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The Critical Case of the Matrix Differential Equations’ Systems
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This paper considers a system of M linear matrix differential equations with coefficients, de-
picted in the form of absolutely and uniformly convergent Fourier series with slowly variable in a
certain sense coefficients and with the frequency (class F ). This system is close to the block-diagonal
system with slowly changing coefficients. We are looking for a transformation with coefficients of a
similar type which brings this system to purely block-diagonal form. Regarding the coefficients of
this transformation, chews a quasi-linear system of matrix differential equations, which decays on
M independent subsystems, each of which has the form of some auxiliary nonlinear systems. We
obtained conditions of existence of the desired transformation for this auxiliary system in a critical
case.

1 Basic notation and definitions
Let

G(ε0) =
{
(t; ε) : t ∈ R, ε ∈ [0; ε0), ε0 ∈ R∗

}
.

Definition 1.1. Let’s say that the function p(t; ε) belongs to the class S(m; ε0) if the following
conditions are true

(1) p : G(ε0) → C;

(2) p(t; ε) ∈ Cm(G(ε0)) for t;

(3)
dkp(t; ε)

dtk
= εkpk(t; ε) (0 6 k 6 m),

where
∥p∥S(m;ε0)

def
=

m∑
k=0

sup
G(ε0)

|pk(t; ε)| < +∞.

Definition 1.2. Let’s say that the function f(t; ε; θ(t; ε)) belongs to the class F (m; ε0; θ) (m ∈
N ∪ {0}), if this function can be represented in the following form:

f(t; ε; θ(t; ε) =
+∞∑

n=−∞
fn(t; ε) exp(inθ(t; ε)),

where

(1) fn(t; ε) ∈ S(m; ε0) (n ∈ Z);

(2)

∥f∥F (m;ε0;θ)
def
=

+∞∑
n=−∞

∥fn∥S(m;ε0) < +∞;
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(3)

θ(t; ε) =

t∫
0

φ(τ ; ε) dτ, φ ∈ R∗, φ ∈ S(m; ε0), inf
G(ε0)

φ(t; ε) = φ0 > 0.

Definition 1.3. Let’s say that the matrix A(t; ε) = (ajk(t; ε))j,k=1,N belongs to the class S2(m; ε0)

(m ∈ N ∪ {0}), in case ajk ∈ S(m; ε0) (j, k = 1, N).
Let’s define the norm

∥A(t; ε)∥S2(m;ε0)
def
= max

16j6N

N∑
k=1

∥ajk(t; ε)∥S(m;ε0).

Definition 1.4. Let’s say that the matrix B(t; ε; θ) = (bjk(t; ε; θ))j,k=1,N belongs to the class
F2(m; ε0; θ) (m ∈ N ∪ {0}), in case bjk(t; ε; θ) ∈ F (m; ε0; θ) (j, k = 1, N).

Let’s define the norm

∥B(t; ε; θ)∥F2(m;ε0;θ)
def
= max

16j6N

N∑
k=1

∥bjk(t; ε; θ)∥F (m;ε0;θ).

Note that in case B1 ∈ F2(m; ε0; θ), B2 ∈ F2(m; ε0; θ), the following conditions are true:

(1) B1 +B2, B1B2 ∈ F2(m; ε0; θ),

(2) ∥B1 +B2∥F2(m;ε0;θ) ≤ ∥B1∥F2(m;ε0;θ) + ∥B2∥F2(m;ε0;θ),

(3) ∥B1B2∥F2(m;ε0;θ) ≤ 2m∥B1∥F2(m;ε0;θ) · ∥B2∥F2(m;ε0;θ).

2 Statement of the problem
The following system of linear matrix equations is considered

dXj

dt
= Aj(t, ε)Xj + µ

M∑
k=1

Bjk(t, ε, θ)Xk, j = 1,M, (2.1)

where Xj are unknown square matrices of the order N , belonging to some closed bounded region
D ⊂ CN×N , CN×N is the space of complex-valued matrices of dimension (N × N). Also, let
Aj(t, ε) ∈ S2(m; ε0), Bkj(t, ε, θ) ∈ F2(m; ε0; θ), µ ∈ (0, 1) be real parameter.

We are looking for the transformation

Xj = Yj +
M∑
k=1
k ̸=j

Qjk(t, ε, θ(t, ε), µ)Yk, j = 1,M, (2.2)

in which Qjk(t, ε, θ(t, ε), µ) (j, k = 1,M) are unknown square matrices of dimension N × N that
belong to the class F2(m1; ε1; θ) (m1 ≤ m0; ε1 ≤ ε0) which brings system (2.1) to the form

dYj
dt

= Vj(t, ε, θ, µ)Yj , (2.3)

where Vj(t, ε, θ, µ) ∈ F2(m1; ε0; θ).
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Using transformation (2.2) with respect to unknown functions Qjk(t, ε, θ, µ) (j = 1,M) we will
get the system

dQjk

dt
= Aj(t, ε)Qjk −QjkAk(t, ε) + µ(Bjj(t, ε, θ)Qjk −QjkBkk(t, ε, θ))

+ µBjk(t, ε, θ) + µ

M∑
s=1

s ̸=j, s ̸=k

Bjs(t, ε, θ)Qsk − µQjk

M∑
s=1
s ̸=k

Bks(t, ε, θ)Qsk, j, k = 1,M, j ̸= k. (2.4)

So, system (2.1) turns into

dYj
dt

= Vj(t, ε, θ, µ)Yj =
(
µBjj(t, ε, θ) + Λ(t, ε) +

M∑
s=1
s ̸=j

Bjs(t, ε, θ)Qsj

)
Yj , j = 1,M. (2.5)

The following lemma takes place.
Lemma 2.1. Let the matrices Aj(t, ε) (j = 1,M) in system (2.4) be such that there are matrices
Lj(t, ε) (j = 1,M), for which the following conditions are true:

(1) Lj(t, ε) ∈ S2(m; ε) (j = 1,M);

(2) | det(Lj(t, ε))| ≥ a0 > 0 (j = 1,M);

(3)
L−1
j (t, ε)Aj(t, ε)Lj(t, ε) = △j(t, ε) (j = 1,M),

in which △j(t, ε) (j = 1,M) – lower triangular matrices of the N th order of the class
S2(m; ε0).

