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In the paper, the nonlinear controlled functional integral equation corresponding to the quasi-
linear neutral functional differential equation with two types controls is constructed. A structure
and properties of the integral kernel are established. Equivalence of the functional integral equa-
tion and the neutral functional differential equation is established also. We note that theorems
formulated below play a principal role in the study of well-posedness of Cauchy’s problem for the
quasi-linear neutral functional differential equations. In details, about of this investigations for the
quasi-linear neutral functional differential equations without control are given in [1-3].

Let Rn
x be the n-dimensional vector space of points x = (x1, . . . , xn)T , where T is the sign of

transposition; let I = [t0, t1] be a fixed interval and let τ > 0 be a given number, with t0+τ < t1; the
n × n-dimensional matrix-function A(t, x, y, v) and the n-dimensional vector-function f(t, x, y, u)
are continuous and bounded on the set I × Rn

x × Rn
x × Rm

v and I × Rn
x × Rn

x × Rr
u, respectively,

and satisfy Lipschptz’s condition with respect to (x, y, v) and (x, y, u), i.e. there exist LA > 0 and
Lf > 0 such that∣∣A(t, x1, y1, v1)−A(t, x2, y2, v2)

∣∣ ≤ LA

(
|x1 − x2|+ |y1 − y2|+ |v1 − v2|

)
∀ t ∈ I, (xi, yi, vi) ∈ Rn

x × Rn
x × Rm

v , i = 1, 2,

and ∣∣f(t, x1, y1, u1)− f(t, x2, y2, u2)
∣∣ ≤ Lf

(
|x1 − x2|+ |y1 − y2|+ |u1 − u2|

)
∀ t ∈ I, (xi, yi, ui) ∈ Rn

x × Rn
x × Rr

u, i = 1, 2.

Further, denote by V and Ω the sets of piecewise-continuous control functions v(t) ∈ Rm
v with

finitely many discontinuous of the first kind and bounded measurable control functions u(t) ∈ Rr
u,

respectively, equipped with the norm

∥v∥ = sup
{
|v(t)| : t ∈ I

} (
∥u∥ = sup

{
|u(t)| : t ∈ I

})
;

φ(t) ∈ Rn
x, t ∈ [t0 − τ, t0] is a given continuously differentiable initial function; x0 ∈ Rn

x is a given
initial vector.

Let us consider the quasi-linear controlled neutral functional differential equation

ẋ(t) = A
(
t, x(t), x(t− τ), v(t)

)
ẋ(t− τ) + f

(
t, x(t), x(t− τ), u(t)

)
, t ∈ I (1)

with the initial condition
x(t) = φ(t), t ∈ [τ̂ , t0), x(t0) = x0, (2)

where τ̂ = t0 − τ .
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Definition 1. Let w = (v(t), u(t)) ∈ W = V × Ω. A function x(t) = x(t;w), t ∈ I1 = [τ̂ , t1], is
called a solution of equation (1) with the initial condition (2), if it satisfies condition (2) and is
absolutely continuous on the interval I and satisfies equation (1) almost everywhere on I.

Theorem 1. For any w ∈ W there exists the unique solution x(t) = x(t;w), t ∈ I1.

Theorem 2. The solution x(t), t ∈ I1 of problem (1), (2) can be represented on the interval I in
the following form

x(t) = x0 +

t0∫
t0−τ

Y
(
ξ + τ ; t, x( · ), v( · )

)
A
(
ξ + τ, x(ξ + τ), x(ξ), v(ξ + τ)

)
φ̇(ξ) dξ

+

t∫
t0

Y
(
ξ; t, x( · ), v( · )

)
f
(
ξ, x(ξ), x(ξ − τ), u(ξ)

)
dξ,

where
x(ξ) = φ(ξ), ξ ∈ [τ̂ , t0)

and Y (ξ, t, x( · ), v( · )) is the matrix-function satisfying the difference equation

Y (ξ; t, x( · ), v( · )) = E + Y
(
ξ + τ ; t, x( · ), v( · )

)
·A

(
ξ + τ, x(ξ + τ), x(ξ), v(ξ + τ)

)
(3)

on (t0, t) for any fixed t ∈ (t0, t1] and the condition

Y (ξ; t, x( · ), v( · )) =

{
E, ξ = t,

Θ, ξ > t.

Here, E is the identity matrix and Θ is the zero matrix.

