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1 Introduction
The study is devoted to an important class of evolutionary systems characterized by the presence of
impulsive disturbances when the system trajectory reaches a fixed subset in the phase space. The
systematic study of such systems began relatively recently and was mostly focused on the finite-
dimensional case [1, 2, 4, 10–12]. The results regarding the limit behavior of infinite-dimensional
impulsive dynamic systems are contained in works [3, 6, 8], however, in both the parabolic and
hyperbolic cases, the impulsive parameters are “finite-dimensional” in nature, i.e., the situation
was considered when only a finite number of coordinates of the phase vector were subjected to
an impulsive disturbance. The novelty of this study is that we consider the case when the entire
infinite-dimensional phase vector undergoes an impulsive disturbance when the energy functional
reaches a certain threshold value.

2 Setting of the problem and the main results
Let a triple of Hilbert spaces V ⊂ H ⊂ V ∗ with compact dense embeddings be given, ‖ · ‖ be
the norm and ( · , · ) be the scalar product in H, A : V → V ∗ be a linear, continuous, self-adjoint,
coercive operator, ‖u‖V := 〈A

1
2u, u〉 be the norm in V , 〈 · , · 〉 be the scalar product in V .

Let us consider an evolution problem
d2y

dt2
+ 2β

dy

dt
+Ay = 0,

y
∣∣
t=0

= y0 ∈ V,

yt
∣∣
t=0

= y1 ∈ V.

(2.1)

Problem (2.1) in phase space X = V ×H generates a continuous semigroup G : R+×X → X [13],

where for z0 =

(
y0
y1

)
∈ X

G(t, z0) = z(t) =

(
y(t)
yt(t)

)
=
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= e−βt
∞∑
j=1

 (y0, φj) cosωjt+
(
β(y0, φj) + (y1, φj)

) 1

ωj
sinωjt

(y1, φj) cosωjt−
(
λ2
j (y0, φj) + β(y1, φj)

) 1

ωj
sinωjt

 , (2.2)

where ωj =
√
λ2
j − β2 , {λj}∞j=1, {φj}∞j=1 are solutions of the spectral problem

Aφj = λjφj , j ≥ 1,

{φj}∞j=1 is the orthonormal basis in H, 0 < λ1 ≤ λ2 ≤ · · · , λj → +∞, j → ∞, and without
limitation of generality we will assume that λ1 > β.

Consider the functional Ψ : X → R+, that for z =

(
u
v

)
∈ X is determined by the rule

Ψ(z) = ‖z‖2X = ‖u‖2V + ‖v‖2. (2.3)

The impulsive problem is formulated as follows: if at some point in time t > 0 at the solution

z =

(
y
yt

)
the functional (2.3) reaches the value Ψ0, then the system instantly moves to a new

position
z+ = φ(z) + α, (2.4)

where α ∈ X, φ : X → X are given.
In [9] we prove that, under certain conditions on the parameters, the problem (2.1), (2.3), (2.4)

generates in X an impulsive dynamical system G̃ : R+ × X → X (see Definition 3.1 below), for
which, for each z0 ∈ X, the ω-boundary set is nonempty, compact, and the limit relation is true

distX
(
G̃(t, z0), ω̃(z0)

)
→ 0, t → ∞.

3 ω-Boundary set for impulsive dynamical systems
Following the work [7], we will describe the general construction of the impulsive dynamical system.
Suppose that a continuous semigroup G : R+ × X → X is given on the phase space X, the
trajectories of semigroup, when they reach a fixed subset M ⊂ X (impulsive set), are moved by
the mapping I (impulsive mapping) to a new position

z+ := Iz.

