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We suppose that A and B are (m×n)-measurable matrices and Z(z, ε) is an n measurable vector
function. We will call a weakly nonlinear autonomous periodic differential-algebraic boundary-value
problem the problem of finding solutions [6]

z(t, ε) : z( · , ε) ∈ C1[a, b(ε)], z(t, · ) ∈ C[0, ε0], b(0) := b∗

of the differential-algebraic system

Az′ = B z + εZ(z, ε), (1)

satisfying the boundary condition
ℓz( · , ε) = α. (2)

Here, ℓz( · , ε) is a linear bounded vector functional

ℓz( · , ε) : C[a, b(ε)] → Rq.

We seek solutions of problem (1), (2) in a small neighborhood of the solution z0(t) ∈ C1[a, b∗] of
the generating Noether (q ̸= n) differential-algebraic boundary-value problem

Az′0 = B z0, ℓz0( · ) = α ∈ Rq. (3)

We assume that the vector function Z(z, ε) is a continuously differentiable with respect to the
unknown z(t, ε) in a small neighborhood of the solution of the generating problem and continuously
differentiable with respect to the small parameter ε in a small positive neighborhood of zero. The
matrix A is generally assumed to be rectangular m ̸= n, or square, but degenerate. Under the
condition

PA∗ = 0 (4)

the generating system (3) is reduced to the traditional system of ordinary differential equations [2]

z′0 = A+B z0 + PAρ0
ν0(t). (5)

Moreover, A+ is a pseudoinverse (by Moore–Penrose) matrix, PA∗ is a matrix orthoprojector

PA∗ : Rm → N(A∗),
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PAρ0
is an (n × ρ0) matrix formed by ρ0 linearly independent columns of the (n × n) matrix

orthoprojector
PA : Rn → N(A),

ν0(t) ∈ Rρ0 is an arbitrary continuous vector function. Under the condition (4) system (1) will be
called nondegenerate. Suppose that the boundary-value problem for system (3) corresponds to a
critical case

PQ∗ ̸= 0, Q := ℓX0( · ).

In the critical case for a fixed vector function ν0(t) ∈ C[a, b∗] under the condition

PQ∗
d

{
α− ℓK

[
PAρ0

ν0(s)
]
( · )

}
= 0 (6)

the generating problem (3) has an r parametric family of solutions [3]

z0(t, cr) = Xr(t)cr +G
[
PAρ0

ν0(s)
]
(t), cr ∈ Rr.

Here, X0(t) is the normal (X0(a) = In) fundamental matrix of the homogeneous part of the
differential system (5). Moreover,

G
[
PAρ0

ν0(s)
]
(t) := X0(t)Q

+ℓK
[
PAρ0

ν0(s)
]
( · ) +K

[
PAρ0

ν0(s)
]
(t)

is the generalized Green’s operator of the generating periodic differential-algebraic boundary-value
problem (3) and

K
[
PAρ0

ν0(s)
]
(t) := X0(t)

t∫
a

X−1
0 (s)PAρ0

ν0(s) ds

is the generalized Green’s operator of the Cauchy problem z(a) = 0 for the differential-algebraic
system (3). The matrix PQ∗

d
formed by d linearly independent rows of the matrix orthoprojector

PQ∗ , and the matrix PQr formed by r linearly independent columns of the matrix orthoprojector
PQ. Under condition (4) system (1) is reduced to the traditional system of the ordinary differential
equations

z′ = A+B z + PAρ0
ν0(t) + εA+Z(z, ε). (7)

The boundary-value problem for the nondegenerate differential-algebraic system (6) differs signif-
icantly from similar nonautonomous boundary-value problems depending on an arbitrary vector
function ν0(t) ∈ C[a, b∗]. In exceptional cases, the autonomous boundary-value problem (1), (2) is
solvable on a segment of fixed length.

As is known [7], an autonomous boundary-value problem for system (7) differs significantly
from similar nonautonomous boundary-value problems. Unlike the latter, the right end b(ε) of
the interval [a, b(ε)], on which we are finding solution of the nonlinear boundary-value problem for
system (7), is unknown and must be defined in the process of constructing the solution itself. Let’s
use the technique [6, 7] which consists in defining the unknown function

b(ε) = b∗ + ε(b∗ − a)β(ε)

in terms of the new unknown
β(ε) ∈ C[0, ε0], β(0) := β∗.

The function β(ε) is to be determined in the process of finding a solution of the boundary-value
problem for system (7). The essence of the reception is to replace the independent variable

t = a+ (τ − a)
(
1 + εβ(ε)

)
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and finding a solution for the nonlinear boundary-value problem (2), (7) and the function β(ε) as
a function of a small parameter. In the critical case, under the condition (6) for a fixed function
ν0(τ) the condition of solving of the nonlinear boundary-value problem (2), (7) takes the form [6]

PQ∗
d

{
(1+εβ(ε))α−ℓK

[
β(ε)

(
A+B z(s, ε)+PAρ0

ν0(s)
)
+(1+εβ(ε))A+Z(z(s, ε), ε)

]
( · )

}
= 0. (8)

Using the continuously of the nonlinear vector function Z(z(t, ε), ε) on ε in a small positive neigh-
borhood of zero, we pass to the boundary for ε → 0 in equality (8) and obtain the necessary
condition

F (č0) := PQ∗
d

{
α− ℓK

[
β∗(A+B z0(s, c

∗
r) + PAρ0

ν0(s)
)
+A+Z(z0(s, c

∗
r), 0)

]
( · )

}
= 0 (9)

for the existence of a solution of the boundary-value problem (1), (2) in a critical case. Here,

č0 :=

(
c∗r
β∗

)
∈ Rr+1.

Thus, the following lemma is proved.

Lemma. Suppose that the autonomous differential-algebraic boundary-value problem (1), (2) for a
fixed constant ν0 ∈ Rρ0 under conditions (4) and (6) corresponds to the critical case PQ∗ ̸= 0 and
has the solution z(t, ε), that for ε = 0 is transformed into generating z(t, 0) = z0(t, c

∗
r). Then the

vector č0 satisfies to equation (9).

The first r components c∗r ∈ Rr of the root of equation (9) determine the amplitude of the
generating solution z0(t, c

∗
r) in a small neighborhood of which can exist the desired solution of the

original problem (1), (2). In addition, from equation (9) can be found the value β∗ which determines
the first approximation to the unknown function

b1(ε) = b∗ + ε(b∗ − a)β∗.

If equation (9) has no real roots, then the original differential-algebraic problem (1), (2) does not
have the desired solutions. Equation (9) will be further called the equation for generating constants
of the autonomous nonlinear differential-algebraic boundary-value problem (1), (2). The statement
of the lemma generalizes the corresponding results of [1, 5] onto the case of the autonomous non-
linear differential-algebraic boundary-value problem (1), (2), namely, for the case of A ̸= In. As is
known [1,5,6], the nondegenerate differential-algebraic problem (1) (2) is solvable when the roots of
the equation for generating constants (9) are simple. Proposed in the article scheme of study of the
nonlinear autonomous boundary-value problem for a nondegenerate system of differential-algebraic
equations can be transferred, analogously to [3], onto degenerate systems of differential-algebraic
equations. The above-proposed scheme of study of the nonlinear autonomous boundary value prob-
lem for a nondegenerate system of differential-algebraic equations can be transferred, analogously
to [4], onto systems of differential-algebraic equations with a matrix of variable rank at the deriva-
tive, and analogously to [8], onto nonlinear boundary-value problems not solved with respect to
the derivative.
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