Asymptotic Behaviour of Solutions of One Class of Nonlinear Differential Equations of Fourth Order

V. M. Evtukhov, S. V. Golubev
Odessa I. I. Mechnikov National University, Odessa, Ukraine
E-mails: evmod@i.ua; sergii.golubev@stud.onu.edu.ua

We consider a two-membered non-autonomous fourth-order differential equation of the form

$$
\begin{equation*}
y^{(4)}=\alpha_{0} p_{0}(t)[1+r(t)] e^{\sigma y} \quad(\sigma \neq 0) \tag{1}
\end{equation*}
$$

where $\alpha_{0} \in\{-1,1\}, p_{0}:[a, \omega[\rightarrow] 0,+\infty[$ is a continuous or continuously differentiable function, $-\infty<a<\omega \leq+\infty, r:[a, \omega[\rightarrow]-1,+\infty[$ is a continuous function such that

$$
\lim _{t \uparrow \omega} r(t)=0
$$

It is easy to see that in this equation the function $e^{\sigma y}(\sigma \neq 0)$ is a fast-variable function when $y \rightarrow Y_{0}= \pm \infty$ (by Karamata). We can choose the intervals $\Delta_{Y_{0}}$ of the points $Y_{0}= \pm \infty$ as the neighbourhood of $\Delta_{Y_{0}}$

$$
\Delta_{Y_{0}}=\left[\begin{array}{ll}
] 0,+\infty[, & \text { if } Y_{0}=+\infty \\
]-\infty, 0[, & \text { if } Y_{0}=-\infty
\end{array}\right.
$$

Definition 1. A solution y of the differential equation (1) is called a $P_{\omega}\left(Y_{0}, \lambda_{0}\right)$-solution where $-\infty \leq \lambda_{0} \leq+\infty$, if it is defined on the interval $\left[t_{0}, \omega[\subset[a, \omega[\right.$ and satisfies the following conditions

$$
\begin{gathered}
y(t) \in \Delta_{Y_{0}} \text { or } t \in\left[t_{0}, \omega\left[, \quad \lim _{t \uparrow \omega} y(t)=Y_{0}= \pm \infty\right.\right. \\
\lim _{t \uparrow \omega} y^{(k)}(t)=\left[\begin{array}{l}
\text { or } 0, \\
\text { or } \pm \infty,
\end{array} \quad(k=1,2,3), \quad \lim _{t \uparrow \omega} \frac{\left[y^{(3)}(t)\right]^{2}}{y^{(2)}(t) y^{(4)}(t)}=\lambda_{0}\right.
\end{gathered}
$$

From this definition, in particular, it follows that the number of

$$
\nu_{0}= \begin{cases}1, & \text { or } Y_{0}=+\infty \\ -1, & \text { or } Y_{0}=-\infty\end{cases}
$$

determines the signs of any $P_{\omega}\left(Y_{0}, \lambda_{0}\right)$-solution and its first derivative in any left neighbourhood of ω. In [1] for $P_{\omega}\left(Y_{0}, \lambda_{0}\right)$-solutions at $\lambda_{0} \in \mathbb{R} \backslash\left\{0, \frac{1}{2}, \frac{2}{3}, 1\right\}$ (non special case) the following two theorems were obtained, but to formulate them we need to introduce additional auxiliary notations

$$
\begin{gathered}
K\left(\lambda_{0}\right)=\frac{\left(\lambda_{0}-1\right)^{3}}{\lambda_{0}\left(2 \lambda_{0}-1\right)}, \quad \pi_{\omega}(t)= \begin{cases}t, & \text { if } \omega=+\infty \\
t-\omega, & \text { if } \omega<+\infty\end{cases} \\
J_{0}(t)=\int_{A_{0}}^{t} \pi_{\omega}^{3}(\tau) p_{0}(\tau) d \tau, \quad J_{1}(t)=\int_{A_{1}}^{t} \frac{p_{0}(\tau)}{J_{0}(\tau)} d \tau, \quad J_{i}(t)=\int_{A_{i}}^{t} J_{i-1}(\tau) d \tau(i=2,3), \\
Y(t)=-\frac{1}{\sigma} \ln \left(\alpha_{0}\left(-\frac{1}{\sigma}\right) K\left(\lambda_{0}\right) J_{0}(t)\right), \quad q(t)=\frac{Y^{\prime}(t)}{\alpha_{0} J_{3}(t)},
\end{gathered}
$$

where the integration boundary A_{i} is chosen to be equal to either ω or constant a and is defined in such a way that at this value of A_{i} the integral tends either to 0 or to $\pm \infty$. The following two theorems were established for equation (1) in [1].

