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For a given zero neighborhood G in the Euclidean space Rn, we consider a nonlinear, generally
speaking, differential system of the form

ẋ = f(t, x), f(t, 0) = 0, t ∈ R+ ≡ [0,+∞), x ∈ G, (1)

where the right-hand side satisfies the condition f, f ′
x ∈ C(R+×G) and the zero solution is allowed.

We associate with system (1) the linear homogeneous system of its first approximation

ẋ = A(t)x ≡ f′(t, x), A(t) ≡ f ′
x(t, 0), t ∈ R+, x ∈ Rn, (2)

for which we do not require here the uniformity in t ∈ R+ of the natural (pointwise) smallness of
the nonlinear addition

h(t, x) ≡ f(t, x)−A(t)x = o(x), x → 0.

Denote by xf ( · , x0) and S∗(f) or Sδ(f) a non-extendable solution of system (1) with the initial
condition xf (0, x0) = x0 and sets of solutions with initial values x0, satisfying the conditions |x0| ̸= 0
or, respectively, 0 < |x0| < δ.

Definition 1. Wandering functional P(u, t), defined for numbers t ∈ R+ and continuously-diffe-
rentiable functions u : [0, t] → Rn \ {0}, is given by the formula

P(t, u) ≡
t∫

0

∣∣∣( u(τ)

|u(τ)|

)·∣∣∣ dτ, τ ∈ [0, t],

adding that whenever the function u is not defined on the entire segment [0, t], it takes the value
+∞. For each system (1), momentum t ∈ R+, and non-degenerate transformation L ∈ AutRn we
define the values of the lower and the upper ball wandering functionals, given respectively by the
equalities

P̌b(f, t, L) ≡ lim
x0→0

P(t, Lxf ( · , x0)), P̂b(f, t, L) ≡ lim
x0→0

P(t, Lxf ( · , x0)). (3)

Lower weak ρ̌ ◦
b (f) and strong ρ̌ •

b (f) ball wandering indicators of system (1) are given by the formulas

ρ̌ ◦
b (f) ≡ lim

t→+∞
inf

L∈AutRn
t−1P̌b(f, t, L), ρ̌ •

b (f) ≡ inf
L∈AutRn

lim
t→+∞

t−1P̌b(f, t, L), (4)

and upper weak ρ̂ ◦
b (f) and strong ρ̂ •

b (f) ball wandering indicators – by the same formulas (4)
respectively, but with the upper limits at t → +∞ instead of the lower ones

ρ̂ ◦
b (f) ≡ lim

t→+∞
inf

L∈AutRn
t−1P̂b(f, t, L), ρ̂ •

b (f) ≡ inf
L∈AutRn

lim
t→+∞

t−1P̂b(f, t, L). (5)
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The indicators ρ̌ ◦
b (f) and ρ̂ •

b (f) turn out to be respectively the smallest and the largest of four
ball wandering indicators (4), (5) of system (1) introduced in Definition 1.

Other functionals are also known that are responsible for similar properties of solutions not
related to their norm (see, for example, [1–3]): the oscillation or the oriented, non-oriented, fre-
quency and flat rotation, as well as the rotation of the given rank. In addition to the ball indicators,
we can also consider the spherical or the radial ones [4].

The total wandering of a differential system defined below (near its zero solution, which we will
not mention further for brevity) remotely resembles Lyapunov stability. In contrast to stability,
wandering does not mean that all solutions that start close enough to zero remain forever in its
given neighborhood, but that their average (in time) angular velocity is positive and even separated
from zero (uniformly in all these solutions at once). However, in the nonlinear case, the matter
is complicated by the fact that the solutions mentioned may not be defined on the entire time
semiaxis. The situation is similar with complete nonwandering.

Definition 2. We say that system (1) has:

1) complete wandering if there exist ε > 0 and T ∈ R+ such that for each L ∈ AutRn and t > T
the estimate holds

P̌(f, t, L) > εt;

2) complete nonwandering if for any ε > 0 there exist T ∈ R+ and L ∈ AutRn, that for every
t > T the estimate holds

P̂(f, t, L) < εt.

Whether a system is completely wandering or nonwandering is uniquely determined by the signs
of its corresponding ball wandering indicators.

Theorem 1. The complete wandering and the complete nonwandering of system (1) are equivalent
to the positiveness of its lower ball wandering indicator

ρ̌ ◦
b (f) > 0

and, respectively, to the equality to zero of its upper ball wandering indicator

ρ̂ •
b (f) = 0.

All the ball wandering indicators of a system coincide with the corresponding indicators of the
system of its first approximation (which are calculated much easier, since in the case of a linear
system in formulas (3) the lower and upper limits at x0 → 0 can be replaced by the exact lower
and upper bounds over all x0 ̸= 0, respectively).

Theorem 2. For any system (1) and system (2) of its first approximation, the equalities hold

ρ̃ ∗
b (f) = ρ̃ ∗

b (f′), ˜=ˇ,ˆ, ∗ = ◦, •.

Thus, both the complete wandering and the complete nonwandering of a nonlinear system are
uniquely determined by the system of its first approximation.

Theorem 3. The complete wandering and the complete nonwandering of system (1) are equivalent
to the positiveness of the indicator of system (2) of its first approximation

ρ̌ ◦
b (f′) > 0

and, accordingly, to the equality to zero of the indicator of system (2)

ρ̂ •
b (f′) = 0.
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Definition 3 ([4]). For a system (1) and for its nonzero solution x ∈ S∗(f) defined on the whole
semiaxis R+, we define:

(a) lower weak and strong wandering indicators – by the formulas

ρ̌ ◦(x) ≡ lim
t→+∞

inf
L∈AutRn

t−1P(t, Lx), ρ̌ •(x) ≡ inf
L∈AutRn

lim
t→+∞

t−1P(t, Lx); (6)

(b) upper weak and strong wandering indicators – by the same formulas (6) respectively, but with
the upper limits at t → +∞ instead of the lower ones

ρ̂ ◦(x) ≡ lim
t→+∞

inf
L∈AutRn

t−1P(t, Lx), ρ̂ •(x) ≡ inf
L∈AutRn

lim
t→+∞

t−1P(t, Lx); (7)

(c) exact or absolute varieties of indicators (4)–(7) that arise when the corresponding values of
the lower and upper indicators or, respectively, weak and strong ones coincide: in the first
case, we will omit the checkmark and the cap in their designation, and in the second one –
an empty and full circle.

Surprisingly, the presence of a complete wandering system does not mean that it has at least one
solution with a positive wandering indicator, and vice versa, the presence of complete nonwandering
system does not mean that it has at least one solution with a zero wandering indicator.

Theorem 4. For n = 2, there exist two Lyapunov stable systems (1), which, like all their nonzero
solutions defined on the entire semiaxis R+, have exact absolute wandering indicators: one of these
systems has complete wandering, is periodic, and satisfies the conditions

ρb(f) = 1 > 0 = ρ(x), x ∈ S∗(f),

while the other system has complete nonwandering and satisfies the conditions

ρb(f) = 0 < 1 = ρ(x), x ∈ S∗(f).
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