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Lyapunov Stability of Time-Fractional Stochastic Volterra Equations
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Time-fractional stochastic differential models became popular in applications, and its analysis
is presented in multiple highly cited monographs and articles, for example, [1–3,5, 6].

The target of this report is a stochastic fractional-in-time Volterra equation defined with mul-
tiple deterministic and stochastic time scales:

dx(t) =
m∑
j=1

[
fj(t, (H1jx)(t)) (dt)

αj + gj(t, (H2jx)(t)) dBj(t)
]

(t ≥ 0). (1)

Here fj(ω, t, v) and gj(ω, t, v) are random functions, H1j and H2j are linear delay operators, 0 <
αj ≤ 1, dBj(t) are Itô differentials generated by the standard scalar Wiener processes (Brownian
motions) Bj , m is the number of the deterministic/stochastic time-scales and x(t) is an unknown
stochastic process on ℜ satisfying, in addition to (1), the initial condition

x(s) = φ(s) (s ≤ 0), (2)

where φ(ω, s) is some random function (not necessarily continuous). Throughout the paper we
tacitly assume that

fj( · , · , 0) = 0 and gj( · , · , 0) = 0 (P ⊗ µ)-almost everywhere

(µ is the Lebesgue measure on ℜ), which simply means that x ≡ 0 satisfies Eq. (1) and the
initial condition (2) with φ ≡ 0. A solution of the initial value problem (1), (2) is a progressively
measurable stochastic process x almost surely satisfying (2) for µ-almost all s ∈ ℜ− and the integral
equation

x(t)− φ(0) =
m∑
j=1

[ t∫
0

αj(t− s)αj−1fj(s, (H1jx)(s)) ds+

t∫
0

gj(s, (H2jx)(s)) dBj(s)

]

for all t ∈ ℜ+. It is assumed that the initial value problem (1), (2) has a unique solution x(t, φ) for
all admissible φ (see Definition 1).
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Below we keep fixed the stochastic basis (Ω,F , (F)t∈ℜ, P ) satisfying the standard conditions [1]
assuming, in addition, that Ft = F0 for all t ≤ 0. All stochastic processes in this paper are supposed
to be progressively measurable w.r.t. this stochastic basis or parts of it.

Basic notation used below:

- ℜ = (−∞,∞), ℜ+ = [0,∞), ℜ− = (−∞, 0).

- µ is the Lebesgue measure defined on ℜ or its subintervals.

- E is the expectation.

- | · | is the fixed norm in ℜn and ∥ · ∥ is the associated matrix norm ∥ · ∥.

- Bj(t) (t ∈ ℜ+, j = 1, . . . ,m) are the standard scalar Brownian motions (Wiener processes).

The constants used below:

- n ∈ N is the dimension of the phase space, i.e. the size of the solution vector.

- m ∈ N is the number of the deterministic/stochastic time-scales.

- The indices i, j satisfy 1 ≤ i ≤ 2, 1 ≤ j ≤ m.

- 0 < αj ≤ 1 define the time scales.

- p is a fixed real constant appearing in the p-stability we assume that p ≥ 2 and p > α−1
j .

Let J ⊂ ℜ+. The following spaces of random variables and stochastic processes are used below
as well:

- The space knp consists of all n-dimensional, F0-measurable random variables {ξ : E|ξ|p < ∞}.

- Lp(J,ℜl) contains all progressively measurable l-dimensional stochastic processes x(t) (t ∈ J)
such that ∫

J

E|x(t)|p dt < ∞.

- For a given positive continuous function γ(t), t ∈ J , the space Mγ
p(J,ℜl) consists of all

progressively measurable l-dimensional stochastic processes x(t) (t ∈ J) such that

sup
t∈J

E|γ(t)x(t)|p < ∞.

- For l = n and J = ℜ+ we define Mγ
p ≡ Mγ

p(ℜ+,ℜn), and if, in addition, γ = 1, then we put
Mp ≡ M1

p(ℜ+,ℜn).

- The Banach space U is the direct product of 2m copies of the space Mp(ℜ+,ℜl) equipped
with the natural norms.

In the well-known definition of the stochastic Lyapunov stability below we assume that φ ∈
Mp(ℜ− ∪ {0},ℜn).

