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1 Introduction
We investigate properties of a solution to the ordinary differential equation arises in mathematical
models describing the physico-chemical processes occurring during a cryochemical modification of
drug substances (see [6, 7]).

Under these assumptions, the thermal conductivity equation with mass transfer for the one–
dimensional case can be used to calculate the temperature field created by the carrier gas stream:

∂T

∂t
= V

∂T

∂x
− µ

ρCV
· ∂

∂x

(
λ
∂T

∂x

)
. (1.1)

Here ρ, µ, λ are the density (kg/m3), molecular weight (kg/mol), thermal conductivity
(W/(m ·K)) of the carrier gas, respectively, CV is the molar heat capacity of the carrier gas
at constant volume (J/(mol ·K)), V is the linear velocity of the carrier-gas flow front (m/s).

In stationary mode we have ∂T/∂t = 0 and equation (1.1) reduces to the ordinary differential
equation

dT

dx
− µ

ρV CV
· d

dx

(
λ
dT

dx

)
= 0. (1.2)

The flow rate of the carrier gas is controlled during the experiment with the help of an external
device (an industrial gas pipeline with accuracy, according to its passport data, not worse than
5%). The regulated gas stream of the carrier, passing through a heated copper screen (a mixed
molecular flow shaper) of cylindrical shape, heats up to a certain temperature, captures the vapors
of the initial substance and takes them out into the vacuum space. Let the nozzle area of the mixed
molecular flow shaper be S(m2). Then the molar flow rate of the carrier gas is dN/dt(mol/s) and
can be written as

Ṅ =
dN

dt
=

ρV S

µ
.

In this case, the ratio of the molar flow rate of the carrier gas dN/dt (mol/s) to the nozzle area of
the mixed molecular flow shaper, that is, the density of the carrier gas flow dn/dt (mol/(m2 · s))
can be represented as

ṅ =
dn

dt
=

Ṅ

S
=

ρV

µ
.
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Therefore, equation (1.2) can be written as

dT

dx
− d

dx

( λ

CV ṅ
· dT
dx

)
= 0.

It can be solved analytically, taking into account the dependence of the thermal conductivity
of the carrier gas on the temperature. An interesting fact is that the heat capacity of gases in a
wide range of pressures practically does not depend on the pressure. This circumstance received its
explanation from the molecular kinetic theory. A large number of gases, such as nitrogen, helium,
argon, carbon dioxide, etc., have the square-root dependence of the thermal conductivity on the
temperature expressed by the approximate formula

λ =
ik

3π3/2d2

√
RT

µ
, (1.3)

where

i is the sum of translational and rotational degrees of freedom of molecules (5 for diatomic
gases, 3 for monatomic ones),

k is the Boltzmann constant,

µ is the molar mass,

T is the absolute temperature,

d is the effective diameter of molecules,

R is the universal gas constant.

Representing λ in (1.3) as α
√
T with the appropriate coefficient α, we obtain

λ

CV ṅ
=

α
√
T

CV ṅ
= b

√
T with b =

α

CV ṅ
.

Now the thermal conductivity equation with mass transfer of these process for the one–dimensional
case can be transformed to the ordinary differential equation [5]:

d

dx

(
T − b

√
T
dT

dx

)
= 0, b > 0. (1.4)

We study the dependence of the temperature on the distance under three types of boundary
conditions, namely the Dirichlet, Neumann, and Robin ones.

The Dirichlet condition specifies the temperature value at the boundary.
The Neumann condition specifies the boundary value for the derivative of the temperature.
In the Robin condition, we specify a linear combination of the temperature value and the

derivative of the temperature at the boundary.
The coefficient of the temperature value in the Robin condition is the Biot number (the ratio

of the conductive thermal resistance inside the object to the convective resistance at the surface of
the object).

The mathematical model was discussed with colleagues from the Department of Chemistry of
M. V. Lomonosov Moscow State University T. A. Shabatina, and Yu. Morozov.
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2 General decreasing solutions
Theorem 2.1. Each positive solution T to equation (1.4) is either constant or strictly monotonic.
Each strictly decreasing solution has the form

T (x) = c2Θ
(x− x∗

bc

)2
, (2.1)

where x∗ and c > 0 are arbitrary constants, while Θ is a decreasing function (−∞; 0) → (0; 1)
implicitly defined by

x = 2Θ(x) + ln
1−Θ(x)

1 + Θ(x)
. (2.2)

The left-hand side of (1.4) contains an expression in parentheses which must be constant and,
for the solution defined by (2.1), equals c2.

