Lyapunov Stability of Time-Fractional Stochastic Volterra Equations

Lev Idels
Department of Mathematics, Vancouver Island University, Nanaimo, BC, V9S5S5 Canada
E-mail: lev.idels@viu.ca
Ramazan I. Kadiev ${ }^{1,2}$
${ }^{1}$ Dagestan Research Center of the Russian Academy of Sciences, Makhachkala, Russia
${ }^{2}$ Department of Mathematics, Dagestan State University, Makhachkala, Russia
E-mail: kadiev_r@mail.ru
Arcady Ponosov
Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway E-mail: arkadi@nmbu.no

Time-fractional stochastic differential models became popular in applications, and its analysis is presented in multiple highly cited monographs and articles, for example, $[1-3,5,6]$.

The target of this report is a stochastic fractional-in-time Volterra equation defined with multiple deterministic and stochastic time scales:

$$
\begin{equation*}
d x(t)=\sum_{j=1}^{m}\left[f_{j}\left(t,\left(H_{1 j} x\right)(t)\right)(d t)^{\alpha_{j}}+g_{j}\left(t,\left(H_{2 j} x\right)(t)\right) d B_{j}(t)\right] \quad(t \geq 0) \tag{1}
\end{equation*}
$$

Here $f_{j}(\omega, t, v)$ and $g_{j}(\omega, t, v)$ are random functions, $H_{1 j}$ and $H_{2 j}$ are linear delay operators, $0<$ $\alpha_{j} \leq 1, d B_{j}(t)$ are Itô differentials generated by the standard scalar Wiener processes (Brownian motions) B_{j}, m is the number of the deterministic/stochastic time-scales and $x(t)$ is an unknown stochastic process on \Re satisfying, in addition to (1), the initial condition

$$
\begin{equation*}
x(s)=\varphi(s) \quad(s \leq 0), \tag{2}
\end{equation*}
$$

where $\varphi(\omega, s)$ is some random function (not necessarily continuous). Throughout the paper we tacitly assume that

$$
f_{j}(\cdot, \cdot, 0)=0 \text { and } g_{j}(\cdot, \cdot, 0)=0(P \otimes \mu) \text {-almost everywhere }
$$

(μ is the Lebesgue measure on \Re), which simply means that $x \equiv 0$ satisfies Eq. (1) and the initial condition (2) with $\varphi \equiv 0$. A solution of the initial value problem (1),(2) is a progressively measurable stochastic process x almost surely satisfying (2) for μ-almost all $s \in \Re_{-}$and the integral equation

$$
x(t)-\varphi(0)=\sum_{j=1}^{m}\left[\int_{0}^{t} \alpha_{j}(t-s)^{\alpha_{j}-1} f_{j}\left(s,\left(H_{1 j} x\right)(s)\right) d s+\int_{0}^{t} g_{j}\left(s,\left(H_{2 j} x\right)(s)\right) d B_{j}(s)\right]
$$

for all $t \in \Re_{+}$. It is assumed that the initial value problem (1), (2) has a unique solution $x(t, \varphi)$ for all admissible φ (see Definition 1).

Below we keep fixed the stochastic basis $\left(\Omega, \mathcal{F},(\mathcal{F})_{t \in \Re}, P\right)$ satisfying the standard conditions [1] assuming, in addition, that $\mathcal{F}_{t}=\mathcal{F}_{0}$ for all $t \leq 0$. All stochastic processes in this paper are supposed to be progressively measurable w.r.t. this stochastic basis or parts of it.

Basic notation used below:
$-\Re=(-\infty, \infty), \Re_{+}=[0, \infty), \Re_{-}=(-\infty, 0)$.

- μ is the Lebesgue measure defined on \Re or its subintervals.
- E is the expectation.
- | \mid is the fixed norm in \Re^{n} and $\|\cdot\|$ is the associated matrix norm $\|\cdot\|$.
- $B_{j}(t)\left(t \in \Re_{+}, j=1, \ldots, m\right)$ are the standard scalar Brownian motions (Wiener processes).

