Positive Periodic Solutions for Functional Differential Equations with Super-Linear Growth

Robert Hakl
Institute of Mathematics, Czech Academy of Sciences
Brno, Czech Republic
E-mail: hak|@ipm.cz
José Oyarce
Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío
Concepción, Chile
E-mail: jooyarce@egresados.ubiobio.cl

Consider a functional differential equation

$$
\begin{equation*}
u^{\prime}(t)=\ell(u)(t)+\lambda F(u)(t) \quad \text { for a. e. } t \in \mathbb{R}, \tag{1}
\end{equation*}
$$

where $\ell: C_{\omega}(\mathbb{R}) \rightarrow L_{\omega}(\mathbb{R})$ is a linear bounded operator, $F: C_{\omega}(\mathbb{R}) \rightarrow L_{\omega}(\mathbb{R})$ is a continuous operator satisfying the Carathéodory conditions, and $\lambda \in \mathbb{R}$ is a parameter. By an ω-periodic solution to the equation (1) we understand a locally absolutely continuous ω-periodic function $u: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies the equation (1) almost everywhere in \mathbb{R}. We say that an ω-periodic solution u to (1) is positive if $u(t)>0$ for $t \in \mathbb{R}$.

Notation 1.

\mathbb{Z} is the set of integers, \mathbb{R} is the set of all real numbers, $\mathbb{R}_{+}=[0,+\infty[$.
$C_{\omega}(\mathbb{R})$ is the Banach space of ω-periodic continuous functions $v: \mathbb{R} \rightarrow \mathbb{R}$ with the norm

$$
\|v\|_{C_{\omega}}=\max \{|v(t)|: t \in[0, \omega]\} .
$$

$C_{\omega}\left(\mathbb{R}_{+}\right)=\left\{v \in C_{\omega}(\mathbb{R}): v(t) \in \mathbb{R}_{+}\right.$for $\left.t \in \mathbb{R}\right\}$.
$L_{\omega}(\mathbb{R})$ is the Banach space of ω-periodic locally Lebesgue integrable functions $p: \mathbb{R} \rightarrow \mathbb{R}$ with the norm

$$
\|p\|_{L_{\omega}}=\int_{0}^{\omega}|p(s)| d s .
$$

$L_{\omega}\left(\mathbb{R}_{+}\right)=\left\{p \in L_{\omega}(\mathbb{R}): p(t) \in \mathbb{R}_{+}\right.$for a. e. $\left.t \in \mathbb{R}\right\}$.
If $A: C_{\omega}(\mathbb{R}) \rightarrow C_{\omega}(\mathbb{R})$ is a linear bounded operator, by $\|A\|$ we denote the norm of A.
Notation 2. Let $c \in(0,1)$. Then $\mathcal{K}_{c} \subset C_{\omega}\left(\mathbb{R}_{+}\right)$is a set of functions such that $c u(s) \leq u(t)$ for $s, t \in \mathbb{R}$.

Definition 1. We say that an operator ℓ belongs to the set \mathcal{U}_{c}^{+}if every function $u \in C_{\omega}(\mathbb{R})$ that is locally absolutely continuous and satisfies

$$
u^{\prime}(t) \geq \ell(u)(t) \quad \text { for a. e. } t \in \mathbb{R},
$$

belongs to \mathcal{K}_{c}.

It can be easily seen that if $\ell \in \mathcal{U}_{c}^{+}$, then the only ω-periodic solution to the homogeneous equation

$$
\begin{equation*}
u^{\prime}(t)=\ell(u)(t) \quad \text { for a. e. } t \in \mathbb{R} \tag{2}
\end{equation*}
$$

is the trivial solution.
Now we formulate the assumptions laid on the nonlinear operator F.
(H.1) F transforms $C_{\omega}\left(\mathbb{R}_{+}\right)$into $L_{\omega}\left(\mathbb{R}_{+}\right)$and it is not the zero operator, i.e., there exists $x_{0} \in$ $C_{\omega}\left(\mathbb{R}_{+}\right)$such that

$$
\int_{0}^{\omega} F\left(x_{0}\right)(s) d s>0 .
$$

(H.2) F is super-linear with respect to \mathcal{K}_{c}, i.e., there exists a Carathéodory function $\eta: \mathbb{R} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ such that

$$
F(v)(t) \geq \eta\left(t,\|v\|_{C_{\omega}}\right) \quad \text { for a. e. } t \in \mathbb{R}, \quad v \in \mathcal{K}_{c}
$$

and

$$
\lim _{x \rightarrow+\infty} \frac{1}{x} \int_{0}^{\omega} \eta(s, x) d s=+\infty .
$$

