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1 Introduction
This contribution is based on our recent paper [1], where we establish a novel, extended, version of
the strong maximum principle for a general class of second order ordinary differential equations

v′′ = g(t, v, v′),

in the absence of any assumption of continuity or monotonicity on the function g, and where,
exploiting this tool, we provide some optimal regularity results for the bounded variation solutions,
positive and nodal, of the non-autonomous curvature equation

−
(

u′√
1 + (u′)2

)′
= f(x, u), (1.1)

f being an arbitrary function prescribing the curvature of the graph of u.
The analysis carried out in [1] allows us, through a completely different technical device, to

extend most of the results we previoulsly obtained in [2–5], for the positive bounded variation so-
lutions of (1.1) under homogeneous Neumann boundary condition and the structural assumption
f(x, s) = h(x)k(s), to more general classes of equations and to, possibly non-homogeneous, Dirich-
let, Neumann, Robin, or even periodic boundary value problems. Furthermore, we are able to
produce a new interpretation of the assumptions used in our previous works, clarifying their mean-
ing and displaying some deep, though previously hidden, connections with the strong maximum
principle.

2 A variant of the strong maximum principle
The main result of this section is the following version of the strong maximum principle for second
order ordinary differential equations with possibly discontinuous and non-monotone right-hand
sides. In this respect, the Keller–Osserman assumption (G) stated below is independent of the
conditions required by the classical Vázquez strong maximum principle in [6] and by its extensions
given by Pucci and Serrin in [7], where G′ is always supposed to be continuous and increasing.
Accordingly, this result yields, in the one-dimensional setting, a completion and a sharpening of its
counterparts in [6] or [7]; its proof, delivered in [1], being also more delicate than in the classical
situations.
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Theorem 2.1. Let g : (α, ω)×R×R → R be a given function and let v ∈ W 2,1
loc (α, ω)∩W 1,1(α, ω)

be a non-trivial non-negative solution of the differential equation

v′′(t) = g(t, v(t), v′(t)) for almost all t ∈ (α, ω).

Assume that:

(G) there exist a constant ε > 0 and an absolutely continuous function G : [0, ε] → R such that

0 ≤ g(t, v(t), v′(t)) ≤ G′(v(t)) for almost all t ∈ (α, ω)

for which 0 < v(t) ≤ ε and |v′(t)| ≤ ε,

and either
G(s) = 0 for all s ∈ (0, ε],

or

G(s) > 0 for all s ∈ (0, ε] and
ε∫

0

1√
G(s)

ds = +∞. (2.1)

Then, v is strongly positive in the sense that the following properties hold true:

• v(t) > 0 for all t ∈ (α, ω);

• v′(α+) > 0 if v(α) = 0 and v′(α+) exists;

• v′(ω−) < 0 if v(ω) = 0 and v′(ω−) exists.

3 Optimal regularity results for the prescribed curvature equation
In this section we discuss the regularity properties of the bounded variation solutions of the one-
dimensional non-autonomous prescribed curvature equation

−
(

u′√
1 + (u′)2

)′
= f(x, u), a < x < b, (3.1)

where f : (a, b)×R → R is any given function. We begin by recalling the notion of bounded variation
solution of equation (3.1). To this end, for any v ∈ BV (a, b), we denote by Dv = Dav dx+Dsv the
Lebesgue–Nikodym decomposition, with respect to the Lebesgue measure dx in R, of the Radon
measure Dv in its absolutely continuous part Dav dx, with density function Dav, and its singular
part Dsv. Further, Dsv

|Dsv| stands for the density function of Dsv with respect to its absolute variation
|Dsv|. Finally, for every x0 ∈ [a, b), v(x+0 ) denotes the right trace of v at x0 and, for every x0 ∈ (a, b],
v(x−0 ) denotes the left trace of v at x0.

Definition 3.1. A function u ∈ BV (a, b) is a bounded variation solution of (3.1) if f( · , u( · )) ∈
L1(a, b) and

b∫
a

Dau(x)Daϕ(x)√
1 + (Dau(x))2

dx+

b∫
a

Dsu

|Dsu|
(x)Dsϕ =

b∫
a

f(x, u(x))ϕ(x) dx

for all ϕ ∈ BV (a, b) such that |Dsϕ| is absolutely continuous with respect to |Dsu| and ϕ(a+) =
ϕ(b−) = 0.
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We begin with a partial regularity result: it establishes that a bounded variation solution u
of (3.1) can lose its regularity at the endpoints, but never at the interior points, of the intervals
where the function f( · , u( · )) has a definite sign; whereas, u can be singular at an interior point of
its domain if such a point separates two adjacent intervals where f( · , u( · )) changes sign. In both
cases, the derivative u′ blows up, but, in the latter one, u can further exhibit a jump discontinuity.

