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Existence of Bounded Solutions of a Dynamic Equation
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1 Basic concepts of the theory of time scales
A time scale T is an arbitrary nonempty closed subset of the real line R. Assume T has the topology
that it inherits from R with the standard topology.

Since the object of our study is the oscillations of solutions of dynamic equations, we will assume
supT = ∞. For any interval [a, b] ⊂ R we define [a, b]T = [a, b] ∩ T.

For a time scale T, the forward jump operator σ(t) : T → T is defined as σ(t)=inf{s∈T : s> t};
the backward jump operator ρ(t) : T → T is defined as ρ(t) = sup{s ∈ T : s < t}. The graininess
function µ : T → [0, 1) is defined as µ(t) := σ(t)− t.

A point t ∈ T is called right-dense if t > inf T and ρ(t) = t. A point t ∈ T is called left-dense if
t < supT and σ(t) = t. Points that are right- and left-dense at the same time are called dense.

If σ(t) > t (ρ(t) < t), we say that t is right-scattered (left-scattered). Points that are right- and
left-scattered at the same time are called isolated points.

If T has a left-scattered maximum M , then we define Tk = T \ {M}; otherwise, Tk = T.
A function f : T → Rd is called ∆-differentiable at t ∈ Tk if there exists the finite in Rd limit

f∆(t) = lim
s→t

f(σ(t))− f(t)

σ − t
,

and the number f∆(t) is called the ∆-derivative at the point t.
We cite some known results [1]:

(a) If t ∈ Tk is a right-dense point of a time scale T, then f is ∆-differentiable at t iff the limit

f∆(t) = lim
s→t

f(t)− f(s)

t− s

exists in Rd.

(b) If t ∈ Tk is a right-scattered point of a time scale T and f is continuous at t, then f is
∆-differentiable at t and

f∆(t) =
f(σ(t))− f(t)

µ(t)
.
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2 Problem statement and auxiliary results
We consider the system of differential equations

dx

dt
= X(t, x), (2.1)

where x ∈ D, D ⊂ Rd, and the corresponding system of dynamic equations

x∆λ = X(t, xλ), (2.2)

where t ∈ Tλ, λ ∈ Λ ⊂ R, λ = 0 is a limit point of the set Λ, xλ : Tλ → Rd, and x∆λ (t) is the
∆-derivative of xλ(t) in Tλ.

Assume that X(t, x) is continuously differentiable and bounded with its partial derivatives, i.e.
there exists C > 0 such that

|X(t, x)|+
∣∣∣∂X(t, x)

∂t

∣∣∣+ ∥∥∥∂X(t, x)

∂x

∥∥∥ ≤ C (2.3)

for t ∈ Tλ and x ∈ D. Here ∂X
∂x is the corresponding Jacobian matrix, | · | is the Euclidian norm

of a vector, and ∥ · ∥ is the norm of a matrix.
Let µλ := sup

t∈Tλ

µλ(t), where µλ : Tλ → [0,∞) is the graininess function. If µλ → 0 as λ → 0,

then Tλ approaches the continuous time scale T0 = R. Therefore, it is natural to expect that, under
certain conditions, the existence of a bounded solution of equation (2.1) implies the existence of a
bounded solution of equation (2.2) on the time scale Tλ.

Let t0, t0 + T ∈ Tλ, and let x(t) and xλ(t) be solutions of (2.1) and (2.2) on [t0, t0 + T ] and on
[t0, t0 + T ]Tλ

, respectively, with initial conditions x(t0) = x0, xλ(t0) = xλ0.

Lemma 2.1 ( [3]). If xλ and x(t) are the corresponding solutions of (2.2) and (2.1), then the
inequality

|x(t)− xλ(t)| ≤ µ(λ)K(T ) (2.4)
holds for t ∈ [t0, t0 + T ]Tλ

. Here

µ(λ) = sup
t∈[t0,t0+T ]Tλ

µλ(t), K(T ) = max{L1, L2},

L1 = µλ

(
ΠeCC1 +

1

4
ΠC2

1e
C
)
, L2 = µλ

(
ΠeC

(
C1 +

C2
1

4

)
+ 3C1

)
.

