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1 Introduction
Consider the nonlinear equations(

a(t)ΦE(x
′)
)′
+ b(t)F (x) = 0, t ∈ I = [1,∞), (1.1)

and (
a(t)ΦR(x

′)
)′
+ b(t)F (x) = 0, t ∈ I = [1,∞), (1.2)

where the functions a and b are continuous and positive on [1,∞), the function F is continuous
on R with F (u)u > 0 for u ̸= 0, and the functions ΦE : R → (−1, 1) and ΦR : (−1, 1) → R are
defined as

ΦE(u) =
u√

1 + u2
, ΦR(u) =

u√
1− u2

.

The operator ΦE is called the Euclidean mean curvature operator. It arises in the search for
radial solutions to partial differential equations which model fluid mechanics problems, in particular
capillarity-type phenomena for compressible and incompressible fluids. The operator ΦR is called
the Minkowski mean curvature operator or, sometimes, the relativity operator. It originates from
studying certain extrinsic properties of the mean curvature of hypersurfaces in the relativity theory,
see e.g., [1, 2] and the references therein.

The operators ΦE and ΦR are strictly related: the inverse of ΦE is ΦR and vice-versa. This
fact plays an important role in the study of equations (1.1), (1.2), as we show below.

Here we consider the problem associated with (1.1) and (1.2) to find necessary and sufficient
conditions for the existence of solutions such that

lim
t→∞

x(t) = ∞, lim
t→∞

a(t)x′(t) = 0. (1.3)

Observe that sometimes such solutions are called intermediate solutions, see, e.g., [3]. Other boun-
dary value problems concerning Kneser-type boundary value problems for (1.1), or (1.2), are in [7].
More details on Kneser boundary value problems can be found in [11, Sections 13.1, 13.2 and 16.1].

Denote by Ja, Jb, J1 the following integrals

Ja =

∞∫
1

1

a(t)
dt, Jb =

∞∫
1

b(t) dt, Jab =

∞∫
1

b(t)

( t∫
1

1

a(s)
ds

)
dt.
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If the nonlinearity F is odd and satisfies the conditions

lim inf
u→∞

F (u)

u
> 0, lim sup

u→∞

F (u)

u
< ∞, (1.4)

that, is, roughly speaking, F has a linear growth near infinity, we show that equations (1.1) and
(1.2) are closely related with the linear equation(

a(t)x′
)′
+ b(t)x = 0. (1.5)

Indeed, the well-known Leighton criterion states that (1.5) is oscillatory if Ja = Jb = ∞, see,
e.g., [6] or [12, Theorem 2.24]. This oscillation result is valid also for equations with the curvature
operator, see below. Further, the qualitative similarity between equations with the curvature opera-
tor and the linear case continues to hold also when (1.5) is nonoscillatory. More precisely, concerning
the intermediate solutions in the linear case, the following holds, see, e.g., [5, Theorems 1 and 2].

Theorem 1.1. Assume that Ja = ∞, Jb < ∞. If the linear equation (1.5) is nonoscillatory, then
(1.5) has eventually positive solutions x satisfying (1.3) if and only if Jab = ∞.

In the following we illustrate how Theorem 1.1 continues to hold for equations (1.1) and (1.2).

2 Main results
We start by considering equation (1.1). The following oscillation result can be viewed as an exten-
sion of the quoted Leighton criterion.

Theorem 2.1. Let Ja = ∞, Jb = ∞ and lim inf
u→∞

F (u) > 0. Then any continuable solution at
infinity of equation (1.1) is oscillatory.

Theorem 2.1 is proved in [3, Theorem 2.1 (ii)], see also [8, Theorem 4.1], by using a different
argument to the one in [6] or [12, Theorem 2.24] for linear equation.

The next result concerns the asymptotic proximity between the intermediate solutions to equa-
tions (1.1) and (1.5). The following holds.

Theorem 2.2. Let Ja = ∞, lim inf
t→∞

a(t) > 0, conditions (1.4) hold and FM = sup
u≥1

F (u)/u.

If the linear equation (√
3

2
a(t)w′

)′
+ FM b(t)w = 0 (2.1)

is nonoscillatory, then equation (1.1) has infinitely many solutions x satisfying (1.3) if and only if

Jb < ∞, Jab = ∞. (2.2)

Theorem 2.2 follows from [8, Theorem 3.1, Theorem 4.2]. Observe that Theorem 2.2 requires the
existence of a suitable nonoscillatory linear equation (2.1) which, roughly speaking, can be viewed
with respect to (1.1), as a dominant equation. This assumption can be verified by comparing (2.1)
with known linear auxiliary equations such as, for instance, the Euler equation or the Riemann–
Weber equation. More precisely, consider the Euler equation w′′ + 4−1t−2w = 0. Using the
substitution z(t) = t−λw we get that the linear equation

(c(t)z′)′ + d(t)z = 0, (2.3)

where c(t) = t2λ, d(t) = (λ− 2−1)2t2(λ−1), is nonoscillatory. If λ < 2−1, then Jc = ∞, Jd < ∞ and
Jcd = ∞. Hence, from Theorem 2.2 we have the following, see [8, Corollary 5.1].
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Corollary 2.1. Let (1.4) be verified. Assume that there exists λ ∈ (0, 2−1) such that for large t

a(t) ≥ 2√
3
t2λ, b(t) ≤ (λ− 2−1)2

FM
t2(λ−1),

where FM is given in Theorem 2.2. Then equation (1.1) has a solution x satisfying (1.3).

