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Let [a, b] ⊂ R be a finite and closed interval non-degenerated in the point.
Consider the modified initial problem for a linear system of generalized ordinary differential

equations with singularities

dx = dA(t) · x+ df(t) for t ∈ [a, b[ , (1)
lim
t→b−

(Φ−1(t)x(t)) = 0, (2)

where A = (aik)
n
i,k=1 is an n × n-matrix valued function and f = (fk)

n
k=1 is an n-vector valued

function, both of them have a locally bounded variation on [a, b[; Φ = diag(φ1, . . . , φn) is a diagonal
n× n-matrix valued function, defined on [a, b[ and having an inverse Φ−1(t) for each t ∈ [a, b[ .

Along with system (1) consider the perturbed singular systems

dx = dAm(t) · x+ dfm(t) for t ∈ [a, b[ (3)

(m = 1, 2, . . . ) under conditions (2), where Am is an n × n-matrix valued function and fm is an
n-vector valued function, both of them have a locally bounded variation on [a, b[ .

We are interested to established the necessary and sufficient conditions whether the unique
solvability of problem (1), (2) guarantees the unique solvability of problem (3), (2) and nearness of
its solution in the definite sense if matrix-functions Am and A and vector-functions fm and f are
nearly among themselves.

We assume A(a) = Am(a) = On×n and f(a) = fm(a) = 0n (m = 1, 2, . . . ) without loss of
generality.

The same and related problems for ordinary differential systems with singularities dx
dt = P (t)x+

q(t), where P ∈ Lloc([a, b[,Rn×n), q ∈ Lloc([a, b[,Rn), have been investigated in [7,9] (see, also, the
references therein).

The singularity of system (1) consists in the fact that both A and f need not to have bounded
variations on any interval containing the point t0.

The solvability question of the generalized differential problem (1), (2) has been investigated
in [6]. The well-posedness of problem (1), (2) with singularity has been considered in [4]. To
our knowledge, the necessary and sufficient conditions for well-posedness of problem (1), (2) with
singularity has not been investigated up to now.

Some singular boundary problems for the generalized differential system (1) are investigated
in [1, 2] (see, also, the references therein).
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To a considerable extent, the interest to the theory of generalized ordinary differential equations
has also been stimulated by the fact that this theory enables one to investigate ordinary differential,
impulsive and difference equations from a unified point of view (see [1–6,8,10,11] and the references
therein).

In the paper, we give necessary and sufficient conditions for the so called strongly Φ-well-
posedness of problem (1), (2).

Throughout the paper we use the following notation and definitions.
R = ]−∞,+∞[ . R+ = ]0,+∞[ . Rn×m is the space of all real n×m matrices with the standard

norm.
Rn = Rn×1 is the space of all column n-vectors x = (xi)

n
i=1.

If X = (xik)
n,m
i,k=1 ∈ Rn×m, then |X| = (|xik|)n,mi,k=1, [X]∓ = 1

2 (|X| ∓X).
On×m (or O) is the zero n×m-matrix, 0n (or 0) is the zero n-vector.
In is identity n× n-matrix.
If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix inverse to X, the deter-

minant of X and the spectral radius of X.
The inequalities between the matrices are understood componentwisely.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its com-

ponent is such.

If X : R → Rn×m is a matrix-function, then
b∨
a
(X) is the sum of total variations on [a, b] of its

components;
b−∨
a
(X) = lim

t→b−

t∨
a
(X).

X(t−) and X(t+) are, respectively, the left and the right limits of the matrix-function X :
[a, b] → Rn×m at the point t.

BV([c, d],Rn×m) is the set of bounded variation matrix-functions on [c, d].
BVloc([a, b[;Rn×m) is the set of all locally bounded matrix-functions.
If X ∈ BVloc([a, b[;Rn×m), then

[X(t)]v− ≡ 1

2
(V (X)(t)−X(t)), [X(t)]v+ ≡ 1

2
(V (X)(t) +X(t)).

s1, s2, sc : BVloc([a, b[;R) → BVloc([a, b[;R) are the operators defined, respectively, by

s1(x)(a) = s2(x)(a) = 0, sc(x)(a) = x(a),

s1(x)(t) = s1(x)(a) +
∑

a<τ≤t

d1x(τ), s2(x)(t) = s2(x)(a) +
∑

a≤τ<t

d2x(τ),

sc(x)(t) = sc(x)(a) + x(t)− x(a)−
2∑

j=1

sj(x)(t) for a < t < b.