Theorem 1. Let $\lambda_{0} \in \mathbb{R} \backslash\left\{0, \frac{1}{2}, \frac{2}{3}, 1\right\}$. For the differential equation (1) to have $P_{\omega}\left(Y_{0}, \lambda_{0}\right)$-solutions, the following inequalities

$$
\begin{equation*}
\left.\alpha_{0} \nu_{0} \lambda_{0}\left(2 \lambda_{0}-1\right)\left(3 \lambda_{0}-2\right)>0, \quad \alpha_{0} \nu_{1} K\left(\lambda_{0}\right) \pi_{\omega}(t)>0 \quad \text { at } t \in\right] a, \omega[, \tag{2}
\end{equation*}
$$

and the following conditions

$$
\begin{gather*}
\left.\alpha_{0} \sigma K\left(\lambda_{0}\right) J_{0}(t)<0 \text { at } t \in\right] a, \omega[, \\
\lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) J_{0}^{\prime}(t)}{J_{0}(t)}= \pm \infty, \quad \lim _{t \uparrow \omega} \frac{\pi_{\omega}(t) J_{1}^{\prime}(t)}{J_{1}(t)}=\frac{1}{\lambda_{0}-1}, \quad \lim _{t \uparrow \omega} q(t)=1 \tag{3}
\end{gather*}
$$

must be satisfied and each such solution admits at $t \uparrow \omega$ the following asymptotic mappings

$$
y(t)=-\frac{1}{\sigma} \ln \left(\alpha_{0}\left(-\frac{1}{\sigma}\right) K\left(\lambda_{0}\right) J_{0}(t)\right)+o(1), \quad y^{(k)}(t)=\alpha_{0} J_{4-k}(t)[1+o(1)] \quad(k=1,2,3) .
$$

Theorem 2. Let $\lambda_{0} \in \mathbb{R} \backslash\left\{0, \frac{1}{2}, \frac{2}{3}, 1\right\}$, the function p_{0} be continuous and conditions (2), (3) be satisfied. Let, in addition

$$
\begin{equation*}
\lim _{t \uparrow \omega}(1-q(t))|Y(t)|^{\frac{3}{4}}=0 \text { and } \alpha_{0} \sigma>0 . \tag{4}
\end{equation*}
$$

Then the differential equation (1) has a two-parameter family $P_{\omega}\left(Y_{0}, \lambda_{0}\right)$ of solutions which satisfy at $t \uparrow \omega$ the asymptotic mappings

$$
\begin{gathered}
y(t)=Y(t)+o(1), \quad y^{\prime}(t)=\alpha_{0} J_{3}(t)\left[1+\frac{o(1)}{|Y(t)|^{\frac{3}{4}}}\right], \quad y^{\prime \prime}(t)=\alpha_{0} J_{2}(t)\left[1+\frac{o(1)}{|Y(t)|^{\frac{1}{2}}}\right] \\
y^{\prime \prime \prime}(t)=\alpha_{0} J_{1}(t)\left[1+\frac{o(1)}{|Y(t)|^{\frac{1}{4}}}\right] .
\end{gathered}
$$

In Theorem 2, the first of conditions (4) is rather rigid. In the present paper an attempt is made to eliminate it.