(H.3) For every $0 \neq x \in \mathcal{K}_{c}$ there exists $\delta_{x}>0$ such that for every $\delta \in\left(0, \delta_{x}\right]$ we have

$$
\delta F(x)(t) \geq F(v)(t) \quad \text { for a. e. } t \in \mathbb{R} \text { whenever } v \in \mathcal{K}_{c}, \quad v(t) \leq \delta x(t) \quad \text { for } t \in \mathbb{R}
$$

and

$$
\delta_{0} \int_{0}^{\omega} F(x)(s) d s>\int_{0}^{\omega} F\left(\delta_{0} x\right)(s) d s \quad \text { for some } \delta_{0} \in\left(0, \delta_{x}\right)
$$

Note that the assumptions (H.1) and (H.3) imply $F(0)(t)=0$ for a. e. $t \in \mathbb{R}$.
Notation 3. Let $\lambda \in \mathbb{R}$. Then by $\mathcal{S}(\lambda)$ we denote the set of all positive ω-periodic solutions to (1) for corresponding λ.

Theorem 1. Let $c \in(0,1)$ be such that $\ell \in \mathcal{U}_{c}^{+}$and F satisfies (H.1)-(H.3). Then there exists a critical value $\lambda_{c} \in(0,+\infty]$ such that
(i) Eq. (1) has at least one positive ω-periodic solution provided $\lambda \in\left(0, \lambda_{c}\right)$,
(ii) Eq. (1) has no positive ω-periodic solution provided $\lambda \notin\left(0, \lambda_{c}\right)$.

Moreover,

$$
\begin{aligned}
\lim _{\lambda \rightarrow \lambda_{c}^{-}} \sup \left\{\|u\|_{C_{\omega}}: u \in \mathcal{S}(\lambda)\right\} & =0 \\
\lim _{\lambda \rightarrow 0^{+}} \inf \left\{\|u\|_{C_{\omega}}: u \in \mathcal{S}(\lambda)\right\} & =+\infty
\end{aligned}
$$

Because the ω-periodic solutions to (1) belong to \mathcal{K}_{c}, the latter means that the solutions uniformly tends to $+\infty$ as λ tends to zero.

Suppose that the operator F includes a linear part, i.e.,

$$
\begin{equation*}
F(v)(t)=\widetilde{F}(v, v)(t) \quad \text { for a. e. } t \in \mathbb{R}, \quad v \in C_{\omega}(\mathbb{R}) \tag{3}
\end{equation*}
$$

where $\widetilde{F}: C_{\omega}(\mathbb{R}) \times C_{\omega}(\mathbb{R}) \rightarrow L_{\omega}(\mathbb{R})$ is a continuous operator satisfying the Carathéodory conditions and it is linear and nondecreasing in the first variable. Therefore, instead of (1) we consider the equation

$$
u^{\prime}(t)=\ell(u)(t)+\lambda \widetilde{F}(u, u)(t) \quad \text { for a. e. } t \in \mathbb{R},
$$

where ℓ and λ are the same as in (1) and \widetilde{F} is described above.
Theorem 2. Let $c \in(0,1)$ be such that $\ell \in \mathcal{U}_{c}^{+}$and F given by (3) satisfies (H.1)-(H.3). Let, moreover, $\widetilde{F}(\cdot, 0): C_{\omega}(\mathbb{R}) \rightarrow L_{\omega}(\mathbb{R})$ be a non-zero operator. Then, $\lambda_{c}<+\infty$ and the equation

$$
\begin{equation*}
u^{\prime}(t)=\ell(u)(t)+\lambda_{c} \widetilde{F}(u, 0)(t) \quad \text { for a. e. } t \in \mathbb{R} \tag{4}
\end{equation*}
$$

has a positive solution u_{c}, the set of solutions to (4) is one-dimensional (generated by u_{c}), and

$$
\left.T_{\lambda} \in \mathcal{U}_{c}^{+} \quad \text { for } \lambda \in\right] 0, \lambda_{c}[\text {, }
$$

where

$$
T_{\lambda}(v)(t) \stackrel{\text { def }}{=} \ell(v)(t)+\lambda \widetilde{F}(v, 0)(t) \quad \text { for a. e. } t \in \mathbb{R}, \quad v \in C_{\omega}(\mathbb{R})
$$

If $\widetilde{F}(\cdot, 0): C_{\omega}(\mathbb{R}) \rightarrow L_{\omega}(\mathbb{R})$ is a zero operator, then $\lambda_{c}=+\infty$.
Theorem 2 gives us a method how to calculate the precise value of λ_{c} in the cases where F includes a linear part. Indeed, define an operator $A: C_{\omega}(\mathbb{R}) \rightarrow C_{\omega}(\mathbb{R})$ by

$$
A(x)(t) \stackrel{\text { def }}{=} \int_{t-\omega}^{t} G(t, s) \widetilde{F}(x, 0)(s) d s \quad \text { for } t \in \mathbb{R}, \quad x \in C_{\omega}(\mathbb{R})
$$

where G is Green's function to the ω-periodic problem for (2). Then

$$
u_{c}(t)=\lambda_{c} A\left(u_{c}\right)(t) \quad \text { for } t \in \mathbb{R}
$$

i.e., $1 / \lambda_{c}$ is the first eigenvalue to A corresponding to the positive eigenfunction u_{c}. Therefore, according to Krasnoselski's theory and Gelfand's formula,

$$
\lambda_{c}=\lim _{n \rightarrow+\infty} \frac{1}{\sqrt[n]{\left\|A^{n}\right\|}}
$$