Theorem 3.1. Let u be a bounded variation solution of equation (3.1). Then, the following
statements hold.

(i) If f(x, u(x)) ≥ 0 for almost all x ∈ (a, b), then u is concave and either u ∈ W 2,1(a, b), or
u ∈ W 2,1

loc [a, b)∩W 1,1(a, b) and u′(b−) = −∞, or u ∈ W 2,1
loc (a, b]∩W 1,1(a, b) and u′(a+) = +∞,

or u ∈ W 2,1
loc (a, b) ∩ W 1,1(a, b), u′(a+) = +∞, and u′(b−) = −∞. In all cases, u satisfies

equation (3.1) for almost all x ∈ (a, b).

(ii) If f(x, u(x)) ≤ 0 for almost all x ∈ (a, b), then u is convex and either u ∈ W 2,1(a, b), or
u ∈ W 2,1

loc [a, b)∩W 1,1(a, b) and u′(b−) = +∞, or u ∈ W 2,1
loc (a, b]∩W 1,1(a, b) and u′(a+) = −∞,

or u ∈ W 2,1
loc (a, b) ∩ W 1,1(a, b), u′(a+) = −∞, and u′(b−) = +∞. In all cases, u satisfies

equation (3.1) for almost all x ∈ (a, b).

(iii) If there is c ∈ (a, b) such that f(x, u(x)) ≥ 0 for almost all x ∈ (a, c) and f(x, u(x)) ≤ 0
for almost all x ∈ (c, b), then u|(a,c) is concave, u|(c,b) is convex, and either u ∈ W 2,1

loc (a, b) ∩
W 1,1(a, b), or u|(a,c) ∈ W 2,1

loc (a, c) ∩W 1,1(a, c), u|(c,b) ∈ W 2,1
loc (c, b) ∩W 1,1(c, b), u(c−) ≥ u(c+),

and u′(c−) = −∞ = u′(c+). Moreover, in case u(c−) > u(c+), we have that

Dsu = (u(c+)− u(c−)) δc,

where δc stands for the Dirac measure concentrated at c. In any circumstances, u satisfies
equation (3.1) for almost all x ∈ (a, b).

(iiii) If there is c ∈ (a, b) such that f(x, u(x)) ≤ 0 for almost all x ∈ (a, c) and f(x, u(x)) ≥ 0
for almost all x ∈ (c, b), then u|(a,c) is convex, u|(c,b) is concave, and either u ∈ W 2,1

loc (a, b) ∩
W 1,1(a, b), or u|(a,c) ∈ W 2,1

loc (a, c) ∩W 1,1(a, c), u|(c,b) ∈ W 2,1
loc (c, b) ∩W 1,1(c, b), u(c−) ≤ u(c+),

and u′(c−) = +∞ = u′(c+). Moreover, in case u(c−) < u(c+), (3.1) holds. In any circum-
stances, u satisfies equation (3.1) for almost all x ∈ (a, b).

Our next two results, Theorems 3.2 and 3.3, establish the complete regularity of the bounded
variation solutions u of (3.1). Precisely, Theorem 3.2 guarantees the regularity at the endpoints of
any interval where the sign of f( · , u( · )) is constant, by imposing at these points a suitable control,
expressed by any of the conditions (j)–(jjjj), on the decay rate to zero of f( · , u( · )) Theorem 3.3,
instead, guarantees the regularity of u at any interior point, z, separating two adjacent interval
where f( · , u( · )) changes sign, by imposing a similar decay property to f( · , u( · )) either on the
left, or on the right, of z, as expressed by the conditions (h) or (hh). From [3–5] we also know
that these assumptions on the decay rate of f( · , u( · )) are optimal, in the sense that, if they fail at
some point, the derivative u′ might blow-up there, and the solution u might even develop a jump
discontinuity.

The proof of Theorems 3.2 and 3.3 presented in [1] is completely new and it relies on the use of
the strong maximum principle as expressed by Theorem 2.1. Our approach, besides being far more
general and versatile, displays the following striking fact: it turns out that the assumption yielding
the regularity of a solution u of (3.1), through a control on the decay rate to zero of f( · , u( · )) at
some point z, is precisely the Keller–Osserman condition (2.1) required by Theorem 2.1 so that the
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strong maximum principle holds for the differential equation(
v′√

1 + (v′)2

)′
= f(z + v, t) ⇐⇒ v′′ = f(z + v, t)(1 + (v′)2)

3
2 , (3.2)

satisfied by the shift v = w − z of a local inverse w of u. Note that, as f is not assumed to satisfy
any regularity condition, the right-hand side of (3.2), that is, the function

g(t, s, ξ) := f(z + s, t)(1 + ξ2)
3
2 ,

may be discontinuous, besides in t, in the state variable s as well. Note that this could happen even
if f were a Carathéodory function and thus g would be continuous in t and ξ, but just Lebesgue
measurable with respect to s. Essentially, we establish that the validity of the strong maximum
principle for equation (3.2) yields the regularity for the solutions of (3.1). As a consequence, the
bounded variation solutions of (3.1) can develop singularities only when the conclusions of the
strong maximum principle fail for (3.2). This appears to be a quite remarkable achievement that
illuminates and clarify the otherwise apparently exotic conditions we introduced in [3].