If g : [a, b] → R is a nondecreasing function and x : [a, b] → R, then

t∫
s

x(τ) dg(τ) =

∫
]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ≤t

x(τ) d1g(τ) +
∑

s≤τ<t

x(τ) d2g(τ)

for s < t; s, t ∈ [a, b],
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where
∫

]s,t[

x(τ) dsc(g)(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[ with respect to

the measure corresponding to the function sc(g). So
t∫
s
x(τ) dg(τ) is the Kurzweil integral ( [10,11]).

We put
t−∫
s
x(τ) dg(τ) = limδ→0+

t−δ∫
s

x(τ) dg(τ).

If G = (gik)
l,n
i,k=1 : [a, b] → Rl×n and X = (xkj)

n,m
k,j=1 : [a, b] → Rn×m, then

t∫
a

dG(τ) ·X(τ) ≡
( n∑

k=1

t∫
a

xkj(τ)dgik(τ)

)l,m

i,j=1

.

We introduce the operators A(X,Y ), B(X,Y ) and I(X,Y ) in the following way:

(a) if X∈BVloc(I;Rn×n), det(In+(−1)jdjX(t)) ̸=0 for t ∈ I (j = 1, 2), and Y ∈BVloc(I;Rn×m),
then A(X,Y )(a) = On×m,

A(X,Y )(t) ≡ Y (t)− Y (a) +
∑

a<τ≤t

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)

−
∑

a≤τ<t

d2X(τ) · (In + d2X(τ))−1 d2Y (τ);

(b) if X ∈ BVloc(I;Rn×n) and Y : I → Rn×m, then B(X,Y )(a) = On×m,

B(X,Y )(t) ≡ X(t)Y (t)−X(a)Y (a)−
t∫

a

dX(τ) · Y (τ);

(c) if X ∈ BVloc(I;Rn×n), det(X(t)) ̸= 0, and Y : I → Rn×n, then

I(X,Y )(a) = On×m, I(X,Y )(t) ≡
t∫

a

d
(
X(τ) + B(X,Y )(τ)

)
·X−1(τ).

In addition, let Vj(Φ, A∗, · ) : BVloc(I;Rn×l) → R (j = 1, 2) be operators defined, respec-
tively, by

V1(Φ, A∗, F )(t, τ) =

τ∫
t

Φ−1(s) dV(A(A∗, F ))(s) · Φ(s) and

V2(Φ, A∗, F )(t, τ) =

τ∫
t

Φ−1(s) dV(A(A∗, A∗))(s) · |F (s)| for a ≤ t < τ < b.

A vector-function x : I → Rn is said to be a solution of system (1) if x ∈ BVloc(I,Rn) and

x(t) = x(a) +

t∫
a

dA(τ) · x(τ) + f(t)− f(a) for t ∈ I.
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We assume that det(In + (−1)jdjA(t)) ̸= 0 for t ∈ I (j = 1, 2).
The above inequalities guarantee the unique solvability of the Cauchy problem for the corre-

sponding nonsingular systems, i.e., for the case when A ∈ BV([a, c];Rn×n) and f ∈ BV([a, c];Rn)
for every c ∈ I.

Let a matrix-function A∗ = (a∗ik)
n
i,k=1 ∈ BVloc(I;Rn×n) be such that det(In+(−1)jdjA∗(t)) ̸= 0

for t ∈ I (j = 1, 2).
Then a matrix-function C∗ : I× I → Rn×n is said to be the Cauchy matrix of the homogeneous

system dx = dA∗(t) · x, if, for each interval J ⊂ I and τ ∈ J , the restriction of the matrix-function
C∗( · , τ) : I → Rn×n on J is the fundamental matrix of the system, satisfying the condition
C∗(τ, τ) = In. Therefore, C∗ is the Cauchy matrix of the system if and only if the restriction of C∗
on J × J is the Cauchy matrix of the system in the regular case. Let X∗(τ) ≡ C∗( · , τ).

