Nonlinear Autonomous Boundary-Value Problem for Differential Algebraic System

Olga Nesmelova

Institute of Applied Mathematics and Mechanics of National Academy of Sciences of Ukraine Slavyansk, Ukraine

Olena Chuiko, Daria Diachenkok

Donbass State Pedagogical University, Slavyansk, Ukraine E-mails: chujko-slav@ukr.net; star-o@ukr.net

We suppose that A and B are $(m \times n)$ -measurable matrices and $Z(z, \varepsilon)$ is an n measurable vector function. We will call a weakly nonlinear autonomous periodic differential-algebraic boundary-value problem the problem of finding solutions [6]

$$z(t,\varepsilon): \ z(\cdot,\varepsilon) \in \mathbb{C}^1[a,b(\varepsilon)], \ z(t,\cdot) \in \mathbb{C}[0,\varepsilon_0], \ b(0) := b^*$$

of the differential-algebraic system

$$Az' = Bz + \varepsilon Z(z,\varepsilon), \tag{1}$$

satisfying the boundary condition

$$\ell z(\,\cdot\,,\varepsilon) = \alpha. \tag{2}$$

Here, $\ell z(\cdot, \varepsilon)$ is a linear bounded vector functional

$$\ell z(\cdot,\varepsilon): \mathbb{C}[a,b(\varepsilon)] \to \mathbb{R}^q.$$

We seek solutions of problem (1), (2) in a small neighborhood of the solution $z_0(t) \in \mathbb{C}^1[a, b^*]$ of the generating Noether $(q \neq n)$ differential-algebraic boundary-value problem

$$A z'_0 = B z_0, \ \ell z_0(\cdot) = \alpha \in \mathbb{R}^q.$$
(3)

We assume that the vector function $Z(z, \varepsilon)$ is a continuously differentiable with respect to the unknown $z(t, \varepsilon)$ in a small neighborhood of the solution of the generating problem and continuously differentiable with respect to the small parameter ε in a small positive neighborhood of zero. The matrix A is generally assumed to be rectangular $m \neq n$, or square, but degenerate. Under the condition

$$P_{A^*} = 0 \tag{4}$$

the generating system (3) is reduced to the traditional system of ordinary differential equations [2]

$$z'_0 = A^+ B \, z_0 + P_{A_{\rho_0}} \nu_0(t). \tag{5}$$

Moreover, A^+ is a pseudoinverse (by Moore–Penrose) matrix, P_{A^*} is a matrix orthoprojector

$$P_{A^*}: \mathbb{R}^m \to \mathbb{N}(A^*),$$

 $P_{A_{\rho_0}}$ is an $(n \times \rho_0)$ matrix formed by ρ_0 linearly independent columns of the $(n \times n)$ matrix orthoprojector

$$P_A: \mathbb{R}^n \to \mathbb{N}(A),$$

 $\nu_0(t) \in \mathbb{R}^{\rho_0}$ is an arbitrary continuous vector function. Under the condition (4) system (1) will be called nondegenerate. Suppose that the boundary-value problem for system (3) corresponds to a critical case

$$P_{Q^*} \neq 0, \ Q := \ell X_0(\cdot).$$

In the critical case for a fixed vector function $\nu_0(t) \in \mathbb{C}[a, b^*]$ under the condition

$$P_{Q_d^*}\Big\{\alpha - \ell K \big[P_{A_{\rho_0}} \nu_0(s) \big](\,\cdot\,) \Big\} = 0 \tag{6}$$

the generating problem (3) has an r parametric family of solutions [3]

$$z_0(t,c_r) = X_r(t)c_r + G[P_{A_{\rho_0}}\nu_0(s)](t), \ c_r \in \mathbb{R}^r.$$