Theorem 3. Let $\lambda_{0} \in \mathbb{R} \backslash\left\{0, \frac{1}{2}, \frac{2}{3}, 1\right\}$, the function p_{0} be continuously differentiable and conditions (2), (3) be satisfied. Suppose, in addition, that the second condition in (4) is satisfied and there exists a finite or equal to $\pm \infty$ limit

$$
\lim _{t \uparrow \omega} \pi_{\omega}(t) q^{\prime}(t) .
$$

Then the differential equation (1) has a two-parameter family $P_{\omega}\left(Y_{0}, \lambda_{0}\right)$ of solutions which satisfy at $t \uparrow \omega$ the asymptotic mappings

$$
\begin{gather*}
y(t)=Y(t)+o(1), \quad y^{\prime}(t)=\alpha_{0} J_{3}(t)\left[q(t)+\frac{o(1)}{|Y(t)|^{\frac{3}{4}}}\right], \quad y^{\prime \prime}(t)=\alpha_{0} J_{2}(t)\left[1+\frac{o(1)}{|Y(t)|^{\frac{1}{2}}}\right] \tag{5}\\
y^{\prime \prime \prime}(t)=\alpha_{0} J_{1}(t)\left[1+\frac{o(1)}{|Y(t)|^{\frac{1}{4}}}\right] .
\end{gather*}
$$

Sketch of the proof

First, it is easy to prove that

$$
\lim _{t \uparrow \omega} \pi_{\omega}(t) q^{\prime}(t)=0
$$

In the same way as in the proof of Theorem 2 of [1], equation (1) by the transformation

$$
\begin{equation*}
y(t)=Y(t)+y_{1}(t), \quad y^{(k)}(t)=\alpha_{0} J_{4-k}(t)\left[1+y_{k+1}(t)\right] \quad(k=1,2,3) \tag{6}
\end{equation*}
$$

is reduced to a system of differential equations of the form

$$
\begin{aligned}
y_{1}^{\prime} & =\alpha_{0} J_{3}(t)\left[1-q(t)+y_{2}\right] \\
y_{2}^{\prime} & =\frac{J_{3}^{\prime}(t)}{J_{3}(t)}\left(y_{3}-y_{2}\right), \\
y_{3}^{\prime} & =\frac{J_{2}^{\prime}(t)}{J_{2}(t)}\left(y_{4}-y_{3}\right), \\
y_{4}^{\prime} & =\frac{J_{1}^{\prime}(t)}{J_{1}(t)}\left[r(t)+(1+r(t)) y_{1}-y_{4}+R\left(t, y_{1}\right)\right] .
\end{aligned}
$$

We will consider this system on the set

$$
\begin{aligned}
& \Omega=\left[t_{1}, \omega\left[\times D, \text { where } D=\left\{\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in \mathbb{R}_{\frac{1}{2}}^{4}: \quad\left|y_{i}\right| \leq \frac{1}{2}, \quad(i=1, \ldots, 4)\right\}\right.\right. \\
& \text { where } \left\lvert\, R\left(t, y_{1} \mid \leqslant y_{1}^{2} \text { at }\left|y_{1}\right| \leqslant \delta \text { for some } 0<\delta<\frac{1}{2} .\right.\right.
\end{aligned}
$$

Further we will use the obtained system on the set $\Omega_{0}=\left[t_{1}, \omega\left[\times \mathbb{R}_{\delta}^{4}\right.\right.$.
In contrast to Theorem 2, let us make an additional transformation

$$
\begin{equation*}
y_{1}(t)=z_{1}(t), \quad y_{2}(t)=z_{2}(t)+q(t)-1, \quad y_{3}(t)=z_{3}(t), \quad y_{4}(t)=z_{4}(t), \tag{7}
\end{equation*}
$$

the sense of which is to exclude the summand $(1-q(t))$ from the first equation of the system and as a result we obtain a system of differential equations of the form

$$
\begin{align*}
z_{1}^{\prime} & =\frac{Y(t)}{\pi_{\omega}(t)}\left\{\xi_{1}(t) z_{2}\right\} \\
z_{2}^{\prime} & =\frac{1}{\pi_{\omega}(t)}\left\{\xi_{2}(t)\left(z_{3}-z_{2}\right)-\pi_{\omega}(t) q^{\prime}(t)\right\} \\
z_{3}^{\prime} & =\frac{1}{\pi_{\omega}(t)}\left\{\xi_{3}(t)\left(z_{4}-z_{3}\right)\right\}, \tag{8}\\
z_{4}^{\prime} & =\frac{1}{\pi_{\omega}(t)}\left\{\xi_{4}(t)\left[r(t)+(1+r(t)) z_{1}-z_{4}+R\left(t, z_{1}\right)\right]\right\},
\end{align*}
$$