Under condition (2.3), the following statement holds.

Lemma 2.2 ([3]). A solution xλ of system (2.2) continuously depends on the initial data until the
moment it leaves the region D.

We also give the definition of the exponential stability for solutions of dynamic equations on
time scales which is similar to the definition of the exponential stability for solutions of differential
equations [2].

Definition 2.1. A solution xλ(t) of system (2.2), defined on Tλ, is called exponentially stable,
uniformly in t0, if there exist δ > 0, N > 0 and α > 0 such that for any solution yλ(t) of system
(2.2), satisfying

|xλ(t0)− yλ(t0)| < δ,

the inequality
|xλ(t)− yλ(t)| ≤ Ne−α(t−t0)

∣∣xλ(t0)− yλ(t0)
∣∣

holds for t ≥ t0. Here the constants δ, N and α are independent of t0.
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3 Main results
We found the minimum conditions on the graininess function µ0 under which the existence of a
bounded solution of the dynamical system (2.2) on the corresponding time scale Tλ0 implies the
existence of a bounded solution of this system on any scale whose graininess function is less than
µ0.

Theorem 3.1. Let the following conditions be satisfied:

(1) X(t, x) is defined and continuously differentiable for t ∈ R, x ∈ D, where D is a domain in
the space Rd, and satisfies condition (2.3).

(2) There exists µ0 > 0 such that system (2.2) has a bounded on Tλ0 and exponentially stable,
uniformly in t0, solution xλ0(t), which belongs to D together with some its ρ-neighborhood.

Then, if the inequalities

µ0K
( ln 4N

α
+ 1

)
≤ δ

8
, (3.1)

3Nδ

2
< ρ, (3.2)

µ0 ≤
ρ

4C
(3.3)

hold, where δ, N and α are the constants from Definition 2.1 and C is from condition (2.3), then,
for all µλ satisfying µλ < µ0, system (2.2) has a solution bounded on Tλ.

Proof. Without loss of generality, we set t0 = 0 and xλ(0) = x(0).
It follows from condition (2) of this theorem that, for µλ = µ0, system (2.2) has an exponentially

stable, uniformly in tk0 , solution xλ0 , which belongs to D together with some its ρ-neighborhood.
Hence, there exists a constant C0 > 0 such that

|xλ0(tk)| ≤ C0 for an arbitrary tk ∈ Tλ0.

Let tk0 be the smallest number on the time scale Tλ0 , defined by the graininess function µ0,
such that tk0 ≥ ln 4N

α . Clearly, tk0 ≤ ln 4N
α + 1.

Now we fix 0 < µλ < µ0 and denote by xλ solutions of system (2.2) on the corresponding time
scale Tλ.

Let us consider points t ∈ [0, tk0 ]Tλ
. For every t one can indicate the smallest number tk on the

scale Tλ0 such that
0 ≤ tk − t ≤ µ0.

Let xλ be a solution of system (2.2) such that xλ(0) = xλ0(0). We denote by x(t) the solution
of system (2.1) with the initial data x(0) = xλ0(0). We can show that x(t) can be continued to the
interval [0, tk0 ]. Indeed, in view of inequality (3.3) and Lemma 2.1, it follows from Picard’s theorem
that x(t) is defined at each point nµ0 ≤ tk0 , n ∈ N, and takes on the values which belong to D
together with their ρ

2 -neighborhoods. Thus, the solution x(t) is continued to the whole interval
[0, tk0 ] and belongs to D together with its ρ

2 -neighborhood. It follows from (2.4) and (3.1) that the
solution xλ of system (2.2) is defined for all t ∈ Tλ that do not exceed tk0 ∈ Tλ0 , and belongs to
the domain D.