The constants used below:

- $n \in N$ is the dimension of the phase space, i.e. the size of the solution vector.
- $m \in N$ is the number of the deterministic/stochastic time-scales.
- The indices i, j satisfy $1 \leq i \leq 2,1 \leq j \leq m$.
- $0<\alpha_{j} \leq 1$ define the time scales.
- p is a fixed real constant appearing in the p-stability we assume that $p \geq 2$ and $p>\alpha_{j}^{-1}$.

Let $J \subset \Re_{+}$. The following spaces of random variables and stochastic processes are used below as well:

- The space k_{p}^{n} consists of all n-dimensional, \mathcal{F}_{0}-measurable random variables $\left\{\xi: E|\xi|^{p}<\infty\right\}$.
- $\mathcal{L}_{p}\left(J, \Re^{l}\right)$ contains all progressively measurable l-dimensional stochastic processes $x(t)(t \in J)$ such that

$$
\int_{J} E|x(t)|^{p} d t<\infty
$$

- For a given positive continuous function $\gamma(t), t \in J$, the space $\mathcal{M}_{p}^{\gamma}\left(J, \Re^{l}\right)$ consists of all progressively measurable l-dimensional stochastic processes $x(t)(t \in J)$ such that

$$
\sup _{t \in J} E|\gamma(t) x(t)|^{p}<\infty
$$

- For $l=n$ and $J=\Re_{+}$we define $\mathcal{M}_{p}^{\gamma} \equiv \mathcal{M}_{p}^{\gamma}\left(\Re_{+}, \Re^{n}\right)$, and if, in addition, $\gamma=1$, then we put $\mathcal{M}_{p} \equiv \mathcal{M}_{p}^{1}\left(\Re_{+}, \Re^{n}\right)$.
- The Banach space \mathcal{U} is the direct product of $2 m$ copies of the space $\mathcal{M}_{p}\left(\Re_{+}, \Re^{l}\right)$ equipped with the natural norms.

In the well-known definition of the stochastic Lyapunov stability below we assume that $\varphi \in$ $\mathcal{M}_{p}\left(\Re_{-} \cup\{0\}, \Re^{n}\right)$.
Definition 1. Eq. (1) is called globally

- p-stable if there exists $c>0$ such that

$$
E|x(t, \varphi)|^{p} \leq c \sup _{s \leq 0} E|\varphi(s)|^{p} \text { for all } t \in \Re_{+} ;
$$

- asymptotically p-stable if it is p-stable and, in addition,

$$
\lim _{t \rightarrow \infty} E|x(t, \varphi)|^{p}=0
$$

- exponentially p-stable if there exist $c>0$ and $\beta>0$ such that the inequality

$$
E|x(t, \varphi)|^{p} \leq c \exp \{-\beta t\} \sup _{s \leq 0} E|\varphi(s)|^{p} \text { for all } t \in \Re_{+}
$$

holds.
To study Lyapunov stability of the solutions of Eq. (1), it is convenient to rewrite it as a multi-time scale stochastic Volterra equation with predefined controls:

$$
\begin{equation*}
d y(t)=\sum_{j=1}^{m}\left[\left(F_{j}\left(y, u_{1 j}\right)\right)(t)(d t)^{\alpha_{j}}+\left(G_{j}\left(y, u_{2 j}\right)\right)(t) d B_{j}(t)\right](t \geq 0) \tag{3}
\end{equation*}
$$

where $u_{i j}=u_{i j}(t, \omega)\left(t \in \Re_{+}\right)$belong to the space $\mathcal{M}_{p}\left(\Re_{+}, \Re^{l}\right), F_{j}$ and G_{j} are some nonlinear Volterra mappings. The way to construct $u_{i j}, F_{j}$ and G_{j} is described in the paper [7]. Note that Eq. (3) only requires the initial condition for $t=0$