The expression

y(t) = x0 +

t0+τ∫
t0

Y
(
ξ; t, y( · ), v( · )

)
A
(
ξ, y(ξ), y(ξ − τ), v(ξ)

)
φ̇(ξ − τ) dξ

+

t∫
t0

Y
(
ξ; t, y( · ), v( · )

)
f
(
ξ, y(ξ), y(ξ − τ), u(ξ)

)
dξ (4)

with the condition
y(ξ) = φ(ξ), ξ ∈ [τ̂ , t0) (5)

is called the functional integral equation corresponding to problem (1), (2).

Definition 2. Let w ∈ W . A function y(t) = y(t;w), t ∈ I1, is called a solution of equation
(4) with condition (5), if it satisfies condition (5) and is continuous on the interval I and satisfies
equation (4) everywhere on I.

Theorem 3. Let t ∈ (t0, t1] be a fixed point. The solution of the difference equation (3) can be
represented by the following formula

Y (ξ; t, x( · ), v( · )) = χ(ξ; t)E +
k∑

i=1

χ(ξ + iτ ; t)
1∏

q=i

A
(
ξ + qτ, x(ξ + qτ), x(ξ + (q − 1)τ), v(ξ + qτ)

)
,
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where

χ(ξ; t) =

{
1, t0 ≤ ξ ≤ t,

0, ξ > t

and k is a minimal natural number satisfying the condition

t1 − kτ < t0.

Theorem 4. Let s1, s2 ∈ (t0, t1] and 0 < s2 − s1 < τ . Let y(t), t ∈ I be a continuous function.
Then there exist subintervals I1(s1, s2) ⊂ I and I2(s1, s2) ⊂ I such thatY

(
ξ; s1, y( · ), v( · )

)
= Y

(
ξ; s2, y( · ), v( · )

)
, ξ ∈ I1(s1; s2),

Y
(
ξ; s1, y( · ), v( · )

)
̸= Y

(
ξ; s2, y( · ), v( · )

)
, ξ ∈ I2(s1; s2),

with
lim

s2−s1→0
mes I2(s1, s2) → 0.

Theorem 5. Let y(t) ∈ Rn, t ∈ [τ̂ , t1] be a given piecewise-continuous function, with y(ξ) = φ(ξ),
ξ ∈ [τ̂ , t0); v(t) ∈ V and u(t) ∈ Ω. Then the function

z(t) = x0 +

t0+τ∫
t0

Y
(
ξ; t, y( · ), v( · )

)
A
(
ξ, y(ξ), y(ξ − τ), v(ξ)

)
φ̇(ξ − τ) dξ

+

t∫
t0

Y
(
ξ; t, y( · ), v( · )

)
f
(
ξ, y(ξ), y(ξ − τ), u(ξ)

)
dξ

is continuous on the interval I.

Theorem 6. Let yi(t) ∈ Rn
x, t ∈ I, i = 1, 2 be continuous functions and vi(t) ∈ V , i = 1, 2. Then

for a fixed (ξ, t) ∈ I2,∣∣∣Y (
ξ; t, y1( · ), v1( · )

)
− Y

(
ξ; t, y2( · ), v2( · )

)∣∣∣
≤ LA

k∑
i=1

χ(ξ + iτ ; t)∥A∥i−1

( 1∑
q=i

[∣∣y1(ξ + qτ)− y2(ξ + qτ)
∣∣

+
∣∣y1(ξ + (q − 1)τ)− y2(ξ + (q − 1)τ)

∣∣+ ∣∣v1(ξ + qτ)− v2(ξ + qτ)
∣∣]),

where
∥A∥ = sup

{
|A(t, x, y, v)| : (t, x, y, v) ∈ I ×Rn

x ×Rn
x ×Rm

v

}
.

Theorem 7. Let yi(t) ∈ Rn
x, t ∈ I, i = 0, 1, . . . be continuous functions and vi(t) ∈ V , i = 0, 1, . . . ,

with
∥yi − y0∥ → 0, ∥vi − v0∥ → 0,

Then
t∫

t0

Y
(
ξ; t, yi( · ), vi( · )

)
dξ −→

t∫
t0

Y
(
ξ; t, y0( · ), v0( · )

)
dξ

uniformly for t ∈ I.
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Theorem 8. The functional integral equation (4) with condition (5) has the unique solution.

Theorem 9. The quasi-linear neutral functional differential equation (1) and the functional integral
equations (4) are equivalent.

Remark. The analogous theorems for the case, where A(t, x, y, v) ≡ A(t) and functional integral
equation (3) depends on the one control function, are proved in [1, 3, 4] and [2], respectively.

Conclusion
On the basis of the given theorems, it can be investigated continuous dependence of a solution of
the quasi-linear controlled neutral functional differential equation (1) with respect to perturbations
of the initial data. In future work the case, where a controlled functional integral equation contains
several variable delays, will be considered.
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