For the correctness of such construction, the following conditions must be met

G : R+ ×X → X is continuous semigroup,
i.e. for all z ∈ X and t, s ≥ 0: G(0, z) = z, G(t+ s, z) = G(t, G(s, z)),

map (t, z) 7→ G(t, z) is continuous on R+ ×X;

(3.1)

M is closed set, M ∩ IM = ∅; (3.2)
∀ z ∈ M ∃ τ = τ(z) > 0 ∀ t ∈ (0, τ) : G(t, z) 6∈ M. (3.3)

Under the conditions (3.1)–(3.3) it is known [6] that if for z ∈ X

M+(z) :=
(⋃

t>0

G(t, z)
)
∩M 6= ∅,
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then there exists s̃ := s̃(z) > 0 such that

∀ t ∈ (0, s̃) : G(t, z) 6∈ M, G(s̃, z) ∈ M.

Using the introduced notations z+, M+(z), s̃, the impulsive trajectory G̃( · , z0) starting from
z0 ∈ X is constructed as follows:

- if M+(z0) = ∅, then G̃(t, z0) = G(t, z0), t ≥ 0;

- if M+(z0) 6= ∅, then for s0 := s̃(z0) let’s mark z1 := G(s0, z0), so

G̃(t, z0) =

{
G(t, z0), t ∈ [0, s0),

z+1 , t = s0;
.

- if M+(z+1 ) = ∅, then G̃(t, z0) = G(t− s0, z
+
1 ), t ≥ s0;

- if M+(z+1 ) 6= ∅, then for s1 := s̃(z+1 ) let’s mark z1 := G(s1, z
+
1 ), so

G̃(t, z0) =

{
G(t− s0, z

+
1 ), t ∈ [s0, s0 + s1),

z+2 , t = s0 + s1;

and so on. Continuing this process, we will obtain a finite or infinite number of impulsive points

z+n+1 = IG(sn, z
+
n ), z+0 := z0, n ≥ 0,

and corresponding sequence of time moments

Tn+1 :=

n∑
k=0

sk, T0 := 0, n ≥ 0.

At the same time, G̃ is given by the formula

G̃(t, z0) =

{
G(t− Tn, z

+
n ), t ∈ [Tn, Tn+1),

z+n+1, t = Tn+1.
(3.4)

It should be noted that in such a system there may be “beating effects” or “Zeno”-modes, when
moments of impulsive occur so often that the trajectory (3.4) is destroyed in a finite time [5].

Since we are interested in the behavior of (3.4) when t → ∞, then we will make the following
assumption: {

for each z0 ∈ X there are either no impulsive points,
or their number is finite, or Tn → ∞, n → ∞.

(3.5)

The condition (3.5) guarantees that for an arbitrary z0 ∈ X the function t 7→ G̃(t, z0) is defined
on [0,+∞).

Definition 3.1. The mapping G̃ : R+ × X → X constructed above is called an impulsive dy-
namic system. We will say that {V,M, I} generate an impulsive dynamic system, if the conditions
(3.1)–(3.3), (3.5) are met.
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It is known that under the conditions (3.1) – (3.3), (3.5) the mapping G̃ : R+ × X → X is a
semigroup whose trajectories are continuous from the right.

In addition, by construction for arbitrary z0 ∈ X and t > 0:

G̃(t, z0) ∩M = ∅.

The main object of study in this paper is the ω-boundary set:

ω̃(z0) =
{
ξ ∈ X : ∃ {tn}∞n=1 : tn ↗ ∞, ξ = lim

n→∞
G̃(tn, z0)

}
.

Lemma 3.1. Let {V,M, I} generate an impulsive dynamic system G̃ and for z0 ∈ X the following
conditions be fulfilled:

(1) set γ̃ :=
⋃
t≥0

G̃(t, z0) is bounded;

(2) for each z ∈ γ̃ : G(t, z) = G1(t, z) + G2(t, z), where {G1(t, z), t ≥ 0, z ∈ γ̃} is precompact,
sup
z∈γ̃

G2(t, z) → 0, t → ∞.

(3) if γ̃ has an infinite number of impulsive points {z+n }n≥0}, then {z+n }n≥0 is precompact.