$$
\begin{equation*}
y(0)=y_{0} \in k_{p}^{n} . \tag{4}
\end{equation*}
$$

Given $u_{i j} \in \mathcal{M}_{p}\left(\Re_{+}, \Re^{l}\right)$, by a solution of the control problem (3), (4) we understand a progressively measurable stochastic process $y(t)$ almost surely satisfying the initial condition (4) and the integral equation

$$
y(t)-y_{0}=\sum_{j=1}^{m}\left[\int_{0}^{t} \alpha_{j}(t-s)^{\alpha_{j}-1} F_{j}\left(y, u_{1 j}\right)(s) d s+\int_{0}^{t} G_{j}\left(y, u_{2 j}\right)(s) d B_{j}(s)\right]
$$

for all $t \in \Re_{+}$. Two integrals here are understood in the sense of Lebesgue and Itô, respectively. In the sequel, we will assume that the restrictions on the operators F_{j} and G_{j} ensure the existence of these integrals and existence and uniqueness of the solution $y\left(t, y_{0}, u\right)$ of the control problem (3), (4) for all $u_{i j} \in \mathcal{M}_{p}\left(\Re_{+}, \Re^{l}\right)$ and $y_{0} \in k_{p}^{n}$.

The Lyapunov stability of the solutions of Eq. (1) will be, then, replaced by a particular version of the input-to-state stability, which is well-known in the control theory. Below, we call this version \mathcal{M}_{p}^{γ}-stability.

Definition 2. We say that Eq. (3) is \mathcal{M}_{p}^{γ}-stable if for all $y_{0} \in k_{p}^{n}$ and $u_{i j} \in \mathcal{M}_{p}\left(\Re_{+}, \Re^{l}\right)$

- $y\left(\cdot, y_{0}, u\right) \in \mathcal{M}_{p}^{\gamma} ;$
- there exists $K>0$ such that

$$
\left\|y\left(\cdot, y_{0}, u\right)\right\|_{\mathcal{M}_{p}^{\gamma}} \leq K\left(\left\|y_{0}\right\|_{k_{p}^{n}}+\|u\|_{\mathcal{U}}\right) .
$$

Under some very natural conditions on γ (see [7] for the details) the \mathcal{M}_{p}^{γ}-stability of solutions of Eq. (3) implies p-stability, asymptotic p-stability and exponential p-stability of solutions of Eq. (1). This result is exploited in this report.

To study the property of \mathcal{M}_{p}^{γ}-stability for Eq. (3) it is convenient to start with choosing some simpler linear equation, which already has this property:

$$
\begin{equation*}
d y(t)=\sum_{j=1}^{m}\left[\left(\left(Q_{j} y\right)(t)+z_{1 j}(t)\right)(d t)^{\alpha_{j}}+z_{2 j}(t) d B_{j}(t)\right] \quad\left(t \in \Re_{+}\right) \tag{5}
\end{equation*}
$$

Here $Q_{j}: \mathcal{M}_{p} \rightarrow \mathcal{L}_{p_{j}}\left(\Re_{+}, \Re^{n}\right)\left(p_{j}>\frac{1}{\alpha_{j}}\right)$ are k_{p}^{1}-linear operators, $z_{1 j} \in \mathcal{L}_{p_{j}}\left(\Re_{+}, \Re^{n}\right)$ and $z_{2 j} \in$ $\mathcal{L}_{2}\left(\Re_{+}, \Re^{n}\right)$. Assuming the existence and uniqueness property for Eq. (5) for any initial condition (4) and using the linearity of Q_{j}, we obtain the following representation of its solutions:

$$
y(t)=U(t) \chi(0)+(W z)(t)
$$

where $U(t)$ is the fundamental matrix of the associated homogeneous equation, which is an $n \times n$ matrix whose columns satisfy this homogeneous equation and $U(0)=I_{n}$ and

$$
W: \prod_{j=1}^{m}\left(\mathcal{L}_{p_{j}}\left(\Re_{+}, \Re^{n}\right) \times \mathcal{L}_{2}\left(\Re_{+}, \Re^{n}\right)\right) \rightarrow \mathcal{M}_{p}
$$