Here, $X_0(t)$ is the normal $(X_0(a) = I_n)$ fundamental matrix of the homogeneous part of the differential system (5). Moreover,

$$G[P_{A_{\rho_0}}\nu_0(s)](t) := X_0(t)Q^+\ell K[P_{A_{\rho_0}}\nu_0(s)](\cdot) + K[P_{A_{\rho_0}}\nu_0(s)](t)$$

is the generalized Green's operator of the generating periodic differential-algebraic boundary-value problem (3) and

$$K[P_{A_{\rho_0}}\nu_0(s)](t) := X_0(t) \int_a^t X_0^{-1}(s) P_{A_{\rho_0}}\nu_0(s) \, ds$$

is the generalized Green's operator of the Cauchy problem z(a) = 0 for the differential-algebraic system (3). The matrix $P_{Q_d^*}$ formed by d linearly independent rows of the matrix orthoprojector P_{Q^*} , and the matrix P_{Q_r} formed by r linearly independent columns of the matrix orthoprojector P_Q . Under condition (4) system (1) is reduced to the traditional system of the ordinary differential equations

$$z' = A^+ B z + P_{A_{\rho_0}} \nu_0(t) + \varepsilon A^+ Z(z, \varepsilon).$$
⁽⁷⁾

The boundary-value problem for the nondegenerate differential-algebraic system (6) differs significantly from similar nonautonomous boundary-value problems depending on an arbitrary vector function $\nu_0(t) \in \mathbb{C}[a, b^*]$. In exceptional cases, the autonomous boundary-value problem (1), (2) is solvable on a segment of fixed length.

As is known [7], an autonomous boundary-value problem for system (7) differs significantly from similar nonautonomous boundary-value problems. Unlike the latter, the right end $b(\varepsilon)$ of the interval $[a, b(\varepsilon)]$, on which we are finding solution of the nonlinear boundary-value problem for system (7), is unknown and must be defined in the process of constructing the solution itself. Let's use the technique [6,7] which consists in defining the unknown function

$$b(\varepsilon) = b^* + \varepsilon (b^* - a)\beta(\varepsilon)$$

in terms of the new unknown

$$\beta(\varepsilon) \in \mathbb{C}[0,\varepsilon_0], \ \beta(0) := \beta^*.$$

The function $\beta(\varepsilon)$ is to be determined in the process of finding a solution of the boundary-value problem for system (7). The essence of the reception is to replace the independent variable

$$t = a + (\tau - a) (1 + \varepsilon \beta(\varepsilon))$$

and finding a solution for the nonlinear boundary-value problem (2), (7) and the function $\beta(\varepsilon)$ as a function of a small parameter. In the critical case, under the condition (6) for a fixed function $\nu_0(\tau)$ the condition of solving of the nonlinear boundary-value problem (2), (7) takes the form [6]

$$P_{Q_d^*}\Big\{(1+\varepsilon\beta(\varepsilon))\,\alpha - \ell K\Big[\beta(\varepsilon)\big(A^+B\,z(s,\varepsilon) + P_{A_{\rho_0}}\nu_0(s)\big) + (1+\varepsilon\beta(\varepsilon))\,A^+Z(z(s,\varepsilon),\varepsilon)\Big](\,\cdot\,)\Big\} = 0. \tag{8}$$

Using the continuously of the nonlinear vector function $Z(z(t,\varepsilon),\varepsilon)$ on ε in a small positive neighborhood of zero, we pass to the boundary for $\varepsilon \to 0$ in equality (8) and obtain the necessary condition

$$F(\check{c}_0) := P_{Q_d^*} \Big\{ \alpha - \ell K \Big[\beta^* \big(A^+ B \, z_0(s, c_r^*) + P_{A_{\rho_0}} \nu_0(s) \big) + A^+ Z(z_0(s, c_r^*), 0) \Big] (\cdot) \Big\} = 0 \tag{9}$$

for the existence of a solution of the boundary-value problem (1), (2) in a critical case. Here,

$$\check{c}_0 := \begin{pmatrix} c_r^* \\ \beta^* \end{pmatrix} \in \mathbb{R}^{r+1}.$$

Thus, the following lemma is proved.

