# On Solvability Conditions <br> for the Cauchy Problem for Second Order Linear Non-Volterra Functional Differential Equations 

Eugene Bravyi<br>Perm National Research Polytechnic University, Perm, Russia<br>E-mail: bravyi@perm.ru

Consider the Cauchy problem for the most general case of linear second order non-Volterra functional differential equations, which can be written in the operator form:

$$
\left\{\begin{array}{l}
\ddot{x}(t)=\left(T^{+} x\right)(t)-\left(T^{-} x\right)(t)+f(t), \quad t \in[0,1]  \tag{1}\\
x(0)=c_{0}, \quad \dot{x}(0)=c_{1}
\end{array}\right.
$$

where $T^{+}$and $T^{-}$are linear positive operators acting from the space of real continuous functions $\mathbf{C}[0,1]$ into the space of real integrable functions $\mathbf{L}[0,1]$ (positive operators map non-negative functions into non-negative ones), $c_{0}, c_{1} \in \mathbb{R}, f \in \mathbf{L}[0,1]$ is integrable.

Let $p^{+}$and $p^{-}$be two given non-negative integrable functions. Suppose that positive operators $T^{+}$and $T^{-}$satisfy the equalities

$$
\begin{equation*}
\left(T^{+} \mathbf{1}\right)(t)=p^{+}(t), \quad\left(T^{-} \mathbf{1}\right)(t)=p^{-}(t), \quad t \in[0,1], \tag{2}
\end{equation*}
$$

where $\mathbf{1}$ is the unit function, $\mathbf{1}(t)=1$ for all $t \in[0,1]$. By imposing various restrictions on the functions $p^{+}$and $p^{-}$, we can obtain various conditions for the solvability of problem (1) for all operators $T^{+}, T^{-}$satisfying equalities (2) and additional restrictions.

All known solvability conditions of this kind for many boundary value problems were obtained under the same types of restrictions on the operators $T^{+}, T^{-}$, that is only under pointwise restrictions or only under integral ones $[2,4-11]$. We can obtain solvability conditions under mixed restrictions, when pointwise restrictions are imposed on the action of one of the operators $T^{+}, T^{-}$, and integral restrictions are imposed on the other operator.

Let us present several obtained statements.
First of all, using ideas of $[1,3,5,6]$, we formulate necessary and sufficient solvability conditions for pointwise restrictions.

Put

$$
k(t) \equiv 1-\int_{0}^{t}(t-s)\left(p^{+}(s)-p^{-}(s)\right) d s
$$

Theorem 1. Let non-negative functions $p^{+}, p^{-} \in \mathbf{L}[0,1]$ be given.
The Cauchy problem (1) is uniquely solvable for all linear positive operators $T^{+}, T^{-}: \mathbf{C}[0,1] \rightarrow$ $\mathbf{L}[0,1]$ such that $T^{+} \mathbf{1}=p^{+}, T^{-} \mathbf{1}=p^{-}$if and only if

$$
\int_{0}^{1}(1-s) p^{+}(s) d s<1
$$

and

$$
\begin{aligned}
&\left(1-\int_{0}^{t_{3}}\left(t_{1}-s\right) p^{+}(s) d s+\int_{t_{3}}^{t_{1}}\left(t_{1}-s\right) p^{-}(s) d s\right) k(1) \\
&+\left(\int_{0}^{t_{3}}(1-s) p^{+}(s) d s-\int_{t_{3}}^{1}(1-s) p^{-}(s) d s\right) k\left(t_{1}\right)>0
\end{aligned}
$$

for all $0 \leq t_{3} \leq t_{1} \leq 1$.
Corollary 1. Let a non-negative function $p^{-} \in \mathbf{L}[0,1]$ be given.
The Cauchy problem

$$
\left\{\begin{array}{l}
\ddot{x}(t)=-\left(T^{-} x\right)(t)+f(t), \quad t \in[0,1], \\
x(0)=c_{0}, \quad \dot{x}(0)=c_{1},
\end{array}\right.
$$

is uniquely solvable for all linear positive operators $T^{-}: \mathbf{C}[0,1] \rightarrow \mathbf{L}[0,1]$ such that $T^{-} \mathbf{1}=p^{-}$if and only if the inequality