is Green's operator for $(5),(W z)(0)=0$ and $W z$ is a solution of Eq. (5) for any z from the domain of W. Using the solutions representation of the auxiliary equation we can regularize Eq. (3) by rewriting it as

$$
y(t)=U(t) y_{0}+\sum_{j=1}^{m}\left[\left(W_{1 j}\left(-Q_{j} y+F_{j}\left(y, u_{1 j}\right)\right)\right)(t)+\sum_{j=1}^{m}\left(W_{2 j} G_{j}\left(y, u_{2 j}\right)\right)(t)\right] \quad(t>0)
$$

Given a continuous function $\gamma: \Re_{+} \rightarrow(0, \infty)$, an initial value $y_{0}=\left[y_{01}, \rightarrow, y_{0 n}\right]^{T} \in k_{p}^{n}$, a control $u=\left(u_{i j}: i=1,2, j=1, \ldots, m\right), u_{i j} \in \mathcal{M}_{p}\left(\Re_{+}, \Re^{l}\right)$, which produce the solution of Eq. (3)

$$
y\left(t, y_{0}, u\right)=\left[y_{1}\left(t, y_{0}, u\right), \ldots, y_{n}\left(t, y_{0}, u\right)\right]^{T}
$$

and a nonnegative stopping time η, we define

- $\bar{y}_{0}=\left[\bar{y}_{01}, \ldots, \bar{y}_{0 n}\right]^{T}$, where

$$
\bar{y}_{0 \nu}=\left(E\left|y_{0 \nu}\right|^{p}\right)^{1 / p} \equiv\left\|y_{0 \nu}\right\|_{k_{p}^{1}}
$$

- $\bar{y}^{\eta}=\left[\bar{y}_{1}^{\eta}, \ldots, \bar{y}_{n}^{\eta}\right]^{T}$, where

$$
\bar{y}_{\nu}^{\eta}=\sup _{0 \leq t \leq \eta}\left(E\left|\gamma(t) y_{\nu}\left(t, y_{0}, u\right)\right|^{p}\right)^{1 / p}
$$

so that $\bar{y}_{\nu}^{\eta}=\bar{y}_{\nu}^{\eta}(\gamma, p), \bar{y}^{\eta}=\bar{y}^{\eta}(\gamma, p)$ and $\bar{y}_{\nu}^{\eta}=\bar{y}_{\nu}^{\eta}(\gamma, p)$ for $\nu=1, \ldots, n$. These notations allow us to formulate and prove the main result of this report.

Theorem 1. Suppose there exist a real $n \times n$-matrix C and two constants $K_{1}>0$ and $K_{2}>0$ such that $I_{n}-C$ is inverse-positive and for any stopping time $0 \leq \eta<\infty$ the vector $\bar{y}^{\eta}=\bar{y}^{\eta}(\gamma, p)$ satisfies the matrix inequality

$$
\bar{y}^{\eta} \leq C \bar{y}^{\eta}+K_{1} \bar{y}_{0}+K_{2}\|u\|_{\mathcal{U}} e_{n} \quad\left(e_{n}=[1, \ldots, 1]^{T} \in \Re^{n}\right)
$$

Then Eq. (3) is \mathcal{M}_{p}^{γ}-stable.

The proof of the theorem can be found in [7].
Using this theorem, one can conveniently study different kinds of Lyapunov stability of the solutions of Eq. (1), choosing an appropriate weight γ and an auxiliary equation (5).