Theorem 3.2. Let u be a bounded variation solution of (3.1). Then the following assertions hold.

(j) If f(x, u(x)) ≥ 0 for almost all x ∈ (a, b) and there exist δ > 0 and µ ∈ L1(a, a+ δ) such that

• f(x, u(x)) ≤ µ(x) for almost all x ∈ (a, a+ δ),

• M(x) :=

x∫
a

µ(t) dt > 0 for all x ∈ (a, a+ δ], and
a+δ∫
a

1√
M(x)

dx = +∞,

then u ∈ W 2,1
loc [a, b) ∩W 1,1(a, b).

(jj) If f(x, u(x)) ≥ 0 for almost all x ∈ (a, b) and there exist δ > 0 and µ ∈ L1(b− δ, b) such that

• f(x, u(x)) ≤ µ(x) for almost all x ∈ (b− δ, b),

• M(x) :=

b∫
x

µ(t) dt > 0 for all x ∈ [b− δ, b), and
b∫

b−δ

1√
M(x)

dx = +∞,

then u ∈ W 2,1
loc (a, b] ∩W 1,1(a, b).

(jjj) If f(x, u(x)) ≤ 0 for almost all x ∈ (a, b) and there exist δ > 0 and ν ∈ L1(a, a+ δ) such that

• f(x, u(x)) ≥ ν(x) for almost all x ∈ (a, a+ δ),

• N(x) :=

x∫
a

ν(t) dt < 0 for all x ∈ (a, a+ δ], and
a+δ∫
a

1√
−N(x)

dx = +∞,

then u ∈ W 2,1
loc [a, b) ∩W 1,1(a, b).

(jjjj) If f(x, u(x)) ≤ 0 for almost all x ∈ (a, b) and there exist δ > 0 and ν ∈ L1(b− δ, b) such that

• f(x, u(x)) ≥ ν(x) for almost all x ∈ (b− δ, b),

• N(x) :=

b∫
x

ν(t) dt < 0 for all x ∈ [b− δ, b), and
b∫

b−δ

1√
−N(x)

dx = +∞,
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then u ∈ W 2,1
loc (a, b] ∩W 1,1(a, b).

Theorem 3.3. Let u be a bounded variation solution of equation (3.1). Then the following sta-
tements hold.

(h) If there is c ∈ (a, b) such that f(x, u(x)) ≥ 0 for almost all x ∈ (a, c) and f(x, u(x)) ≤ 0 for
almost all x ∈ (c, b) and either there exist δ > 0 and µ ∈ L1(c− δ, c) such that

• f(x, u(x)) ≤ µ(x) for almost all x ∈ (c− δ, c),

• M(x) :=

c∫
x

µ(t) dt > 0 for all x ∈ [c− δ, c), and
c∫

c−δ

1√
M(x)

dx = +∞,

or there exist δ > 0 and ν ∈ L1(c, c+ δ) such that

• f(x, u(x)) ≥ ν(x) for almost all x ∈ (c, c+ δ),

• N(x) :=

x∫
c

ν(t) dt < 0 for all x ∈ (c, c+ δ], and
c+δ∫
c

1√
−N(x)

dx = +∞,

then u ∈ W 2,1
loc (a, b) ∩W 1,1(a, b).

(hh) If there is c ∈ (a, b) such that f(x, u(x)) ≤ 0 for almost all x ∈ (a, c) and f(x, u(x)) ≥ 0 for
almost all x ∈ (c, b) and either there exist δ > 0 and ν ∈ L1(c− δ, c) such that

• f(x, u(x)) ≥ ν(x) for almost all x ∈ (c− δ, c),

• N(x) :=

c∫
x

ν(t) dt < 0 for all x ∈ [c− δ, c), and
c∫

c−δ

1√
−N(x)

dx = +∞,

or there exist δ > 0 and µ ∈ L1(c, c+ δ) such that

• f(x, u(x)) ≤ µ(x) for almost all x ∈ (c, c+ δ),

• M(x) :=

x∫
c

ν(t) dt > 0 for all x ∈ (c, c+ δ], and
c+δ∫
c

1√
M(x)

dx = +∞,

then u ∈ W 2,1
loc (a, b) ∩W 1,1(a, b).
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