Corollaries

Consider a differential equation with deviating arguments

$$
\begin{equation*}
u^{\prime}(t)=-g(t) u(\sigma(t))+\lambda p(t) \frac{u(\tau(t))\left[a_{0}+a_{1} u\left(\mu_{1}(t)\right)+a_{2} u\left(\mu_{2}(t)\right) u\left(\mu_{3}(t)\right)\right]}{b_{0}+b_{1} u(\nu(t))} \text { for a. e. } t \in \mathbb{R} \tag{5}
\end{equation*}
$$

where

- $p, g \in L_{\omega}\left(\mathbb{R}_{+}\right), p \neq 0, g \neq 0$,
- $\sigma, \tau, \mu_{i}, \nu$ are measurable ω-periodic functions,
- $a_{i}>0, b_{i}>0$ are constants.

Corollary 1. Let

$$
\begin{equation*}
\int_{\widetilde{\sigma}(t)}^{t} g(s) d s \leq \frac{1}{e} \quad \text { for a. e. } t \in[0, \omega], \tag{6}
\end{equation*}
$$

where $\widetilde{\sigma}(t)=\sigma(t)-z \omega$ if $\sigma(t) \in[t+(z-1) \omega, t+z \omega)(z \in \mathbb{Z})$, and let

$$
\begin{equation*}
\frac{a_{1}}{b_{1}} \exp \left(-e \int_{0}^{\omega} g(s) d s\right)>\frac{a_{0}}{b_{0}} \tag{7}
\end{equation*}
$$

Then there exists a critical value $\lambda_{c} \in(0,+\infty)$ such that (5) has a positive ω-periodic solution iff $\lambda \in\left(0, \lambda_{c}\right)$. Moreover,

$$
\lim _{\lambda \rightarrow \lambda_{c}^{-}} \sup \left\{\|u\|_{C_{\omega}}: u \in \mathcal{S}(\lambda)\right\}=0, \quad \lim _{\lambda \rightarrow 0^{+}} \inf \left\{\|u\|_{C_{\omega}}: u \in \mathcal{S}(\lambda)\right\}=+\infty .
$$

The condition (6) guarantees that the operator

$$
\ell(v)(t) \stackrel{\text { def }}{=}-g(t) v(\sigma(t)) \quad \text { for a. e. } t \in \mathbb{R}, \quad v \in C_{\omega}(\mathbb{R})
$$

belongs to the set \mathcal{U}_{c}^{+}with

$$
c=\exp \left(-e \int_{0}^{\omega} g(s) d s\right)
$$

and the condition (7) guarantees that the assumption (H.3) is fulfilled with F defined by

$$
F(v)(t) \stackrel{\text { def }}{=} p(t) \frac{v(\tau(t))\left[a_{0}+a_{1} v\left(\mu_{1}(t)\right)+a_{2} v\left(\mu_{2}(t)\right) v\left(\mu_{3}(t)\right)\right]}{b_{0}+b_{1} v(\nu(t))} \text { for a. e. } t \in \mathbb{R}, v \in C_{\omega}(\mathbb{R})
$$

Now consider a differential equation with deviating arguments

$$
\begin{equation*}
u^{\prime}(t)=-g(t) u(\sigma(t))+\lambda p(t) \frac{u^{1+n}(\tau(t))(a+u(\mu(t)))^{m}}{\left(b+u^{k}(\nu(t))\right)} \tag{8}
\end{equation*}
$$

where

- $p, g \in L_{\omega}\left(\mathbb{R}_{+}\right), p \neq 0, g \neq 0$,
- σ, τ, μ, ν are measurable ω-periodic functions,
- $a>0, b>0, n>0, m>0, k>0$.

Corollary 2. Let $n+m>k$, and let

$$
\int_{\widetilde{\sigma}(t)}^{t} g(s) d s \leq \frac{1}{e} \quad \text { for a. e. } t \in[0, \omega],
$$

where $\widetilde{\sigma}(t)=\sigma(t)-z \omega$ if $\sigma(t) \in[t+(z-1) \omega, t+z \omega)(z \in \mathbb{Z})$. Then (8) has a positive ω-periodic solution for every $\lambda>0$. Moreover,

$$
\lim _{\lambda \rightarrow+\infty} \sup \left\{\|u\|_{C}: u \in \mathcal{S}(\lambda)\right\}=0, \quad \lim _{\lambda \rightarrow 0^{+}} \inf \left\{\|u\|_{C}: u \in \mathcal{S}(\lambda)\right\}=+\infty
$$

