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Time-fractional stochastic differential models became popular in applications, and its analysis
is presented in multiple highly cited monographs and articles, for example, [1-3,5, 6].

The target of this report is a stochastic fractional-in-time Volterra equation defined with mul-
tiple deterministic and stochastic time scales:

)= 3 it (Hg) (1)) (@) + g5 (2, (Hoy) (1) dB, ()] (2 0), ()

Jj=1

Here fj(w,t,v) and gj(w,t,v) are random functions, Hi; and Ha; are linear delay operators, 0 <
a; <1, dBj(t) are Ito differentials generated by the standard scalar Wiener processes (Brownian
motions) Bj, m is the number of the deterministic/stochastic time-scales and z(t) is an unknown
stochastic process on R satisfying, in addition to (1), the initial condition

z(s) = ¢(s) (s <0), (2)

where ¢p(w, s) is some random function (not necessarily continuous). Throughout the paper we
tacitly assume that

fi(-,+,0)=0 and g;(-,-,0) =0 (P ® p)-almost everywhere

(1 is the Lebesgue measure on R), which simply means that x = 0 satisfies Eq. (1) and the
initial condition (2) with ¢ = 0. A solution of the initial value problem (1), (2) is a progressively
measurable stochastic process x almost surely satisfying (2) for p-almost all s € ®_ and the integral
equation

t

z(t) — ¢(0) = i [/taj(t— 5)% 7 fi(s, (Hyjx) ds+/gg (Hajz)(s)) dBj(s)
=LY

0

for all t € R;. It is assumed that the initial value problem (1), (2) has a unique solution (¢, ¢) for
all admissible ¢ (see Definition 1).
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Below we keep fixed the stochastic basis (2, F, (F)ien, P) satisfying the standard conditions [1]
assuming, in addition, that 7, = Fy for all ¢ < 0. All stochastic processes in this paper are supposed
to be progressively measurable w.r.t. this stochastic basis or parts of it.

Basic notation used below:

- R =(—00,00), Ry =[0,00), R = (—00,0).

- u is the Lebesgue measure defined on R or its subintervals.

- FE is the expectation.

- | - | is the fixed norm in R and || - || is the associated matrix norm || - ||.

- Bj(t) (t € R4, j =1,...,m) are the standard scalar Brownian motions (Wiener processes).
The constants used below:

- n € N is the dimension of the phase space, i.e. the size of the solution vector.

- m € N is the number of the deterministic/stochastic time-scales.

- The indices 4, j satisfy 1 <¢<2,1 <35 <m.

- 0 < oj <1 define the time scales.

- pis a fixed real constant appearing in the p-stability we assume that p > 2 and p > a;l.

Let J C R4. The following spaces of random variables and stochastic processes are used below
as well:

- The space k;, consists of all n-dimensional, Fop-measurable random variables {§ : E[|P < co}.

- L,(J,R) contains all progressively measurable [-dimensional stochastic processes z(t) (t € J)
such that

/E]a:(t)|pdt < 0.
J

- For a given positive continuous function (¢), ¢t € J, the space Mp(J,R') consists of all
progressively measurable [-dimensional stochastic processes z(t) (¢ € J) such that

sup E|y(t)z(t)|P < oco.
teJ

- For I =n and J = R4 we define M) = M} (R4, R"), and if, in addition, y = 1, then we put
M, = /\/lll)(%+, R™).

- The Banach space U is the direct product of 2m copies of the space M, (R, ') equipped
with the natural norms.

In the well-known definition of the stochastic Lyapunov stability below we assume that ¢ €

My(R U {0}, R7).
Definition 1. Eq. (1) is called globally

- p-stable if there exists ¢ > 0 such that

El|x(t,p)|P < csup Elp(s)|P for all t € Ry;
s<0
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- asymptotically p-stable if it is p-stable and, in addition,

lim Elx(t, )|’ = 0;

t—o00

- exponentially p-stable if there exist ¢ > 0 and S > 0 such that the inequality

E|x(t, )P < cexp{—pFt}sup E|p(s)|P for all t € R
s<0

holds.

To study Lyapunov stability of the solutions of Eq. (1), it is convenient to rewrite it as a
multi-time scale stochastic Volterra equation with predefined controls:

0 = | (Fy(uny))(E) (@)% + (Gy(y.u2))(0) dB;(0)] (¢ 2 0), 3)

J=1

where u;; = u;j(t,w) (t € Ry) belong to the space M,(Ry,R!), F; and G; are some nonlinear
Volterra mappings. The way to construct u;;, Fj and G; is described in the paper [7]. Note that
Eq. (3) only requires the initial condition for ¢ = 0

y(0) = yo € ky,. (4)

Given u;; € My(R4, RY), by a solution of the control problem (3), (4) we understand a progressively
measurable stochastic process y(t) almost surely satisfying the initial condition (4) and the integral
equation

t t
y(t) - [/a (0= 91 Fy(yny) ) s + [ G uay) (5) dBy (9
J=1"% 0

for all t € R;. Two integrals here are understood in the sense of Lebesgue and It6, respectively.
In the sequel, we will assume that the restrictions on the operators F; and G; ensure the existence
of these integrals and existence and uniqueness of the solution y(t,yg,u) of the control problem
(3), (4) for all u;; € My(R4, R!) and yo € k7.