$$
\begin{aligned}
& \Delta_{-} \equiv\left(1+\int_{t_{3}}^{t_{1}}\left(t_{1}-s\right) p^{-}(s) d s\right)\left(1+\int_{0}^{1}(1-s) p^{-}(s) d s\right) \\
&\left.-\int_{t_{3}}^{1}(1-s) p^{-}(s) d s\left(1+\int_{0}^{t_{1}}\left(t_{1}-s\right) p^{-}(s)\right) d s\right)>0
\end{aligned}
$$

holds for all $0 \leq t_{3} \leq t_{1} \leq 1$.
Corollary 2. If

$$
\begin{aligned}
& p^{-}(t) \leq 16, \quad p^{-}(t) \not \equiv 16 \text { or } \\
& p^{-}(t) \leq 487 t^{2}(1-t)^{2} \text { or } p^{-}(t) \leq 39 t \text { or } p^{-}(t) \leq 24.7 e^{-t} \\
& p^{-}(t) \leq 9.8 e^{t} \text { or } p^{-}(t) \leq \frac{10.4}{\sqrt{1-t}} \text { or } p^{-}(t) \leq 32 \sin (10 \pi t),
\end{aligned}
$$

then the Cauchy problem

$$
\left\{\begin{array}{l}
\ddot{x}(t)=-\left(T^{-} x\right)(t)+f(t), \quad t \in[0,1] \\
x(0)=c_{0}, \quad \dot{x}(0)=c_{1}
\end{array}\right.
$$

is uniquely solvable for all linear positive operators $T^{-}: \mathbf{C}[0,1] \rightarrow \mathbf{L}[0,1]$ such that $T^{-} \mathbf{1}=p^{-}$.
With the help of Theorem 1 we can obtain necessary and sufficient solvability conditions for mixed restrictions.

Theorem 2. Let a non-negative function $p^{-} \in \mathbf{L}[0,1]$ and a number $\mathcal{P}^{+} \geq 0$ be given.
The Cauchy problem (1) is uniquely solvable for all linear positive operators $T^{+}, T^{-}: \mathbf{C}[0,1] \rightarrow$ $\mathbf{L}[0,1]$ such that

$$
T^{-} \mathbf{1}=p^{-}, \quad \int_{0}^{1}(1-s)\left(T^{+} \mathbf{1}\right)(s) d s=\mathcal{P}^{+}
$$

if and only if

$$
\begin{gathered}
\mathcal{P}^{+}<1 \\
\Delta_{-}\left(t_{3}, t_{1}, p^{-}\right)>\mathcal{P}^{+}\left(1+\int_{t_{3}}^{t_{1}}\left(t_{1}-s\right) p^{-}(s) d s\right), \quad 0 \leq t_{3} \leq t_{1} \leq 1 \\
\Delta_{-}\left(t_{3}, t_{1}, p^{-}\right) \geq \mathcal{P}^{+}\left(t_{1}+\left(1-t_{1}\right) \int_{0}^{t_{3}} s p^{-}(s) d s\right), \quad 0 \leq t_{3} \leq t_{1} \leq 1
\end{gathered}
$$

Corollary 3. Let two non-negative numbers $\mathcal{P}^{+}, \mathcal{P}^{-}$be given.
The Cauchy problem (1) is uniquely solvable for all linear positive operators $T^{+}, T^{-}: \mathbf{C}[0,1] \rightarrow$ $\mathbf{L}[0,1]$ such that

$$
\int_{0}^{1}(1-s)\left(T^{+} \mathbf{1}\right)(s) d s \leq \mathcal{P}^{+} \text {and }\left(T^{-} \mathbf{1}\right)(t) \leq \mathcal{P}^{-}, \quad t \in[0,1]
$$

if and only if

$$
\mathcal{P}^{+}<1 \text { and } \mathcal{P}^{-}<8\left(1+\sqrt{1-\mathcal{P}^{+}}\right)
$$

Theorem 3. Let constants $\mathcal{P}^{+} \geq 0, \mathcal{P}^{-} \geq 0$ be given .
The Cauchy problem (1) is uniquely solvable for all linear positive operators $T^{+}, T^{-}: \mathbf{C}[0,1] \rightarrow$ $\mathbf{L}[0,1]$ such that

$$
\left(T^{-} \mathbf{1}\right)(t) \leq \mathcal{P}^{-}, \quad t \in[0,1], \quad \int_{0}^{1}(1-s)\left(T^{+} \mathbf{1}\right)(s) d s \leq \mathcal{P}^{+}
$$

if and only if

$$
\mathcal{P}^{+}<1, \quad \mathcal{P}^{-}<8\left(1+\sqrt{1-\mathcal{P}^{+}}\right)
$$