If maximally extended, such T is defined on the interval (−∞;x∗) and satisfies

T (x) → c2 and T ′(x) → 0 as x → −∞, (2.3)
T (x) → 0 and T ′(x) → −∞ as x → x∗. (2.4)

Proof. First, by the substitution T = Z2 with Z > 0 we convert equation (1.4) into the form

(Z2 − 2bZ2Z ′)′ = 0,

which immediately yields
Z2 − 2bZ2 Z ′ = C = const

with further transformations depending on sgnC.
If C = 0, then either Z ≡ 0 or 1 = 2bZ ′, which entails that Z ′ > 0 and Z is strictly increasing.
If C = −c2 < 0, then we obtain Z2 + c2 = 2bZ2Z ′. This shows again that Z ′ > 0.
Finally, if C = c2 > 0 with c > 0, then we obtain

Z2 − c2 = 2bZ2Z ′. (2.5)

Now, if Z(x) = c at some point x, then, by the uniqueness theorem, Z must coincide with the
constant solution Z ≡ c. If not, then either Z > c on the whole domain or Z < c. We reject the
first case (with Z ′ > 0 due to (2.5)) as well as the previous constant one.

In the second case we put
Z(x) = c z

( x

bc

)
, 0 < z < 1,

which converts (2.5) into
z2 − 1 = 2z2z′. (2.6)

This can be written as
1 =

2z2z′

z2 − 1
=

(
2 +

2

z2 − 1

)
z′,

whence, for 0 < z < 1,

x− a =

z(x)∫
0

(
2 +

2

ζ2 − 1

)
dζ = 2z(x) + ln

1− z(x)

1 + z(x)

with some a. We have a general family of implicitly defined strictly decreasing solutions to (2.6)
satisfying 0 < z < 1. One of them, with a = 0, is just Θ defined by (2.2). All others can be
obtained from Θ by a horizontal shift. Thus, we have (2.1).
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It follows from (2.2) that

Θ(x) → 0 as x → 0,

Θ(x) → 1 as x → −∞.

Then, using (2.6), we obtain

Θ′(x) → −∞ as x → 0,

Θ′(x) → 0 as x → −∞.

These limits, together with (2.1), produce the first three limits in (2.3) and (2.4). For the fourth
one, we use (2.5) to obtain

T ′ = 2ZZ ′ =
Z2 − c2

2bZ
=

T − c2

2b
√
T

→ −∞ as T → 0.

3 On existence and uniqueness of solutions
Theorem 3.1. For any constants x0 < x1 and T1 > T0 > 0, equation (1.4) has a unique solution
T defined on [x0;x1] and satisfying the conditions

T (x0) = T0, T (x1) = T1. (3.1)

Proof. The boundary conditions show that, according to Theorem 2.1, the solution T must strictly
decrease and therefore have the form given by (2.1) and (2.2). So, the boundary conditions become√

Tj

c
= Θ

(xj − x∗

bc

)
, j ∈ {0, 1},

or, by using (2.2),

xj − x∗

bc
= 2

√
Tj

c
+ ln

1−
√

Tj

c

1 +

√
Tj

c

, j ∈ {0, 1}. (3.2)

Thus, we have to prove the existence and uniqueness of a pair (x∗, c) satisfying (3.2). Putting

q :=

√
T1

T0
∈ (0; 1) and k :=

√
T0

c
∈ (0; 1), (3.3)

we write the difference of the two equations (3.2) as

k(x1 − x0)

b
√
T0

= 2k(q − 1) + ln
(1− qk)(1 + k)

(1 + qk)(1− k)

or
x1 − x0

2b
√
T0

= Fq(k) (3.4)

with

Fq(k) := f(k)− qf(qk), (3.5)

f(k) :=
1

2k
ln

1 + k

1− k
− 1. (3.6)
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Lemma 3.1. For each A > 0 and q ∈ (0; 1), there exists a unique k ∈ (0; 1) such that Fq(k) = A
with Fq defined by (3.5) and (3.6). The mapping (A, q) 7→ k is a C1 function (0;+∞)×(0; 1) → (0; 1)
strictly increasing with respect to both A and q.