The Lyapunov stability of the solutions of Eq. (1) will be, then, replaced by a particular version
of the input-to-state stability, which is well-known in the control theory. Below, we call this version
M_)-stability.

Definition 2. We say that Eq. (3) is My-stable if for all yo € ky and ui; € Mp(Ry, R
- y('ayOau) € M;,

- there exists K > 0 such that

(- o, Wl < K (llyolleg + ).

Under some very natural conditions on v (see [7] for the details) the M,-stability of solutions
of Eq. (3) implies p-stability, asymptotic p-stability and exponential p-stability of solutions of Eq.
(1). This result is exploited in this report.
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To study the property of Mj-stability for Eq. (3) it is convenient to start with choosing some
simpler linear equation, which already has this property:

u(t) =3 [(@u)(0) + 21,(0) (@)% + 2,0 dB(0)] (¢ € R, 9

Here Q; : My, — L, (R4, R") (p; > chj) are kl-linear operators, zi; € Ly, (R, R") and zp; €
Lo(R4,N™). Assuming the existence and uniqueness property for Eq. (5) for any initial condition
(4) and using the linearity of @);, we obtain the following representation of its solutions:

y(t) = U(t)x(0) + (Wz)(1),

where U(t) is the fundamental matrix of the associated homogeneous equation, which is an n x n-
matrix whose columns satisfy this homogeneous equation and U(0) = I,, and

H o (R, R?) X Lo(Ri, RY)) — M,

is Green’s operator for (5), (Wz)(0) = 0 and Wz is a solution of Eq. (5) for any z from the domain
of W. Using the solutions representation of the auxiliary equation we can regularize Eq. (3) by
rewriting it as

y(t) =U(t)yo + Z [(le(—ij + Fj(y,u15)))(t) + Z Wa;G;(y, U2J))(t)] (t>0).
Jj=1 =1

Given a continuous function v : R, — (0,00), an initial value yo = [yo1, —, Yon]’ € k), a control
u=(uy:1=1,27=1,...,m), uj; € Mp(R4, R'), which produce the solution of Eq. (3)

T
y(tvy()a U) = [yl(t7y07u)7 s 7yn(t7y07u)]

and a nonnegative stopping time 7, we define

- Yo = [Tots- -+ Yon) ' » Where 1
Tow = (Elyos )" = llyou iy
-y =[y/,...,yn]", where

B 1
) = sup (E|y(t)y(t,yo, u)l?) r,
0<t<n

so that 7)) =5, (v,p), ¥"7 = y"(v,p) and 5] = 5,/ (v,p) for v = 1,...,n. These notations allow us
to formulate and prove the main result of this report.

Theorem 1. Suppose there exist a real n X n-matrizx C' and two constants K1 > 0 and Ky > 0
such that I, — C is inverse-positive and for any stopping time 0 < n < oo the vector y" =g5"(~,p)
satisfies the matrix inequality

7" < Oy + K1y + Kollulluen (en=11,...,1]" € R™).

Then Eq. (3) is M, -stable.
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The proof of the theorem can be found in [7].

Using this theorem, one can conveniently study different kinds of Lyapunov stability of the
solutions of Eq. (1), choosing an appropriate weight v and an auxiliary equation (5).

The illustrative example below demonstrates applications of Theorem 1. The universal constant
¢p used in the example comes from the following estimate:

E’ ] £(s)dB(s) v
0

where B(t) (t € Ry) is the standard scalar Brownian motion and f(s) ia an arbitrary scalar,
progressive measurable stochastic process on R ; some explicit formulae for ¢, can be found in the
literature, for instance, in [4], where ¢, = 2v/12p, which, however, is not best possible, as evidently,

< E( / If(8)|2d8>p (teR p=1), (6)
0

cl1 = 1,
Example. Let 1 < p < 0o. Consider the following system of linear equations

m

[ AW dta1+ZA]’ )dB()} (t > 0), (7)
7j=1
G) — (,G\n G7) — (,GT\n o _ ,
where A —(sl)sll,j—l .,m, A = (ag” )sl LJi=1...,m, 7=1,...,m; are real
nxn-matrices and hj, hjr, j =1,...,m, 7 =1,...,m; are continuous functions such that h;(t) <'t,
hjr <t,t>0,7=1,...,m, 7= 1,...,mj, 0<ao; <1,j=1,...,m, AW is a diagonal matrix
with the positive diagonal entries a(yl) and a; = 1.
Let C' be the n X n-matrix with the entries

m : T a; + 1\ A |a,(,],';7)|
cwzg[\a&zr(exp{ ob(5) " r (M) )}@z{ o] k=1 )

Then the system (7) will be globally 2p-stable if the matrix I,, — C' defined by (8) is inverse-positive.
Here ¢, is the universal constant from the estimate (6).

In this case one uses the constant weigth function v(¢) = 1 and an ordinary scalar equation (5).
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