Further, we partition the axis into the intervals [ntk0 , (n + 1)tk0 ] and denote by tn the largest
numbers in Tλ such that tn ≤ ntk0 . Let us examine how the solution xλ(t) of equation (2.2),
starting at tn, n ∈ N, behaves on [tn, (n+ 1)tk0)]Tλ

.
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Let us now construct a solution of equation (2.2) which is bounded on the whole axis of the
timescale Tλ.

Let xλ,t∗ be such a solution of equation (2.2) which starts at a point t∗ of Tλ, t ≥ t∗, and
xλ,t∗(t

∗) = xλ(t
∗).

For each t∗ we choose the smallest non-negative number t̃λ0 ∈ Tλ0 such that t∗ ≤ t̃λ0 ≤ t∗ +µ0.

We now consider a solution xλ,t∗(t) such that |xλ,t∗(t∗)−xλ0(t̃λ0)| ≤ 3δ
4 , where xλ0 is a bounded

solution of equation (2.2) on the timescale Tλ0 with the graininess function µλ = µ0, which is
indicated in the statement of this theorem.

We partition the left semi-axis of the timescale Tλ into the intervals [−ntk0 ,−(n+ 1)tk0 ], n →
−∞. For each point −ntk0 we choose the largest tn ∈ Tλ such that

tn ≤ −ntk0 ≤ tn + µ0.

The point t0 is chosen in the same way.
Let us now consider the set of solutions xλ,tn of equation (2.2), whose initial data satisfy the

inequality ∣∣xλ,tn(tn)− xλ0(−ntk0)
∣∣ ≤ 3δ

4
.

Obviously, these solutions satisfy conditions 1◦–3◦. Let Sn be the set of values of these solutions
at tn. Each Sn is the image of the ball of radius 3δ

4 centered at the point xλ0(−ntk0), generated by
the mapping xλ,tn . By Lemma 2.2 and conditions 1◦-3◦, each set Sn is a nonempty subset of Sn−1

and a compact.
Let us denote z =

⋂
n
Sn and consider the solution xλ,t1 of equation (2.2) with the initial condition

xλ,t1(t1) = z. This solution can be continued to the left to the point tn, at which it belongs to
the 3δ

4 -neighborhood of xλ0(tn) for every natural n. It means that this solution is defined for all t
satisfying the inequality in 3◦. Hence, it is bounded. This proves that system (2.2) has a bounded
solution, defined on Tλ.

The following statement provides the conditions for the existence of a solution of system (2.2)
bounded on Tλ given the existence of such a solution of the corresponding system (2.1).

Theorem 3.2. Let the following conditions be satisfied:

(1) X(t, x) is defined and continuously differentiable for t ∈ R, x ∈ D, where D is a domain in
Rd, and satisfies condition (2.3).

(2) System (2.1) has a bounded on R and exponentially stable, uniformly in t0 ∈ R, solution x(t),
which belongs to D together with some its ρ-neighborhood.

Then there exists µ0 such that for all 0 < µλ ≤ µ0 system (2.2) has a solution xλ(t) bounded on
Tλ. Moreover,

sup
t∈Tλ

|xλ(t)− x(t)| → 0, µλ → 0.

The existence of µ0 > 0, such that for all 0 < µλ ≤ µ0 system (2.2) has a solution xλ(t) bounded
on Tλ, follows from Theorem 2.3 [3].

We also obtained the opposite result.

Theorem 3.3. Let the following conditions be satisfied:

(1) the function X(t, x) satisfies condition (1) of Theorem 3.1;
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(2) there exists µ0 > 0 such that system (2.2) with initial data at the point t0 = 0 has a solution,
bounded on Tλ0 and uniformly in k0 exponentially stable, which belongs to D with some its
ρ-neighborhood.

Then, if inequalities (3.1)–(3.3) hold, then system (2.1) has a solution bounded on R.

The proof of this theorem is based on the reasoning in the proof of Theorem 3.1.
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