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Approximate Solution for Heat Equation Applying Neural Network
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Our goal in the proposed study is to apply Neural Network (NN) capabilities to the approximate
solution of the partial differential equations (PDEs). Neural networks are one of the popular
approach to approximate multi-variable nonlinear functions. It has been also successfully applied
to different kinds of real-world problems arising in finance, healthcare, signature verification and
facial recognition, weather forecasting, etc. In this note, we consider the simple heat equation and
propose its approximate solution by using NN.

In the domain Ω = (0, 1) × (0, T ), T = const > 0, let us consider the initial-boundary value
problem for the heat equation:

∂U(x, t)

∂t
− a

∂2U(x, t)

∂x2
= f(x, t), (x, t) ∈ Ω,

U(0, t) = U(1, t) = 0, t ∈ [0, T ],

U(x, 0) = U0(x), x ∈ [0, 1],

(1)

where a is a positive constant and U0 is a given function.
Qualitative and quantitative properties, as well as the numerical solution for problem (1) and its

even more complicated nonlinear analogs, are well-studied in the literature (see, for example, [2–5,9]
and the references therein). Our purpose, as we already mentioned, is to study a different approach
to solving PDEs by means of Machine Learning methods, in particular, to train the neural network
so that the trained surrogate model could predict the solution of PDE at any arbitrary point
(x, t) ∈ Ω. Neural Networks could contain several layers. It necessarily contains input and output
layers and could have any number of inner layers called hidden layers (see, for example, Fig. 1). In
each layer, the user can choose the number of neurons (green circles).

The neural network constructs approximation for the solution of problem (1)

u(x, t, θ) ≈ U(x, t),

where u(x, t, θ) denotes the function obtained from a NN, and θ is the variable combining all NN
parameters which should be optimized during the training of the NN. In general, training of the
NN requires a large amount of training data, representing the NN’s input. However, applying the
NN to the PDEs approximate solution has the advantage due to it tacks into account the physics
and therefore shortens the size of the training data (see, for example, [1, 6–8]).

The state-of-the-art machine learning software algorithms, provide automatic differentiation
capabilities for functions realized by neural networks, the approximate solution u(x, t, θ), which in
turn allows the residual of the nonlinear problem (1) to be evaluated at a set of training points.

R(x, t, θ) =
∂u(x, t, θ)

∂t
− a

∂2u(x, t, θ)

∂x2
− f(x, t). (2)
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Figure 1. Architecture of the general Neural Network.

Figure 2. Difference between exact and numerical solutions and learning rate (1000
epochs).

Let us construct the cost function F(x, t, θ) which should be minimized by a neural network
during the training. The cost function should incorporate residual (2) as well as initial and boundary
conditions as follows:

F(x, t, θ) = Errresidual(x, t, θ) + Errinitial(x, t, θ) + Errboindary(x, t, θ),

where

Errresidual(x
r
i , t

r
i , θ) =

1

Nr

Nr∑
i=1

∣∣R(xri , t
r
i , θ)

∣∣2,
Errinitial(x

0
i , t

0
i , θ) =

1

N0

N0∑
i=1

∣∣u(x0i , t0i , θ)− U0(x
0
i )
∣∣2,

Errboindary(x
b
i , t

b
i , θ) =

1

Nb

Nr∑
i=1

∣∣u(xbi , tbi , θ)∣∣2.
The number of the training points is denoted by Nr, while (xri , t

r
i ) represents a set of training data.

Collection of the following points (x0i , t
0
i ), (xbi , t

b
i) are used for initial and boundary conditions

respectively.
Below the results of the numerical experiments are given. For the training of the neural network,

the library of scientific computing NumPy and the library of machine learning TensorFlow are used.
For the test experiments the Jupyter Notebook implementation, proposed in [1], was modified and
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applied to the problem (1). The right-hand side of the problem (1) was chosen in such a way
that the exact solution is U(x, t) = x(1 − x) exp(−x − t) with the corresponding initial solution
U0(x) = x(1− x) exp(−x).

For the initial line and the boundaries we set N0 = Nb = 25 and for the inner points, training
data of size Nr = 1000 was chosen.

For the neural network architecture, we set five hidden layers and 10 neurons in each layer.
The surfaces in Fig. 3 depict exact and numerical solutions when for NN training 1000 epochs
(iterations) were used.

Figure 3. Exact and numerical solutions (1000 epochs).

The difference between exact and numerical solutions is given in Fig. 2 (left). In the same
figure, the NN learning rate is given on right.

We also ran NN training for 5000 epochs. The results for the difference between exact and
numerical solutions and the learning rate are given in Fig. 4.

Figure 4. Difference between exact and numerical solutions and learning rate
(5000 epochs).
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