Then using the transformation
Qjk = Lj(t, ε)YjkL

−1
k (t, ε) (j, k = 1,M, j ̸= k), (2.6)

system (2.4) is reduced to the next system

dYjk
dt

= △j(t, ε)Yjk − Yjk △k (t, ε)− L−1 dLj

dt
Yjk − YjkL

−1
k (t, ε)

dLk

dt

+ µ(L−1
j (t, ε)Bjj(t, ε, θ)Lj(t, ε)Yjk − YjkL

−1
k (t, ε)Bkk(t, ε, θ)Lk(t, ε))

+ µL−1
j (t, ε)Bjk(t, ε, θ)Lk(t, ε) + µ

M∑
s=1

s ̸=j, s ̸=kc

L−1
j (t, ε)Bjs(t, ε, θ)Ls(t, ε)Ysk

− µYjk

M∑
s=1
s̸=kc

L−1
k Bks(t, ε, θ)Ls(t, ε)Ysk, j, k = 1,M (j ̸= k). (2.7)

3 Main results
Lemma 3.1. Let the following system of matrix differential equations be given:

dYj
dt

= Dj1(t, ε)Qjk −QjkDj2(t, ε) + µFj(t, ε, θ) + µ
M∑
s=1

Pjs1(t, ε, θ)YsPjs2(t, ε, θ)

− µYj

M∑
s=1

Rjs1(t, ε, θ)YsRjs2(t, ε, θ)− εHj1(t, ε)Yj − εYjHj2(t, ε), j = 1,M, (3.1)
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where Dj1(t, ε) = (dj1αβ(t, ε))α,β=1,N , Dj2(t, ε) = (dj2αβ(t, ε))α,β=1,N – lower triangular matrices of
the class S2(m; ε0), Fj(t, ε, θ), Pjs1(t, ε, θ), Pjs2(t, ε, θ), Rjs1(t, ε, θ), Rjs2(t, ε, θ) is in the class
F2(m; ε0; θ), Hj1(t, ε), Hj2(t, ε) are in the class S2(m − 1; ε0),µ ∈ (0, 1) is a real parameter. And
let the conditions be fulfilled:

(10)

inf
G(ε0)

∣∣dj1αβ(t, ε)− dk1αβ(t, ε)− inφ(t, ε)
∣∣ ≥ b0 > 0,

inf
G(ε0)

∣∣dj2αβ(t, ε)− dk2αβ(t, ε)− inφ(t, ε)
∣∣ ≥ b0 > 0 ∀n ∈ Z, j, k = 1, N, j ̸= k.

(20)

dj1αβ(t, ε)− dk2αβ(t, ε) = iωjk(t, ε), ωjk(t, ε) ∈ R,

inf
G(ε0)

|ωjk(t, ε)− nφ(t, ε)| ≥ b0 > 0 ∀n ∈ Z, j, k = 1, N.

Then there exist constants µ1 ∈ (0;µ0), ε2 ∈ (0;µ0) such that for all µ ∈ [0;µ2) and for all
ε ∈ (0, ε2), system (3.1) has a partial solution of the class F2(m− 1; ε2; θ).

Condition (20) shows that in this case we are dealing with critical by chance, as opposed to
work [8], in which it is assumed that∣∣Re (dj1αβ(t, ε)− dk2αβ(t, ε))

∣∣ ≥ γ > 0 (j = 1,M, k = 1, N).

The next theorem takes place.

Theorem 3.1. Let system (2.4) satisfy the conditions of Lemma 3.1, and let system (2.7), obtained
by transformation (2.6), for each k = 1,M satisfy all the conditions of Lemma 3.1. Then there
exist µ4 ∈ (0; 1), ε4(µ) ∈ (0; ε0) such that for all µ ∈ (0; ε4) and for all ε ∈ (0; ε4(µ)) there exists
the transformation of the form (2.2), in which the coefficients Qjk(t, ε, θ(t, ε), µ) belong to the class
F2(m− 1; ε4(µ); θ), that brings system (2.1) to the form (2.3), in which Vj(t, ε, θ, µ) are determined
by formulas (2.5).

For matrix systems of this type, such a result was not obtained before. In previous works [9] a
matrix differential equation was considered:

dX

dt
= A(t, ε)X −XB(t, ε) + P (t; ε0; θ) + µΦ(t; ε0; θ;X), (3.2)

where X is an unknown square matrix of order N , that belongs to some closed limited area D ⊂
CN×N , where CN×N is the space of complex-valued matrices of dimention N ×N , A(t; ε), B(t, ε) ∈
S2(m; ε0), P (t; ε0; θ) ∈ F2(m; ε0; θ). It is also assumed that Φ(t; ε0; θ;X) is a matrix-function that
belongs to the class F2(m; ε0; θ) with respect to m, ε0, θ and is continuous over X in D. µ is a real
parameter.

For equation (3.2) in the critical case, the issue of the presence of partial class solutions was
studied F (m1; ε1; θ) (m1 ≤ m; ε1 ≤ ε0).

The results of the works [1–7,10] were used for obtaining our results.
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