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We consider a two-membered non-autonomous fourth-order differential equation of the form

y(4) = α0p0(t)[1 + r(t)]eσy (σ ̸= 0), (1)

where α0 ∈ {−1, 1}, p0 : [a, ω[→ ]0,+∞[ is a continuous or continuously differentiable function,
−∞ < a < ω ≤ +∞, r : [a, ω[→ ]− 1,+∞[ is a continuous function such that

lim
t↑ω

r(t) = 0.

It is easy to see that in this equation the function eσy (σ ̸= 0) is a fast-variable function when
y → Y0 = ±∞ (by Karamata). We can choose the intervals ∆Y0 of the points Y0 = ±∞ as the
neighbourhood of ∆Y0

∆Y0 =

[
]0,+∞[ , if Y0 = +∞,

]−∞, 0[ , if Y0 = −∞.

Definition 1. A solution y of the differential equation (1) is called a Pω(Y0, λ0)-solution where
−∞ ≤ λ0 ≤ +∞, if it is defined on the interval [t0, ω[⊂ [a, ω[ and satisfies the following conditions

y(t) ∈ ∆Y0 or t ∈ [t0, ω[ , lim
t↑ω

y(t) = Y0 = ±∞,

lim
t↑ω

y(k)(t) =

[
or 0,

or ±∞,
(k = 1, 2, 3), lim

t↑ω

[y(3)(t)]2

y(2)(t)y(4)(t)
= λ0.

From this definition, in particular, it follows that the number of

ν0 =

{
1, or Y0 = +∞,

−1, or Y0 = −∞

determines the signs of any Pω(Y0, λ0)-solution and its first derivative in any left neighbourhood
of ω. In [1] for Pω(Y0, λ0)-solutions at λ0 ∈ R \ {0, 12 ,

2
3 , 1} (non special case) the following two

theorems were obtained, but to formulate them we need to introduce additional auxiliary notations

K(λ0) =
(λ0 − 1)3

λ0(2λ0 − 1)
, πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞,

J0(t) =

t∫
A0

π3
ω(τ)p0(τ) dτ, J1(t) =

t∫
A1

p0(τ)

J0(τ)
dτ, Ji(t) =

t∫
Ai

Ji−1(τ) dτ (i = 2, 3),

Y (t) = − 1

σ
ln
(
α0

(
− 1

σ

)
K(λ0)J0(t)

)
, q(t) =

Y ′(t)

α0J3(t)
,
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where the integration boundary Ai is chosen to be equal to either ω or constant a and is defined
in such a way that at this value of Ai the integral tends either to 0 or to ±∞. The following two
theorems were established for equation (1) in [1].

Theorem 1. Let λ0 ∈ R\{0, 12 ,
2
3 , 1}. For the differential equation (1) to have Pω(Y0, λ0)-solutions,

the following inequalities

α0ν0λ0(2λ0 − 1)(3λ0 − 2) > 0, α0ν1K(λ0)πω(t) > 0 at t ∈ ]a, ω[ , (2)

and the following conditions

α0σK(λ0)J0(t) < 0 at t ∈ ]a, ω[ ,

lim
t↑ω

πω(t)J
′
0(t)

J0(t)
= ±∞, lim

t↑ω

πω(t)J
′
1(t)

J1(t)
=

1

λ0 − 1
, lim

t↑ω
q(t) = 1 (3)

must be satisfied and each such solution admits at t ↑ ω the following asymptotic mappings

y(t) = − 1

σ
ln
(
α0

(
− 1

σ

)
K(λ0)J0(t)

)
+ o(1), y(k)(t) = α0J4−k(t)[1 + o(1)] (k = 1, 2, 3).

Theorem 2. Let λ0 ∈ R \ {0, 12 ,
2
3 , 1}, the function p0 be continuous and conditions (2), (3) be

satisfied. Let, in addition

lim
t↑ω

(1− q(t))|Y (t)|
3
4 = 0 and α0σ > 0. (4)

Then the differential equation (1) has a two-parameter family Pω(Y0, λ0) of solutions which satisfy
at t ↑ ω the asymptotic mappings

y(t) = Y (t) + o(1), y′(t) = α0J3(t)
[
1 +

o(1)

|Y (t)|
3
4

]
, y′′(t) = α0J2(t)

[
1 +

o(1)

|Y (t)|
1
2

]
,

y′′′(t) = α0J1(t)
[
1 +

o(1)

|Y (t)|
1
4

]
.

In Theorem 2, the first of conditions (4) is rather rigid. In the present paper an attempt is
made to eliminate it.