Theorem 4. Let $\alpha \geq-1$. Let a non-negative function $p^{+} \mathbf{L}[0,1]$ and a number $\mathcal{P}^{-} \geq 0$ be given.
The Cauchy problem (1) is uniquely solvable for all linear positive operators $T^{+}, T^{-}: \mathbf{C}[0,1] \rightarrow$ $\mathbf{L}[0,1]$ such that

$$
T^{+} \mathbf{1}=p^{+}, \quad \int_{0}^{1}(1+\alpha s)\left(T^{-} \mathbf{1}\right)(s) d s=\mathcal{P}^{-}
$$

if and only if

$$
\begin{aligned}
& \mathcal{P}^{+} \equiv \int_{0}^{1}(1-s) p^{+}(s) d s<1 \\
& \begin{aligned}
\mathcal{P}^{-} \leq \beta\left(t_{1}\right)\left(1+t_{1} \mathcal{T}_{3}^{+}-\mathcal{T}_{2}^{+}\right)+\frac{\mathcal{T}_{1}^{+}-\mathcal{T}_{2}^{+}}{t_{1}}
\end{aligned} \\
& \quad+2 \sqrt{\beta\left(t_{1}\right)\left(1-\mathcal{T}_{2}^{+}\right)\left(\mathcal{T}_{3}^{+}+1-\mathcal{T}^{+}+\frac{\mathcal{T}_{1}^{+}-\mathcal{T}_{2}^{+}}{t_{1}}\right)}, 0<t_{3} \leq t_{1}<1
\end{aligned}
$$

where

$$
\begin{gathered}
\beta\left(t_{1}\right)=\frac{1+\alpha t_{1}}{t_{1}\left(1-t_{1}\right)} \\
\mathcal{T}_{1}^{+}=\int_{0}^{t_{1}}\left(t_{1}-s\right) p^{+}(s) d s, \quad \mathcal{T}_{2}^{+}=\int_{0}^{t_{3}}\left(t_{1}-s\right) p^{+}(s) d s, \quad \mathcal{T}_{3}^{+}=\int_{0}^{t_{3}}(1-s) p^{+}(s) d s
\end{gathered}
$$

Corollary 4. Let $\alpha \geq-1$. Let a non-negative function $p^{+} \in \mathbf{L}[0,1]$ and a number $\mathcal{P}^{-} \geq 0$ be given, and $p^{+}(t)=0$ for $t \in\left[0, \frac{1}{1+\sqrt{1+\alpha}}\right]$.

The Cauchy problem (1) is uniquely solvable for all linear positive operators $T^{+}, T^{-}: \mathbf{C}[0,1] \rightarrow$ $\mathbf{L}[0,1]$ such that

$$
T^{+} \mathbf{1}=p^{+}, \quad \int_{0}^{1}(1+\alpha s)\left(T^{-} \mathbf{1}\right)(s) d s=\mathcal{P}^{-}
$$

if and only if

$$
\mathcal{P}^{+}<1, \quad \mathcal{P}^{-}+1-\mathcal{P}^{+} \leq\left(1+\sqrt{1+\alpha}+\sqrt{1-\mathcal{P}^{-}}\right)^{2}
$$

Corollary 5. The Cauchy problem (1) is uniquely solvable for all linear positive operators $T^{+}, T^{-}$: $\mathbf{C}[0,1] \rightarrow \mathbf{L}[0,1]$ such that

$$
\begin{aligned}
&\left(T^{+} \mathbf{1}\right)(t) \leq 2, \quad\left(T^{+} \mathbf{1}\right)(t) \not \equiv 2, \quad t \in[0,1] \\
& \int_{0}^{1}\left(T^{-} \mathbf{1}\right)(s) d s \leq \min _{t \in(0,1)}\left(\frac{1}{t(1-t)}+t+\sqrt{1+t}\right) \approx 6.9
\end{aligned}
$$