Definition 1. Problem (1), (2) is said to be weakly Φ-well-posed with respect to the matrix-
function A∗ if it has the unique solution x0 and for every sequences of Am and fm (m = 1, 2, . . . )
such that

det
(
In + (−1)jdjAm(t)

)
̸= 0 for t ∈ I (j = 1, 2), (4)

for each sufficiently large m, and the conditions

lim
m→+∞

∥∥V1(Φ, A∗, Am −A)(t, b−)
∥∥ = 0, (5)

lim
m→+∞

∥∥V2(Φ, A∗, fm − f)(t, b−)
∥∥ = 0, (6)

lim
m→+∞

∥∥Φ−1(t)(fm(t)− f(t))− Φ−1(b−)(fm(b−)− f(b−))
∥∥ = 0 (7)

hold uniformly on I, problem (3), (2) has the unique solution xm for each sufficiently large m and

lim
m→+∞

∥∥Φ−1(t) (xm(t)− x0(t))
∥∥ = 0 uniformly on I. (8)

Definition 2. Problem (1), (2) is said to be strongly Φ-well-posed with respect to the matrix-
function A∗ if it has the unique solution x0 and for every sequences of matrix-and vector-functions
Am and fm (m = 1, 2, . . . ) such that condition (4) holds for every sufficiently large m and the
conditions (6) and

lim
m→+∞

∥∥V1(Φ, A∗, fm − f)(t, b−)
∥∥ = 0

hold uniformly on I, problem (3), (2) has the unique solution xm for each sufficiently large m and
condition (8) holds.

Remark 1. If problem (1), (2) is strongly well-posed, then it is weakly well-posed, as well, because∥∥V1(Φ, A∗, fm − f)(t, τ)
∥∥ ≤

∥∥Φ−1(t)(fm(t)− f(t))− Φ−1(τ)(fm(τ)− f(τ))
∥∥

+
∥∥V2(Φ, A∗, fm − f)(t, τ)

∥∥ for a ≤ t < τ < b.

Definition 3. We say that the sequence (Am, fm) (m = 1, 2, . . . ) belongs to the set SA∗(A, f ; Φ, b),
i.e., (

(Am, fm)
)+∞
m=1

∈ SA∗(A, f ; Φ), (9)

if problem (3), (2) has the unique solution xm for each sufficiently large m and condition (8) holds.

Let I(δ) = [b− δ, b[ for every δ > 0.
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Theorem 1. Let there exist nonnegative constant n× n matrices B0 and B such that

r(B) < 1, (10)

the estimates |C∗(t, τ)| ≤ Φ(t)B0Φ
−1(τ) for b− δ ≤ t ≤ τ < b and∣∣∣∣

b−∫
t

|C∗(t, s)| dV(A(A∗, A−A∗))(s) · Φ(s)
∣∣∣∣ ≤ H(t)B for t ∈ I(δ)

fulfilled for some δ > 0. Let, moreover,

lim
t→b−

∥∥∥∥
b−∫
t

Φ−1(t)C∗(t, τ) dA(A∗, f)(τ)

∥∥∥∥ = 0.

Then problem (1), (2) is weakly Φ-well-posed with respect to A∗.

Theorem 2. Let there exist a constant matrix B = (bik)
n
i,k=1 ∈ Rn×n

+ such that conditions (10)
and [

(−1)jdjaii(t)
]
+
> −1 for t ∈ I (j = 1, 2; i = 1, . . . , n)

hold, and the estimates

ci(t, τ) ≤ b0
hi(t)

hi(τ)
for b− δ ≤ t ≤ τ < b (i = 1, . . . , n);

∣∣∣∣
b−∫
t

ci(t, τ)hi(τ) d[aii(τ)]
v
−

∣∣∣∣ ≤ bii hi(t) for t ∈ I(δ) (i = 1, . . . , n),

∣∣∣∣
b−∫
t

ci(t, τ)hk(τ) dV(A(a∗ii, aik))(τ)

∣∣∣∣ ≤ bikhi(t) for t ∈ I(δ) (i ̸= k; i, k = 1, . . . , n)

fulfilled for some b0 > 0 and δ > 0. Let, moreover,

lim
t→b−

b−∫
t

ci(t, τ)

hi(t)
dV(A(a∗ii, fi))(τ) = 0 (i = 1, . . . , n),

where a∗ii(t) ≡ [aii(t)]
v
+ (i = 1, . . . , n), and ci is the Cauchy function of the equation dx =

x da∗ii(t). Then problem (1), (2) is weakly Φ-well-posed with respect to the matrix-function A∗(t) ≡
diag(a∗11(t), . . . , a∗nn(t)).