Lemma. Suppose that the autonomous differential-algebraic boundary-value problem (1), (2) for a fixed constant $\nu_0 \in \mathbb{R}^{\rho_0}$ under conditions (4) and (6) corresponds to the critical case $P_{Q^*} \neq 0$ and has the solution $z(t,\varepsilon)$, that for $\varepsilon = 0$ is transformed into generating $z(t,0) = z_0(t,c_r^*)$. Then the vector \check{c}_0 satisfies to equation (9).

The first r components $c_r^* \in \mathbb{R}^r$ of the root of equation (9) determine the amplitude of the generating solution $z_0(t, c_r^*)$ in a small neighborhood of which can exist the desired solution of the original problem (1), (2). In addition, from equation (9) can be found the value β^* which determines the first approximation to the unknown function

$$b_1(\varepsilon) = b^* + \varepsilon(b^* - a)\beta^*.$$

If equation (9) has no real roots, then the original differential-algebraic problem (1), (2) does not have the desired solutions. Equation (9) will be further called the equation for generating constants of the autonomous nonlinear differential-algebraic boundary-value problem (1), (2). The statement of the lemma generalizes the corresponding results of [1,5] onto the case of the autonomous nonlinear differential-algebraic boundary-value problem (1), (2), namely, for the case of $A \neq I_n$. As is known [1,5,6], the nondegenerate differential-algebraic problem (1) (2) is solvable when the roots of the equation for generating constants (9) are simple. Proposed in the article scheme of study of the nonlinear autonomous boundary-value problem for a nondegenerate system of differential-algebraic equations can be transferred, analogously to [3], onto degenerate systems of differential-algebraic equations. The above-proposed scheme of study of the nonlinear autonomous boundary value problem for a nondegenerate system of differential-algebraic equations can be transferred, analogously to [4], onto systems of differential-algebraic equations with a matrix of variable rank at the derivative, and analogously to [8], onto nonlinear boundary-value problems not solved with respect to the derivative.

References

 A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems. Second edition. Inverse and Ill-posed Problems Series, 59. De Gruyter, Berlin, 2016.

- [2] S. Chuiko, Weakly nonlinear boundary value problem for a matrix differential equation. *Miskolc Math. Notes* 17 (2016), no. 1, 139–150.
- [3] S. M. Chuiko, A generalized green operator for a linear noetherian differential-algebraic boundary value problem. Sib. Adv. Math. 30 (2020), 177–191.
- [4] S. M. Chuiko, Differential-algebraic boundary-value problems with the variable rank of leadingcoefficient matrix. J. Math. Sci. (N.Y.) 259 (2021), no. 1, 10–22.
- S. M. Chuiko and I. A. Boichuk, Autonomous weakly nonlinear boundary value problems. (Russian) Differentsial'nye Uravneniya 28 (1992), no. 10, 1668–1674; translation in Differential Equations 28 (1992), no. 10, 1353–1358 (1993).
- [6] S. M. Chuiko and I. A. Boichuk, An autonomous Noetherian boundary value problem in the critical case. (Russian) Nelīnīšnī Koliv. 12 (2009), no. 3, 405–416; translation in Nonlinear Oscil. (N.Y.) 12 (2009), no. 3, 417–428.
- [7] I. G. Malkin, The Methods of Lyapunov and Poincaré in the Theory of Nonlinear Oscillations. (Russian) OGIZ, Moscow-Leningrad, 1949.
- [8] A. M. Samoĭlenko, S. M. Chuĭko and O. V. Nēsmēlova, Nonlinear boundary value problems unsolved with respect to the derivative. (Ukrainian) Ukraïn. Mat. Zh. 72 (2020), no. 8, 1106– 1118; translation in Ukrainian Math. J. 72 (2021), no. 8, 1280–1293.