
130 T. Kiguradze, A. Almutairi

On a Periodic Type Boundary Value Problem for a Second Order
Linear Hyperbolic System

Tariel Kiguradze, Afrah Almutairi
Florida Institute of Technology, Melbourne, USA

E-mails: tkigurad@fit.edu; aalmutairi2018@my.fit.edu

In the rectangle Ω = [0, ω1]× [0, ω2] consider the problem

uxy = P0(x, y)u+ P1(x, y)ux + P2(x, y)uy + q(x, y), (1)
u(0, y) = Au(ω1, y) + φ(y), u(x, 0) = Bu(x, ω2) + ψ(x), (2)

where Pj ∈ C(Ω;Rn×n) (j = 0, 1, 2), q ∈ C(Ω;Rn), A,B ∈ Rn×n, φ ∈ C1([0, ω2];Rn) and ψ ∈
C1([0, ω1];Rn).

Problem (1), (2) is not well-posed, since for its solvability the vector functions φ and ψ should
satisfy some compatibility condition. For example, if

AB = BA, (3)

then for solvability of problem (1), (2) it is necessary that

φ(0)−Bφ(ω2) = ψ(0)−Aψ(ω1). (4)

Indeed, for an arbitrary u ∈ C(Ω;Rn), in view of equality (3), we have

h ◦ ℓ(u) = ℓ ◦ h(u), (5)

where
ℓ(z) = z(0)−Az(ω1), h(z) = z(0)−Bz(ω2).

Consequently, if u(x, y) satisfies condition (2), then equality (5) implies

ψ(0)−Aψ(ω1) = ℓ ◦ h(u) = h ◦ ℓ(u) = φ(0)−Bφ(ω2).

Notice that, if u ∈ C1,1(Ω;Rn) satisfies condition (2), then

h(ux(x, · )) = ψ′(x).

Therefore,
u(0, y) = Au(ω1, y) + φ(y), ux(x, 0) = Bux(x, ω2) + ψ′(x). (6)

Along with system (1) and conditions (2) and (6) consider their corresponding homogeneous
system and conditions

uxy = P0(x, y)u+ P1(x, y)ux + P2(x, y)uy, (10)
u(0, y) = Au(ω1, y), u(x, 0) = Bu(x, ω2) (20)

and
u(0, y) = Au(ω1, y), ux(x, 0) = Bux(x, ω2). (60)
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Let Y (y;x) be the fundamental matrix of the differential system

dz

dy
= P1(x, y)z,

satisfying the initial condition
Y (0;x) = I,

where I is n × n identity matrix. By X(x; y) denote the fundamental matrix of the differential
system

dz

dx
= P2(x, y)z,

satisfying the initial condition
X(0; y) = I.

If problem
dz

dx
= P2(x, y)z, z(0)−Az(ω1) = 0,

has only the trivial solution, then by G1(x, s; y) denote its Green’s matrix, and if problem

dz

dy
= P1(x, y)z, z(0)−Bz(ω2) = 0

has only the trivial solution, then by G2(y, t;x) denote its Green’s matrix.

Theorem 1. Let the problem

z′ = 0, z(0) = Az(ω1) (7)

have only the trivial solution, and let the following inequalities hold:

det
(
I − Y (ω2;x)B

)
̸= 0 for x ∈ [0, ω1], (8)

det
(
I −X(ω1; y)A

)
̸= 0 for y ∈ [0, ω2]. (9)

Then problem (1), (6) has the Fredholm property. Furthermore, if problem (10), (60) has only the
trivial solution, then problem (1), (6) has a unique solution u u admitting the estimate

∥u∥C1,1(Ω) ≤M
(
∥q∥C(Ω) + ∥φ∥C1([0,ω2]) + ∥ψ∥C1([0,ω1])

)
, (10)

where M is a positive number independent of φ, ψ and q.

Definition. Problem (1), (6) is called well-posed if for every φ ∈ C1([0, ω2];Rn), ψ ∈ C1([0, ω1];Rn)
and q ∈ C(Ω;Rn) it has a unique solution u admitting estimate (10), where M is a positive number
independent of φ, ψ and q.

Theorem 2. If problem (1), (6) is well-posed, then problem (7), (8) has only the trivial solution
and inequalities (9) and (10) hold.

Theorem 3. Let inequalities (9) and (10) hold, and let the matrices A ∈ Rn×n and B ∈ Rn×n

satisfy condition (3). Then:

(i) the space of solutions of problem (10), (20) is finite dimensional;

(ii) if the homogeneous problem (10), (20) has only the trivial solution, then problem (1), (2) is
uniquely solvable if and only if the compatibility condition (4) holds.
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Corollary 1. Let P1(x, y) ≡ P1(x), P2(x, y) ≡ P2(y), let the problem (7) have only the trivial
solution, and let

det
(
I − exp(ω2P1(x))B

)
̸= 0 for x ∈ [0, ω1], (11)

det
(
I − exp(ω1P2(y))A

)
̸= 0 for y ∈ [0, ω2]. (12)

Then problem (1), (6) has the Fredholm property.