Theorem 3. Let conditions of Theorem 1 be fulfilled and let there exist a sequence of non-
degenerated matrix-functions Hm ∈ BVloc([a, b[;Rn×n) (m = 1, 2, . . . ) such that

lim
m→+∞

∥∥Φ−1(t)H−1
m (t)Φ(t)− In

∥∥ = 0, (11)

lim
m→+∞

∥∥V1(Φ, A∗, A
∗
m −A)(t, b−)

∥∥ = 0, (12)

lim
m→+∞

∥∥V2(Φ, A∗, f
∗
m − f)(t, b−)

∥∥ = 0, (13)

lim
m→+∞

∥∥Φ−1(t)(f∗
m(t)− f(t))− Φ−1(b−)(f∗

m(b−)− f(b−))
∥∥ = 0 (14)

hold uniformly on I, where A∗
m(t) ≡ I(Hm, Am)(t) and f∗

m(t) ≡ B(Hm, fm)(t). Then inclusion
((A∗

m, f∗
m))+∞

m=1 ∈ SA∗(A, f ; Φ) holds.
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Theorem 3 has the following form for Hm(t) ≡ In (m = 1, 2, . . . ).

Corollary 1. Let conditions of Theorem 1 be fulfilled and conditions (5)–(7) hold uniformly on I.
Then inclusion (9) holds.

Theorem 4. Let conditions of Theorem 1 be fulfilled and let, moreover,

∥B0∥ ∥(In −B)−1∥ < 1 (15)

and

lim sup
t→b−

∥∥∥∥Φ−1(t)

b−∫
t

dV (A)(s) · Φ(s)
∥∥∥∥ < +∞.

Then inclusion (9) holds if and only if there exist the sequence of matrix functions Hm ∈
BVloc(I;Rn×n) (m = 1, 2, . . . ) such that

lim sup
t→b−

∥∥∥∥
b−∫
t

Φ−1(s) dV(A(A∗, A∗))(s) · Φ(s)
∥∥∥∥ < +∞ for a ≤ t < τ < b,

lim sup
t→b−

(
∥Φ−1(t)(f∗

m(t)− f(t))∥+
∥∥∥∥Φ−1(t)

b−∫
t

dV(A)(s) · |f∗
m(s)− f(s)|

∥∥∥∥) = 0 (16)

and conditions (11)–(14) hold uniformly on I, where the matrix- and vector functions A∗
m and f∗

m

(m = 1, 2, . . . ) are defined as in Theorem 3.

Theorem 4′. Let conditions of Theorem 4 be fulfilled. Then inclusion (9) holds if and only if
conditions (13), (14) and

lim
m→+∞

∥∥Φ−1(t)(Xm(t)−X0(t))
∥∥ = 0

hold uniformly on I, where X0, Xm are the fundamental matrices of systems (1), (3), respectively,
and f∗

m(t) ≡ B(X0X
−1
m , fm)(t) (m = 1, 2, . . . ).

Remark 2. In Theorem 4, condition (15) is essential and it cannot be neglected, i.e., if the
condition is violated, then the conclusion of the theorem is not true, in general. Below we present
an example.

Let I = [0, 1], n = 1, b = 1, B = 0, B0 = 1, Φ(t) ≡ 1−t; A(t) = Am(t) = A∗(t) ≡ ln(1−t) (m =
1, 2, . . . );

f(t) ≡ 0, fm(t) ≡ − 1

m

t∫
0

cos
ln(1− t)

m
(m = 1, 2, . . . ).

Then C∗(t, τ) ≡ 1− t(1 − τ)−1, x0(t) ≡ 0, xm(t) ≡ (1 − t) sin ln(1−t)
m (m = 1, 2, . . . ). So, all

conditions of Theorem 4 are fulfilled, except of (15), but condition (8) is not fulfilled uniformly
on I.
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