Corollary 6. The Cauchy problem (1) is uniquely solvable for all linear positive operators $T^{+}, T^{-}$: $\mathbf{C}[0,1] \rightarrow \mathbf{L}[0,1]$ such that

$$
\begin{gathered}
\left(T^{+} \mathbf{1}\right)(t) \leq 1, \quad t \in[0,1] \\
\int_{0}^{1}\left(T^{-} \mathbf{1}\right)(s) d s \leq \min _{t \in(0,1)}\left(\frac{1}{t(1-t)}+\frac{t}{2}+\sqrt{\frac{\left(2-t^{2}\right)(1+t)}{t(1-t)}}\right) \approx 7.4
\end{gathered}
$$

The constants of the solvability conditions from Corollaries 5 and 6 are exact and cannot be increased.

Finally we obtain solvability conditions under integral restrictions on both operators $T^{+}, T^{-}$.
Theorem 5. Let $\alpha \geq-1$. Let constants $\mathcal{P}^{+} \geq 0, \mathcal{P}^{-} \geq 0$ be given.
The Cauchy Problem (1) is uniquely solvable for all linear positive operators $T^{+}, T^{-}: \mathbf{C}[0,1] \rightarrow$ $\mathbf{L}[0,1]$ such that

$$
\int_{0}^{1}(1+\alpha s)\left(T^{-} \mathbf{1}\right)(s) d s \leq \mathcal{P}^{-}, \quad \int_{0}^{1}(1-s)\left(T^{+} \mathbf{1}\right)(s) d s \leq \mathcal{P}^{+}
$$

if and only if

$$
\mathcal{P}^{+}<1, \quad \mathcal{P}^{-}-\mathcal{P}^{+}+1 \leq\left(1+\sqrt{1+\alpha}+\sqrt{1-\mathcal{P}^{+}}\right)^{2} .
$$

## Acknowledgements

This work was supported by the Russian Scientific Foundation (Project \# 22-21-00517).

## References

[1] N. V. Azbelev, V. P. Maksimov and L. F. Rakhmatullina, Introduction to the Theory of Functional-Differential Equations. (Russian) Nauka, Moscow, 1991.
[2] N. V. Azbelev, V. P. Maksimov and L. F. Rakhmatullina, Elements of the Modern Theory of Functional-Differential Equations. Methods and applications, Institute for Computer Studies, Moscow, 2002.
[3] N. V. Azbelev and L. F. Rakhmatullina, Theory of linear abstract functional-differential equations and applications. Mem. Differential Equations Math. Phys. 8 (1996), 1-102
[4] T. A. Belkina, N. B. Konyukhova and S. V. Kurochkin, Singular initial and boundary value problems for integrodifferential equations in dynamic insurance models taking investments into account. (Russian) Sovrem. Mat. Fundam. Napravl. 53 (2014), 5-29; translation in J. Math. Sci. (N.Y.) 218 (2016), no. 4, 369-394.
[5] E. I. Bravyi, Solvability of the periodic problem for higher-order linear functional differential equations. (Russian) Differ. Uravn. 51 (2015), no. 5, 563-577; translation in Differ. Equ. 51 (2015), no. 5, 571-585.
[6] E. Bravyi, R. Hakl and A. Lomtatidze, Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations. Czechoslovak Math. J. 52(127) (2002), no. 3, 513-530.
[7] L. Byszewski and H. Akca, Existence of solutions of a semilinear functional-differential evolution nonlocal problem. Nonlinear Anal. 34 (1998), no. 1, 65-72.
[8] R. Hakl and A. Lomtatidze, A note on the Cauchy problem for first order linear differential equations with a deviating argument. Arch. Math. (Brno) 38 (2002), no. 1, 61-71.
[9] R. Hakl, A. Lomtatidze and B. Půža, New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations. Math. Bohem. 127 (2002), no. 4, 509-524.
[10] J. Šremr, On the Cauchy type problem for two-dimensional functional differential systems. Mem. Differential Equations Math. Phys. 40 (2007), 77-134.
[11] J. Šremr and R. Hakl, On the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators. Nelı̄n̄̄̄̆n̄̄ Koliv. 10 (2007), no. 4, 560-573; translation in Nonlinear Oscil. (N.Y.) 10 (2007), no. 4, 569-582.