Proof. Note that

f(k) =
ln(1 + k)

2k
− ln(1− k)

2k
− 1,

whence f(k) → 0 as k → 0 (by L’Hôpital’s rule) and f(k) → +∞ as k → 1.
Now we study the derivative of f by using its Taylor series uniformly converging on any sub-

segment of the interval (0, 1).

f ′(k) =
1

2k(1 + k)
− ln(1 + k)

2k2
+

1

2k(1− k)
+

ln(1− k)

2k2
=

1

k(1− k2)
− ln(1 + k)

2k2
+

ln(1− k)

2k2

=
1

k

∞∑
n=0

k2n +
1

2k2

∞∑
n=1

((−1)n − 1)kn

n
=

1

k

∞∑
n=0

k2n − 1

k2

∞∑
m=0

k2m+1

2m+ 1

=
1

k

∞∑
n=0

(
1− 1

2n+ 1

)
k2n =

1

k

∞∑
n=1

2n

2n+ 1
k2n =

∞∑
n=1

2n

2n+ 1
k2n−1 > 0,

whence f(k) > 0 as well.
Further,

f ′′(k) =

∞∑
n=1

2n(2n− 1)

2n+ 1
k2n−2 > 0,

whence f ′ is strictly increasing and

dFq

dk
(k) = f ′(k)− q2f ′(qk) > 0.

So, Fq is strictly increasing in k, Fq(k) → 0 as k → 0, and

Fq(k) = (1− q)f(k) + q(f(k)− f(qk)) > (1− q)f(k) → +∞ as k → 1.

Therefore, Fq must attain, exactly once, each A > 0, which proves the first part of Lemma 3.1.
The second part follows immediately from the implicit function theorem and the evident in-

equalities

∂(Fq(k)−A)

∂A
= −1 < 0,

∂(Fq(k)−A)

∂q
= −f(qk)− qkf ′(qk) < 0.

We return to proving Theorem 3.1. Having the unique value of k satisfying (3.4), we obtain,
from (3.2) and (3.3), the unique values

c =

√
T0

k
>

√
T0 and x∗ = x1 − 2b

√
T1 − bc ln

c−
√
T1

c+
√
T1

to satisfy (3.2). This completes the proof of Theorem 3.1.

Now we will to prove two theorems concerning other boundary conditions for equation (1.4).
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Theorem 3.2. For any real constants x0 < x1, T0 > 0, and U1 < 0, equation (1.4) has a unique
solution T defined on [x0;x1] and satisfying the conditions

T (x0) = T0, T ′(x1) = U1.

Theorem 3.3. For any real constants x0 < x1, T0 > 0, and U1 < 0, equation (1.4) has a unique
solution T defined on [x0;x1] and satisfying the conditions

T (x0) = T0, T ′(x1) = U1T (x1).

Proof. We try to prove the existence and uniqueness of a constant T1 ∈ (0;T0) such that the
unique solution T existing according to Theorem 3.1 satisfies the boundary conditions of the related
theorem.

According to Theorem 2.1, T − b
√
T T ′ = c2, whence, using notation (3.3),

T ′(x1) =
T (x1)− c2

b
√
T (x1)

=
q2T0 − T0/k

2

bq
√
T0

=
k2q2 − 1

k2q
·
√
T0

b
,

T ′(x1)

T (x1)
=

k2q2 − 1

k2q3
· 1

b
√
T0

,

where k ∈ (0; 1) is chosen, depending on q ∈ (0; 1), to provide the boundary conditions (3.1) for
the solution T defined by (2.1).

It follows from Lemma 3.1 that k ∈ (0; 1) strictly increases with respect to q ∈ (0; 1). So, in
both right-hand sides of the last equations, the numerator k2q2−1 is negative and strictly increases
in q, while its absolute value decreases. The denominators are positive and also strictly increase.
Thus, the fractions are negative with strictly decreasing absolute values.

Now consider their limits at 0 and 1.
Both fractions tend to −∞ as q → 0. As for q → 1, there must exist k1 = lim

q→1
k ∈ (0; 1].

If k1 < 1, then it follows from (3.4)–(3.6) that

0 <
x1 − x0

2b
√
T0

= F1(k1) = f(k1)− 1 · f(1 · k1) = 0.

This contradiction shows that k1 = 1. (For this k1, no contradiction arises because f(k) → +∞ as
k → 1.) Hence

T ′(x1) → 0 and T ′(x1)

T (x1)
→ 0 as q → 1.

So, both expressions strictly increase from −∞ to 0 as q increases from 0 to 1 (i.e. as T1

increases from 0 to T0). Therefore, they both must attain, exactly once, each negative value, and
this proves Theorems 3.2 and 3.3.

Remark 3.1. The authors’ results connected with mathematical modeling in other physical pro-
cesses can be found in [1–4].
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