Clearly, any other nonoscillatory linear equation of type (2.3) satisfying Jc = ∞, Jd < ∞ and
Jcd = ∞ can be used as majorant equation.

Now, we study the qualitative similarity between (1.2) and (1.5). The oscillation for (1.2) is a
more subtle problem, see, e.g., [3]. The following holds.

Theorem 2.3. Let Jb = ∞, lim infu→∞ F (u) > 0 and for any λ > 0

∞∫
1

ΦE

( λ

a(t)

)
dt = ∞.

Then any continuable solution at infinity of equation (1.2) is oscillatory.

Theorem 2.3 follows, with minor changes, from a more general result stated in [3, Theorem 2.1 ].
Concerning the existence of intermediate solutions to (1.2), the following holds.

Theorem 2.4. Let Ja = ∞, Jb < ∞, Jab = ∞, lim inf
t→∞

a(t) > 0, conditions (1.4) hold and
FM = sup

u≥1
F (u)/u. If (2.2) holds and the linear equation

(
a(t)w′)′ + FM b(t)w = 0 (2.4)

is nonoscillatory, then equation (1.2) has infinitely many solutions x satisfying (1.3).

Theorem 2.4 is proved in [8, Theorem 5.1]. Moreover, in [8, Section 5] some necessary conditions
for existence of intermediate solutions to (1.2) are given too.

3 Concluding remarks
We start by presenting the idea of the proof of Theorem 2.2. It is based on an important feature
on the operator ΦE and its inverse ΦR. Setting

w = x, z = a(t)ΦE(x
′),

an easy calculation shows that the problem (1.1), (1.3) is equivalent to the problem
w′ = ΦR

( z

a(t)

)
=

z√
a2(t)− z2

, z′ = −b(t)F (w), t ∈ I,

lim
t→∞

w(t) = ∞, lim
t→∞

ΦR

(z(t)
a(t)

)
= 0.

(3.1)

For solving (3.1), we use a fixed point result, which originates from [4, Theorem 1.4], jointly with
some asymptotic properties of the principal solution of a linear equation, see, e.g., [10, Chapter 11,
Section 6]. We briefly describe our approach.
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Let Ω be a nonempty, closed, convex and bounded subset of C([1,∞),R2) and for any (u, v) ∈ Ω
consider the linear boundary value problem

ξ′ =
η√

a2(t)− v2(t)
, η′ = −b(t)

F (u)

u(t)
ξ, t ∈ I,

lim
t→∞

ξ(t) = ∞, lim
t→∞

η(t) = 0.

(3.2)

For any (u, v) ∈ Ω denote by (ξuv, ηuv) the principal solution of the linear system in (3.2) such that
ηuv(1) = ka, where ka is a suitable positive fixed constant. Let T be the operator which maps (u, v)
into (ξuv, ηuv). Defining in an appropriate way the set Ω and using some comparison results on the
behavior of the principal solution, it is easy to show that T has a fixed point (ξ̂, η̂), which clearly
is a solution of (3.1).

Observe that the linear system in (3.2) is equivalent to the second order linear equation(√
a2(t)− v2(t) y′

)′
+ b(t)

F (u)

u(t)
y = 0 (3.3)

and so the principal solution of the linear system in (3.2) coincides with the principal solution y0
of (3.3). Thus, roughly speaking, this approach reduces the solvability of (3.1) to the solvability of
a boundary value problem for a suitable associated second order linear equation. Clearly, a similar
approach, with minor changes, is valid for proving the existence of intermediate solutions to (1.2).

Using the disconjugacy theory and some comparison results for principal solutions of linear
equations, we can extend Theorems 2.2 and 2.4 by obtaining the so-called global positiveness of
intermediate solutions, that is their positiveness on the whole interval I. Observe that, in general,
this fact does not occur, because nonoscillatory solutions can have an arbitrary finite number of
zeros, also in the linear case. This result is a consequence of a more general criterion in the
forthcoming paper [9] and reads as follows.

Theorem 3.1. Let the assumptions of Theorem 2.2 [Theorem 2.4] be valid. In addition, if the
linear equation (2.1) [(2.4)] has the principal solution which is positive on I, then (1.1) [(1.2)] has
infinitely many solutions x which are positive nondecreasing on I and satisfy (1.3).
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