where

$$
\lim _{t \uparrow \omega} \xi_{1}(t)=\frac{3 \lambda_{0}-2}{\lambda_{0}-1}, \quad \lim _{t \uparrow \omega} \xi_{2}(t)=\frac{2 \lambda_{0}-1}{\lambda_{0}-1}, \quad \lim _{t \uparrow \omega} \xi_{3}(t)=\frac{\lambda_{0}}{\lambda_{0}-1}, \quad \lim _{t \uparrow \omega} \xi_{4}(t)=\frac{1}{\lambda_{0}-1} .
$$

To asymptotically equalise the multipliers at $t \uparrow \omega$ in the right-hand side of the equations of the system (8), we apply the following transformation to it:

$$
\begin{equation*}
z_{1}(t)=v_{1}(t), \quad z_{2}(t)=|Y(t)|^{-\frac{3}{4}} v_{2}(t), \quad z_{3}(t)=|Y(t)|^{-\frac{1}{2}} v_{3}(t), \quad z_{4}(t)=|Y(t)|^{-\frac{1}{4}} v_{4}(t) . \tag{9}
\end{equation*}
$$

As a result, we obtain a system of quasilinear differential equations for which all the conditions of Theorem 2.2 of [2] are fulfilled. The limit matrix of coefficients at $v_{1}, v_{2}, v_{3}, v_{4}$ of the obtained quasilinear system has the form

$$
C=\left(\begin{array}{cccc}
0 & \frac{3 \lambda_{0}-2}{\lambda_{0}-1}\left(\frac{\nu_{0}}{\operatorname{sign} \sigma}\right) & 0 & 0 \\
0 & 0 & \frac{2 \lambda_{0}-1}{\lambda_{0}-1} & 0 \\
0 & 0 & 0 & \frac{\lambda_{0}}{\lambda_{0}-1} \\
\frac{1}{\lambda_{0}-1} & 0 & 0 & 0
\end{array}\right)
$$

and has, taking into account the sign conditions (2), (3), a characteristic equation of the form

$$
\lambda^{4}+\frac{\alpha_{0}}{\sigma} \frac{\left|3 \lambda_{0}-2\right|\left|2 \lambda_{0}-1\right|\left|\lambda_{0}\right|}{\left(\lambda_{0}-1\right)^{4}}=0 .
$$

The characteristic equation has two pairs of complex-conjugate roots with real parts different from zero. Then the system of differential equations has a two-parameter family of solutions $v_{1}, v_{2}, v_{3}, v_{4}:\left[t_{2}, \omega\left[\rightarrow \mathbb{R}_{\delta}^{4}\left(t_{2} \in\left[t_{0}, \omega[)\right.\right.\right.\right.$, which tend to 0 at $t \uparrow \omega$. To each such solution, taking into account substitutions (6), (7), (9), corresponds a solution $y:\left[t_{2}, \omega[\rightarrow \mathbb{R}\right.$ of the differential equation (1) for which the asymptotic representations (5) take place at $t \uparrow \omega$. It is also easy to check, taking into account these asymptotic representations and the form of equation (1), that the solutions we have constructed are $P_{\omega}\left(Y_{0}, \lambda_{0}\right)$-solutions.

References

[1] V. M. Evtukhov and S. V. Golubev, Asymptotic behavior of solutions of differential equations with exponential. Researches in Mathematics and Mechanics 27 (2022), no. 1-2, 38-39.
[2] V. M. Evtukhov and A. M. Samoilenko, Conditions for the existence of solutions of real nonautonomous systems of quasilinear differential equations vanishing at a singular point. (Russian) Ukr. Mat. Zh. 62 (2010), no. 1, 52-80; translation in Ukr. Math. J. 62 (2010), no. 1, 56-86.