Definition 1. Eq. (1) is called globally

- p-stable if there exists c > 0 such that

E|x(t, φ)|p ≤ c sup
s≤0

E|φ(s)|p for all t ∈ ℜ+;



60 L. Idels, R. I. Kadiev, A. Ponosov

- asymptotically p-stable if it is p-stable and, in addition,

lim
t→∞

E|x(t, φ)|p = 0;

- exponentially p-stable if there exist c > 0 and β > 0 such that the inequality

E|x(t, φ)|p ≤ c exp{−βt} sup
s≤0

E|φ(s)|p for all t ∈ ℜ+

holds.

To study Lyapunov stability of the solutions of Eq. (1), it is convenient to rewrite it as a
multi-time scale stochastic Volterra equation with predefined controls:

dy(t) =

m∑
j=1

[
(Fj(y, u1j))(t) (dt)

αj + (Gj(y, u2j))(t) dBj(t)
]

(t ≥ 0), (3)

where uij = uij(t, ω) (t ∈ ℜ+) belong to the space Mp(ℜ+,ℜl), Fj and Gj are some nonlinear
Volterra mappings. The way to construct uij , Fj and Gj is described in the paper [7]. Note that
Eq. (3) only requires the initial condition for t = 0

y(0) = y0 ∈ knp . (4)

Given uij ∈ Mp(ℜ+,ℜl), by a solution of the control problem (3), (4) we understand a progressively
measurable stochastic process y(t) almost surely satisfying the initial condition (4) and the integral
equation

y(t)− y0 =
m∑
j=1

[ t∫
0

αj(t− s)αj−1Fj(y, u1j)(s) ds+

t∫
0

Gj(y, u2j)(s) dBj(s)

]

for all t ∈ ℜ+. Two integrals here are understood in the sense of Lebesgue and Itô, respectively.
In the sequel, we will assume that the restrictions on the operators Fj and Gj ensure the existence
of these integrals and existence and uniqueness of the solution y(t, y0, u) of the control problem
(3), (4) for all uij ∈ Mp(ℜ+,ℜl) and y0 ∈ knp .

The Lyapunov stability of the solutions of Eq. (1) will be, then, replaced by a particular version
of the input-to-state stability, which is well-known in the control theory. Below, we call this version
Mγ

p-stability.

Definition 2. We say that Eq. (3) is Mγ
p-stable if for all y0 ∈ knp and uij ∈ Mp(ℜ+,ℜl)

- y( · , y0, u) ∈ Mγ
p ;

- there exists K > 0 such that

∥y( · , y0, u)∥Mγ
p
≤ K

(
∥y0∥knp + ∥u∥U

)
.

Under some very natural conditions on γ (see [7] for the details) the Mγ
p-stability of solutions

of Eq. (3) implies p-stability, asymptotic p-stability and exponential p-stability of solutions of Eq.
(1). This result is exploited in this report.
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To study the property of Mγ
p-stability for Eq. (3) it is convenient to start with choosing some

simpler linear equation, which already has this property:

dy(t) =

m∑
j=1

[(
(Qjy)(t) + z1j(t)

)
(dt)αj + z2j(t) dBj(t)

]
(t ∈ ℜ+). (5)

Here Qj : Mp → Lpj (ℜ+,ℜn) (pj > 1
αj
) are k1p-linear operators, z1j ∈ Lpj (ℜ+,ℜn) and z2j ∈

L2(ℜ+,ℜn). Assuming the existence and uniqueness property for Eq. (5) for any initial condition
(4) and using the linearity of Qj , we obtain the following representation of its solutions:

y(t) = U(t)χ(0) + (Wz)(t),

where U(t) is the fundamental matrix of the associated homogeneous equation, which is an n× n-
matrix whose columns satisfy this homogeneous equation and U(0) = In and

W :

m∏
j=1

(
Lpj (ℜ+,ℜn)× L2(ℜ+,ℜn)

)
→ Mp

is Green’s operator for (5), (Wz)(0) = 0 and Wz is a solution of Eq. (5) for any z from the domain
of W . Using the solutions representation of the auxiliary equation we can regularize Eq. (3) by
rewriting it as

y(t) = U(t)y0 +
m∑
j=1

[(
W1j(−Qjy + Fj(y, u1j))

)
(t) +

m∑
j=1

(W2jGj(y, u2j))(t)
]

(t > 0).