Then the set ω̃(z0) 6= ∅ is compact and distX(G̃(t, z0), ω̃(z0)) → 0, t → ∞.

Remark 3.1. Fulfillment of the condition (1) can be guaranteed under the following conditions

∃C1, C2 ≥ 0 ∃ δ > 0 ∀ z ∈ γ̃ ∀ t ≥ 0

‖G(t, z)‖X ≤ ‖z‖Xe−δt + C1,

‖Iz‖x ≤ ‖z‖X + C2,

and if C{sk}k≥0 are the distances between impulses along γ̃, then

s := inf
k≥0

sk > 0.

Remark 3.2. The condition (3) can be replaced by the following:

if {zn} is bounded, then {Izn} is precompact.

We cannot expect that ω̃(z0) to be stable in any sense, since this is not true even in the
non-impulsive case. The stability property can be guaranteed for more massive objects – uniform
attractors [6]. However, we can ensure the invariance of the non-impulsive part of ω̃(z0). For this,
it is necessary to impose conditions on trajectories starting from initial data close to ω̃(z0).

Lemma 3.2. Let {V,M, I} generate impulsive dynamical system G̃, the conditions of Lemma 3.1
be fulfilled for z0 ∈ X, and, in addition

I : M → X be continuous;

if ξ ∈ ω̃(z0) \M , then for ξn → ξ{
s̃(ξ) = ∞, if s̃(ξn) = ∞ for infinitely many n,

s̃(ξn) → s̃(ξ), otherwise.
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Then for each t ≥ 0

G̃
(
t, ω̃(z0) \M

)
⊂ ω̃(z0) \M.

If in addition for ξ ∈ ω̃(z0) ∩M and for ξm → ξ, ξm /∈ M ,

s̃(ξn) = ∞ for infinitely many n or s̃(ξn) → 0,

then for arbitrary t ≥ 0

G̃
(
t, ω̃(z0)

)
⊃ ω̃(z0) \M.

Remark 3.3. If we add the following condition to the conditions of Lemma 3.2:

for tn ↗ ∞ by subsequence G(tn, z0) → y 6∈ M, (3.6)

then for an arbitrary t ≥ 0:
G̃
(
t, ω̃(z0) \M

)
= ω̃(z0) \M.

The condition (3.6) means that the ω-boundary set of the non-impulsive half-flow G does not
intersect with M .

4 Limit modes of the impulsive problem (2.1), (2.3), (2.4)
For the problem (2.1), (2.3), (2.4), the phase space is the Hilbert space X = V ×H, on which the
solutions of the evolutionary problem (2.1) generate a continuous semigroup G : R+ × X → X
according to the formula (2.2).

The set M is given by (2.3) according to the formula

M =

{
z =

(
u
v

)
∈ X : Ψ(z) = Ψ0

}
, Ψ0 > 0.

We will consider that the following conditions are fulfilled

‖φ(z)‖X ≤ ‖z‖X , Ψ0 <
1

4
‖α‖2X . (4.1)

In [9] we have checked the fulfillment of the conditions (3.1)–(3.3) and (3.5). Thus, it is proved
that the problem (2.1), (2.3), (2.4) generates an impulsive dynamic system, and each impulsive
trajectory has an infinite number of impulsive points.

Theorem. Suppose that for the problem (2.1), (2.3), (2.4) the conditions (4.1) and the following
are fulfilled

1√
λ1

<
1

8β
ln
(‖α‖2X

2Ψ0
− 1

)
, (4.2)

φ : M → X is a compact mapping.

Then, for the corresponding impulsive dynamical system G̃, we have that for an arbitrary z0 ∈ X
ω-limit set ω̃(z0) 6= ∅, it is compact and

distX
(
G̃(t, z0), ω̃(z0)

)
→ 0, t → ∞.

Remark 4.1. The condition (4.2) can be removed by requiring the limit lim
k→∞

sk to exist instead.
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