Theorem 3. Let λ0 ∈ R \ {0, 12 ,
2
3 , 1}, the function p0 be continuously differentiable and conditions

(2), (3) be satisfied. Suppose, in addition, that the second condition in (4) is satisfied and there
exists a finite or equal to ±∞ limit

lim
t↑ω

πω(t)q
′(t).

Then the differential equation (1) has a two-parameter family Pω(Y0, λ0) of solutions which satisfy
at t ↑ ω the asymptotic mappings

y(t) = Y (t) + o(1), y′(t) = α0J3(t)
[
q(t) +

o(1)

|Y (t)|
3
4

]
, y′′(t) = α0J2(t)

[
1 +

o(1)

|Y (t)|
1
2

]
,

y′′′(t) = α0J1(t)
[
1 +

o(1)

|Y (t)|
1
4

]
.

(5)
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Sketch of the proof
First, it is easy to prove that

lim
t↑ω

πω(t)q
′(t) = 0.

In the same way as in the proof of Theorem 2 of [1], equation (1) by the transformation

y(t) = Y (t) + y1(t), y(k)(t) = α0J4−k(t)[1 + yk+1(t)] (k = 1, 2, 3) (6)

is reduced to a system of differential equations of the form

y′1 = α0J3(t)
[
1− q(t) + y2

]
,

y′2 =
J ′
3(t)

J3(t)
(y3 − y2),

y3′ =
J ′
2(t)

J2(t)
(y4 − y3),

y′4 =
J ′
1(t)

J1(t)

[
r(t) + (1 + r(t))y1 − y4 +R(t, y1)

]
.

We will consider this system on the set

Ω = [t1, ω[×D, where D =
{
(y1, y2, y3, y4) ∈ R4

1
2

: |yi| ≤
1

2
, (i = 1, . . . , 4)

}
,

where |R(t, y1| 6 y21 at |y1| 6 δ for some 0 < δ <
1

2
.

Further we will use the obtained system on the set Ω0 = [t1, ω[×R4
δ .

In contrast to Theorem 2, let us make an additional transformation

y1(t) = z1(t), y2(t) = z2(t) + q(t)− 1, y3(t) = z3(t), y4(t) = z4(t), (7)

the sense of which is to exclude the summand (1− q(t)) from the first equation of the system and
as a result we obtain a system of differential equations of the form

z′1 =
Y (t)

πω(t)

{
ξ1(t)z2

}
,

z′2 =
1

πω(t)

{
ξ2(t)(z3 − z2)− πω(t)q

′(t)
}
,

z′3 =
1

πω(t)

{
ξ3(t)(z4 − z3)

}
,

z′4 =
1

πω(t)

{
ξ4(t)

[
r(t) + (1 + r(t))z1 − z4 +R(t, z1)

]}
,

(8)

where

lim
t↑ω

ξ1(t) =
3λ0 − 2

λ0 − 1
, lim

t↑ω
ξ2(t) =

2λ0 − 1

λ0 − 1
, lim

t↑ω
ξ3(t) =

λ0

λ0 − 1
, lim

t↑ω
ξ4(t) =

1

λ0 − 1
.

To asymptotically equalise the multipliers at t ↑ ω in the right-hand side of the equations of the
system (8), we apply the following transformation to it:

z1(t) = υ1(t), z2(t) = |Y (t)|−
3
4υ2(t), z3(t) = |Y (t)|−

1
2υ3(t), z4(t) = |Y (t)|−

1
4υ4(t). (9)
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As a result, we obtain a system of quasilinear differential equations for which all the conditions of
Theorem 2.2 of [2] are fulfilled. The limit matrix of coefficients at υ1, υ2, υ3, υ4 of the obtained
quasilinear system has the form

C =



0
3λ0 − 2

λ0 − 1

( ν0
signσ

)
0 0

0 0
2λ0 − 1

λ0 − 1
0

0 0 0
λ0

λ0 − 1
1

λ0 − 1
0 0 0


,

and has, taking into account the sign conditions (2), (3), a characteristic equation of the form

λ4 +
α0

σ

|3λ0 − 2| |2λ0 − 1| |λ0|
(λ0 − 1)4

= 0.

The characteristic equation has two pairs of complex-conjugate roots with real parts different
from zero. Then the system of differential equations has a two-parameter family of solutions
υ1, υ2, υ3, υ4 : [t2, ω[→ R4

δ (t2 ∈ [t0, ω[), which tend to 0 at t ↑ ω. To each such solution, taking into
account substitutions (6), (7), (9), corresponds a solution y : [t2, ω[→ R of the differential equation
(1) for which the asymptotic representations (5) take place at t ↑ ω. It is also easy to check, taking
into account these asymptotic representations and the form of equation (1), that the solutions we
have constructed are Pω(Y0, λ0)-solutions.
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