Corollary 2. Let problem (7) have only the trivial solution, and let there exist σi ∈ {−1, 1}
(i = 1, 2) such that

σ1(A
TA− I) is positive semi-definite,

σ1P1(x, y) is positive definite for (x, y) ∈ Ω

and

σ2
(
BTB − I

)
is positive semi-definite,

σ2P2(x, y) is positive definite for (x, y) ∈ Ω.

Then problem (1) (6) has the Fredholm property.

Theorem 4. Let conditions (8) and (9) hold, let problem (7) have only the trivial solution, let
Γ ∈ Rn×n

+ be a nonnegative matrix with the spectral radius less than 1, and let either

P1 ∈ C1,0(Ω;Rn×n), P1(0, y) = P1(ω1, y), P1(ω1, y)A = AP1(ω1, y), (13)

and
ω2∫
0

ω1∫
0

∣∣∣G2(y, t;x)G1(x, s; t)
(
P0(s, t) + P2(s, t)P1(s, t)−

∂

∂s
P1(s, t)

)∣∣∣ ds dt ≤ Γ, (14)

or
P2 ∈ C0,1(Ω;Rn×n), P2(x, 0) = P2(x, ω2), P2(x, ω2)B = B P2(x, ω2), (15)

and
ω1∫
0

ω2∫
0

∣∣∣G1(x, s; y)G2(y, t; s)
(
P0(s, t) + P1(s, t)P2(s, t)−

∂

∂t
P2(s, t)

)∣∣∣ dt ds ≤ Γ. (16)

Then problem (1) (6) is uniquely solvable.

Consider the system
uxy = P0(x, y)u+ ux + uy + q(x, y). (17)

Theorem 5. Let problem (7) have only the trivial solution,

P0(x, y) = P T
0 (x, y) for x, y) ∈ Ω,

ATA− I be positive semi-definite,
BTB − I be positive semi-definite,

I −ATA−BTB +BTATAB be positive semi-definite,

and let one of the following three conditions hold:
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(i) P0 ∈ C1,0(Ω;Rn×n) and

P0(ω1, y)−ATP0(0, y)A is positive semi-definite for y ∈ [0, ω2],

P0(x, y) +
1

2

∂P0(x, y)

∂x
is negative semi-definite for (x, y) ∈ Ω,

ω1∫
0

P0(s, y) ds is negative definite for y ∈ [0, ω2];

(ii) P0 ∈ C0,1(Ω;Rn×n) and

P0(x, ω2)−BTP0(x, ω2)B is positive semi-definite for x ∈ [0, ω1],

P0(x, y) +
1

2

∂P0(x, y)

∂y
is negative semi-definite for (x, y) ∈ Ω,

ω2∫
0

P0(x, t) dt is negative definite for x ∈ [0, ω1];

(iii) P0 ∈ C1(Ω;Rn×n) and

P0(ω1, y)−ATP0(0, y)A is positive semi-definite for y ∈ [0, ω2],

P0(x, ω2)−BTP0(x, ω2)B is positive semi-definite for x ∈ [0, ω1],

P0(x, y) +
1

4

(∂P0(x, y)

∂x
+
∂P0(x, y)

∂y

)
is negative semi-definite for (x, y) ∈ Ω,

ω1∫
0

ω2∫
0

P0(s, t) dt ds is negative definite.

Then problem (17), (6) is uniquely solvable.

Consider the case, where Pi(x, y) ≡ Pi (i = 0, 1, 2) and A = I, i.e. consider the problem

uxy = P0u+ P1ux + P2uy + q(x, y), (18)
u(0, y) = u(ω1, y) + φ(y), u(x, 0) = Bu(x, ω2) + ψ(x). (19)

Theorem 6. Let

det
(
I − exp(ω2P1)B

)
̸= 0,

det
(
I − exp(ω1P2)

)
̸= 0,

and let the compatibility condition

φ(0)−Bφ(ω2) = ψ(0)− ψ(ω1)

hold. Then problem (18), (19) is uniquely solvable if and only if

det
(
I − exp(ω1Λk)B

)
̸= 0 for k ∈ Z,

where
Λk =

(
i
2π

ω1
kI − P2

)(
P0 + i

2π

ω1
kP1

)
.
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Consider the case n = 1. For the equation

uxy = p0(y)u+ p1(y)ux + p2(y)uy + q(x, y) (20)

consider the boundary conditions

u(0, y) = u(ω1, y), u(x, 0) = bu(x, ω2). (21)

Theorem 7. Let the following inequalities hold:

p0(y) p1(y) p2(y) < 0 for y ∈ [0, ω] (22)

and

(1− b) p1(y) ≥ 0 for y ∈ [0, ω].

Then problem (20), (21) is uniquely solvable. In particular, if b = 1, then the doubly periodic
problem (20), (21) is uniquely solvable if inequality (22) holds.
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