{\alpha, \beta}^{2}\left(\bar{D}_{T}\right):=\left\{u \in C^{2}\left(\bar{D}_{T}\right): \sup _{(x, t) \in(-\infty, 0) \times[0, T]} e^{-\alpha x}\left(|u(x, t)|+\left|u_{t}(x, t)\right|\right)\right. \\
&\left.+\sup _{(x, t) \in(0,+\infty) \times[0, T]} e^{-\beta x}\left(|u(x, t)|+\left|u_{t}(x, t)\right|\right)<+\infty\right\}, \\
& C_{\alpha, \beta}^{1}\left(\bar{D}_{T}\right):=\left\{f \in C^{1}\left(\bar{D}_{T}\right), \quad \sup _{x \in(-\infty, 0) \times[0, T]} e^{-\alpha x}|f(x, t)|+\sup _{x \in(0,+\infty) \times[0, T]} e^{-\beta x}|f(x, t)|<+\infty\right\},
\end{aligned}
$$

and the notation

$$
I_{\alpha, \beta}:=[\min (\alpha, \beta), \max (\alpha, \beta)]
$$

Remark 1. It is easy to check that from the equalities (8) the vector function v is uniquely determined if and only if

$$
\begin{equation*}
\lambda_{1} \lambda_{2}=\frac{c}{a} \neq 0 \tag{10}
\end{equation*}
$$

Throughout Theorems 1-4 formulated below we will assume that the condition (10) is satisfied. Based on Bochner's results [1] regarding to the functional equation (9) in the space $C_{\alpha, \beta}(\mathbb{R})$ there are proved the following:

Theorem 1. If $\alpha \beta>0$, then for any right-hand side $f \in C_{\alpha, \beta}^{1}\left(\bar{D}_{T}\right)$ the problem (1), (2) has a unique solution in the space $C_{\alpha, \beta}^{2}\left(\bar{D}_{T}\right)$.
Theorem 2. If $\alpha<0$ and $\beta>0$, then for any right-hand side $f \in C_{\alpha, \beta}^{1}\left(\bar{D}_{T}\right)$ there exists a solution of the problem (1), (2) in the space $C_{\alpha, \beta}^{2}\left(\bar{D}_{T}\right)$, besides the corresponding homogeneous problem has an infinite number of linearly independent solutions in the same space.

Theorem 3. If $\alpha>0$ and $\beta<0$, then the problem (1), (2) in the space $C_{\alpha, \beta}^{2}\left(\bar{D}_{T}\right)$ cannot have more than one solution and for its solvability it is necessary and sufficient that the function $f \in C_{\alpha, \beta}^{1}\left(\bar{D}_{T}\right)$ satisfy the following condition

$$
\Lambda_{\gamma}(f)=0, \quad \gamma \in \mathbb{R}
$$

where Λ_{γ} - is a well-defined linear functional on the space $C_{\alpha, \beta}^{1}\left(\bar{D}_{T}\right)$, depending on a real parameter γ.

Theorem 4. If $\alpha \beta=0$, then the problem (1), (2) is not solvable even in the Hausdorff's sense in the space $C_{\alpha, \beta}^{2}\left(\bar{D}_{T}\right)$, when $f \in C_{\alpha, \beta}^{1}\left(\bar{D}_{T}\right)$, i.e. the set of functions f from the space $C_{\alpha, \beta}^{1}\left(\bar{D}_{T}\right)$ for which the problem (1), (2) is solvable in the space $C_{\alpha, \beta}^{2}\left(\bar{D}_{T}\right)$ is not closed in the space $C_{\alpha, \beta}^{1}\left(\bar{D}_{T}\right)$.

Remark 2. Note also that in the case, when the condition (10) is violated, i.e. when $c=0$, to the necessary conditions for the solvability of the problem (1), (2) in space $C_{\alpha, \beta}^{2}\left(\bar{D}_{T}\right)$ there will be added the following condition

$$
\int_{0}^{T} f(x, \tau) d \tau=0 \quad \forall x \in \mathbb{R}
$$

imposed on the function $f \in C_{\alpha, \beta}^{1}\left(\bar{D}_{T}\right)$.

Acknowledgements

This work was supported by the Shota Rustaveli National Science Foundation, Grant \# FR-217307.

References

[1] S. Bochner, Allgemeine lineare Differenzengleichungen mit asymptotisch konstanten Koeffizienten. (German) Math. Z. 33 (1931), no. 1, 426-450.
[2] S. S. Kharibegashvili and O. M. Dzhokhadze, Time-periodic problem for a weakly nonlinear telegraph equation with directional derivative in the boundary condition. (Russian) Differ. Uravn. 51 (2015), no. 10, 1376-1392; translation in Differ. Equ. 51 (2015), no. 10, 1369-1386.
[3] T. Kiguradze, On periodic in the plane solutions of nonlinear hyperbolic equations. Nonlinear Anal. 39 (2000), no. 2, Ser. A: Theory Methods, 173-185.
[4] T. Kiguradze, On bounded and time-periodic solutions of nonlinear wave equations. J. Math. Anal. Appl. 259 (2001), no. 1, 253-276.
[5] B. I. Ptashnik, Ill-Posed Boundary Value Problems for Partial Differential Equations. (Russian) Naukova Dumka, Kiev, 1984.
[6] O. Vejvoda, Partial Differential Equations: Time-Periodic Solutions. Martinus Nijhoff Publishers, Springer, Dordrecht, The Hague, 1982.