The illustrative example below demonstrates applications of Theorem 1. The universal constant c_{p} used in the example comes from the following estimate:

$$
\begin{equation*}
E\left|\int_{0}^{t} f(s) d B(s)\right|^{2 p} \leq c_{p}^{2 p} E\left(\int_{0}^{t}|f(s)|^{2} d s\right)^{p} \quad\left(t \in \Re_{+}, \quad p \geq 1\right) \tag{6}
\end{equation*}
$$

where $B(t)\left(t \in \Re_{+}\right)$is the standard scalar Brownian motion and $f(s)$ ia an arbitrary scalar, progressive measurable stochastic process on \Re_{+}; some explicit formulae for c_{p} can be found in the literature, for instance, in [4], where $c_{p}=2 \sqrt{12} p$, which, however, is not best possible, as evidently, $c_{1}=1$,

Example. Let $1 \leq p<\infty$. Consider the following system of linear equations

$$
\begin{equation*}
d x(t)=-\sum_{j=1}^{m}\left[A^{(j)} x\left(h_{j}(t)\right)(d t)^{\alpha_{j}}+\sum_{\tau=1}^{m_{j}} A^{(j, \tau)} x\left(h_{j \tau}(t)\right) d \mathcal{B}_{j}(t)\right] \quad(t \geq 0) \tag{7}
\end{equation*}
$$

where $A^{(j)}=\left(a_{s l}^{(j)}\right)_{s, l=1}^{n}, j=1, \ldots, m, A^{(j, \tau)}=\left(a_{s l}^{(j, \tau)}\right)_{s, l=1}^{n}, j=1, \ldots, m, \tau=1, \ldots, m_{i}$ are real $n \times n$-matrices and $h_{j}, h_{j \tau}, j=1, \ldots, m, \tau=1, \ldots, m_{j}$ are continuous functions such that $h_{j}(t) \leq t$, $h_{j \tau} \leq t, t \geq 0, j=1, \ldots, m, \tau=1, \ldots, m_{j}, 0<\alpha_{j} \leq 1, j=1, \ldots, m, A^{(1)}$ is a diagonal matrix with the positive diagonal entries $a_{\nu}^{(1)}$ and $\alpha_{1}=1$.

Let C be the $n \times n$-matrix with the entries

$$
\begin{equation*}
c_{\nu \kappa}=\sum_{j=2}^{m}\left[\left|a_{\nu \kappa}^{(j)}\right|\left(\exp \left\{-\alpha_{j}\right\}\left(\frac{\alpha_{j}}{a_{\nu \nu}^{(1)}}\right)^{\alpha_{j}}+\Gamma\left(\frac{\alpha_{j}+1}{a_{\nu \nu}^{(1)}}\right)^{\alpha_{j}}\right)\right]+\sum_{j=1}^{m} \sum_{\tau=1}^{m_{j}} c_{p}\left[\frac{\left|a_{\nu \kappa}^{(j, \tau)}\right|}{\sqrt{2 a_{\nu \nu}}}\right](\nu, \kappa=1, \ldots, n) \tag{8}
\end{equation*}
$$

Then the system (7) will be globally $2 p$-stable if the matrix $I_{n}-C$ defined by (8) is inverse-positive. Here c_{p} is the universal constant from the estimate (6).

In this case one uses the constant weigth function $\gamma(t)=1$ and an ordinary scalar equation (5).

References

[1] F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications. Probability and its Applications (New York). Springer-Verlag London, Ltd., London, 2008.
[2] K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010.
[3] M. M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus. De Gruyter Studies in Mathematics, 43. Walter de Gruyter \& Co., Berlin, 2012.
[4] J. Neveu, Discrete-Parameter Martingales. Translated from the French by T. P. Speed. Revised edition. North-Holland Mathematical Library, Vol. 10. North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975.
[5] M. D. Ortigueira and J. T. Machado, The 21st century systems: an updated vision of continuous-time fractional models. IEEE Circuits and Systems Magazine 22 (2022), no. 2, 36-56.
[6] J.-C. Pedjeu and G. S. Ladde, Stochastic fractional differential equations: modeling, method and analysis. Chaos Solitons Fractals 45 (2012), no. 3, 279-293.
[7] A. Ponosov, L. Idels and R. I. Kadiev, A novel algorithm for asymptotic stability analysis of some classes of stochastic time-fractional Volterra equations. Commun. Nonlinear Sci. Numer. Simul. 126 (2023), Paper no. 107491, 10 pp.