Given a continuous function γ : ℜ+ → (0,∞), an initial value y0 = [y01,→, y0n]
T ∈ knp , a control

u = (uij : i = 1, 2, j = 1, . . . ,m), uij ∈ Mp(ℜ+,ℜl), which produce the solution of Eq. (3)

y(t, y0, u) =
[
y1(t, y0, u), . . . , yn(t, y0, u)

]T
and a nonnegative stopping time η, we define

- y0 = [y01, . . . , y0n]
T , where

y0ν = (E|y0ν |p)1/p ≡ ∥y0ν∥k1p ;

- y η = [y η
1 , . . . , y

η
n ]T , where

y η
ν = sup

0≤t≤η

(
E|γ(t)yν(t, y0, u)|p

)1/p
,

so that y η
ν = y η

ν (γ, p), y η = y η(γ, p) and y η
ν = y η

ν (γ, p) for ν = 1, . . . , n. These notations allow us
to formulate and prove the main result of this report.

Theorem 1. Suppose there exist a real n × n-matrix C and two constants K1 > 0 and K2 > 0
such that In −C is inverse-positive and for any stopping time 0 ≤ η < ∞ the vector y η = y η(γ, p)
satisfies the matrix inequality

y η ≤ Cy η +K1y0 +K2∥u∥Uen (en = [1, . . . , 1]T ∈ ℜn).

Then Eq. (3) is Mγ
p-stable.
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The proof of the theorem can be found in [7].
Using this theorem, one can conveniently study different kinds of Lyapunov stability of the

solutions of Eq. (1), choosing an appropriate weight γ and an auxiliary equation (5).
The illustrative example below demonstrates applications of Theorem 1. The universal constant

cp used in the example comes from the following estimate:

E

∣∣∣∣
t∫

0

f(s) dB(s)

∣∣∣∣2p ≤ c2pp E

( t∫
0

|f(s)|2 ds
)p

(t ∈ ℜ+, p ≥ 1), (6)

where B(t) (t ∈ ℜ+) is the standard scalar Brownian motion and f(s) ia an arbitrary scalar,
progressive measurable stochastic process on ℜ+; some explicit formulae for cp can be found in the
literature, for instance, in [4], where cp = 2

√
12p, which, however, is not best possible, as evidently,

c1 = 1,

Example. Let 1 ≤ p < ∞. Consider the following system of linear equations

dx(t) = −
m∑
j=1

[
A(j)x(hj(t)) (dt)

αj +

mj∑
τ=1

A(j,τ)x(hjτ (t)) dBj(t)
]

(t ≥ 0), (7)

where A(j) = (a
(j)
sl )

n
s,l=1, j = 1, . . . ,m, A(j,τ) = (a

(j,τ)
sl )ns,l=1, j = 1, . . . ,m, τ = 1, . . . ,mi are real

n×n-matrices and hj , hjτ , j = 1, . . . ,m, τ = 1, . . . ,mj are continuous functions such that hj(t) ≤ t,
hjτ ≤ t, t ≥ 0, j = 1, . . . ,m, τ = 1, . . . ,mj , 0 < αj ≤ 1, j = 1, . . . ,m, A(1) is a diagonal matrix
with the positive diagonal entries a

(1)
ν and α1 = 1.

Let C be the n× n-matrix with the entries

cνκ =

m∑
j=2

[
|a(j)νκ |

(
exp{−αj}

( αj

a
(1)
νν

)αj

+Γ
(αj + 1

a
(1)
νν

)αj
)]

+

m∑
j=1

mj∑
τ=1

cp

[
|a(j,τ)νκ |√
2aνν

]
(ν, κ = 1, . . . , n). (8)

Then the system (7) will be globally 2p-stable if the matrix In−C defined by (8) is inverse-positive.
Here cp is the universal constant from the estimate (6).

In this case one uses the constant weigth function γ(t) = 1 and an ordinary scalar equation (5).
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