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In the infinite stripe DT := {(x, t) ∈ R2, x ∈ R, 0 < t < T} of the plane of independent
variables x, t we consider the problem of finding a regular solution u = u(x, t) of the hyperbolic
equation

autt + 2butx + cuxx = f(x, t), (x, t) ∈ DT , a, b, c := const, a ̸= 0, (1)
satisfying the periodic boundary conditions with respect to the variable t

u(x, 0) = u(x, T ), ut(x, 0) = ut(x, T ), x ∈ R := (−∞,+∞). (2)

For hyperbolic equations and systems time periodic problems have been the subject of research
by many authors (see, for example, works [2–6] and the references therein), in which questions of
existence, absence, uniqueness and representation of solutions are studied.

Assuming that
b2 − ac > 0, f ∈ C1(DT ), (3)

the regular solution u ∈ C2(DT ) of the equation (1) can be represented in the form

u(x, t) =
λ2φ(x− λ1t)− λ1φ(x− λ2t)

λ2 − λ1

+
1

λ2 − λ1

x−λ1t∫
x−λ2t

ψ(τ) dτ +
1

a(λ2 − λ1)

∫
Dx,t

f(ξ, τ) dξ dτ, (4)

where λi, i = 1, 2 by virtue (3) are the different real roots of the quadratic equation aλ2−2bλ+c = 0
and Dx,t is the triangular domain bounded by an axis Ox and characteristic lines of the equation
(1) coming from the point (x, t) ∈ DT and

φ(x) := u(x, 0), ψ(x) := ut(x, 0), x ∈ R.

By applying the representation (4), the problem (1), (2) is equivalently reduced to a system of
functional equations

ψ(x) +
1

λ2 − λ1

[
λ1ψ(x− λ1T )− λ2ψ(x− λ2T ) + λ1λ2φ

′(x− λ1T )− λ1λ2φ
′(x− λ2T )

]

=
1

a(λ2 − λ1)

T∫
0

{
− λ1f

[
x− λ1(T − τ), τ

]
+ λ2f

[
x− λ2(T − τ), τ

]}
dτ,

φ′(x) +
1

λ2 − λ1

[
− λ2φ

′(x− λ1T ) + λ1φ
′(x− λ2T )− ψ(x− λ1T ) + ψ(x− λ2T )

]

=
1

a(λ2 − λ1)

T∫
0

{
f
[
x− λ1(T − τ), τ

]
− f

[
x− λ2(T − τ), τ

]}
dτ.

(5)
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In the notation v :=
(
ψ,φ′) we write the system of equations (5) in the form

v(x) +
2∑

i=1

Aiv(x− λiT ) = F (x), x ∈ R, (6)

where
A1 :=

1

λ2 − λ1

∥∥∥∥λ1 λ1λ2
−1 −λ2

∥∥∥∥ , A2 :=
1

λ2 − λ1

∥∥∥∥−λ2 −λ1λ2
1 λ1

∥∥∥∥ , (7)

and

F (x) :=
1

a(λ2 − λ1)

∥∥∥∥∥∥∥∥∥∥∥∥

T∫
0

{
− λ1f

[
x− λ1(T − τ), τ

]
+ λ2f

[
x− λ2(T − τ), τ

]}
dτ

T∫
0

{
f
[
x− λ1(T − τ), τ

]
− f

[
x− λ2(T − τ), τ

]}
dτ

∥∥∥∥∥∥∥∥∥∥∥∥
.

If we introduce the notations
ωi := Aiv, i = 1, 2, (8)

by virtue of (7) and taking into account the facts that: A1A2 = A2A1 = O and A2
i := −Ai,

i = 1, 2, from the equation (6) with respect to the unknown functions ωi, i = 1, 2, we get the
following independent from each other equations

ωi(x)−Aiωi(x− λiT ) = AiF (x), x ∈ R, i = 1, 2. (9)

For arbitrary α, β ∈ R let’s introduce the following spaces:

Cα,β(R) :=
{
v ∈ C(R) : sup

x∈(−∞,0)
e−αx|v(x)|+ sup

x∈(0,+∞)
e−βx|v(x)| < +∞

}
,

C2
α,β(DT ) :=

{
u ∈ C2(DT ) : sup

(x,t)∈(−∞,0)×[0,T ]
e−αx

(
|u(x, t)|+ |ut(x, t)|

)
+ sup

(x,t)∈(0,+∞)×[0,T ]
e−βx

(
|u(x, t)|+ |ut(x, t)|

)
< +∞

}
,

C1
α,β(DT ) :=

{
f ∈ C1(DT ), sup

x∈(−∞,0)×[0,T ]
e−αx|f(x, t)|+ sup

x∈(0,+∞)×[0,T ]
e−βx|f(x, t)| < +∞

}
,

and the notation
Iα,β :=

[
min(α, β),max(α, β)

]
.

Remark 1. It is easy to check that from the equalities (8) the vector function v is uniquely
determined if and only if

λ1λ2 =
c

a
̸= 0. (10)

Throughout Theorems 1–4 formulated below we will assume that the condition (10) is satisfied.
Based on Bochner’s results [1] regarding to the functional equation (9) in the space Cα,β(R) there
are proved the following:

Theorem 1. If αβ > 0, then for any right-hand side f ∈ C1
α,β(DT ) the problem (1), (2) has a

unique solution in the space C2
α,β(DT ).

Theorem 2. If α < 0 and β > 0, then for any right-hand side f ∈ C1
α,β(DT ) there exists a solution

of the problem (1), (2) in the space C2
α,β(DT ), besides the corresponding homogeneous problem has

an infinite number of linearly independent solutions in the same space.
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Theorem 3. If α > 0 and β < 0, then the problem (1), (2) in the space C2
α,β(DT ) cannot have more

than one solution and for its solvability it is necessary and sufficient that the function f ∈ C1
α,β(DT )

satisfy the following condition
Λγ(f) = 0, γ ∈ R,

where Λγ - is a well-defined linear functional on the space C1
α,β(DT ), depending on a real parameter

γ.

Theorem 4. If αβ = 0, then the problem (1), (2) is not solvable even in the Hausdorff’s sense in
the space C2

α,β(DT ), when f ∈ C1
α,β(DT ), i.e. the set of functions f from the space C1

α,β(DT ) for
which the problem (1), (2) is solvable in the space C2

α,β(DT ) is not closed in the space C1
α,β(DT ).

Remark 2. Note also that in the case, when the condition (10) is violated, i.e. when c = 0, to
the necessary conditions for the solvability of the problem (1), (2) in space C2

α,β(DT ) there will be
added the following condition

T∫
0

f(x, τ) dτ = 0 ∀x ∈ R,

imposed on the function f ∈ C1
α,β(DT ).
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