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1 Introduction
In the paper, we consider the qualitative behavior of a nonlinear wave equation with a non-smooth
interaction function that recognizes external bounded disturbances. It is proved that the global
attractor of the multivalued semiflow generated by the solutions of the undisturbed problem is
stable in the sense of ISS with respect to the disturbances.

The qualitative behavior of infinite-dimensional evolutionary systems without uniqueness, i.e.,
when, along with global solvability, non-unity of the solution of the initial boundary value problem
is also possible, began to be actively studied within the framework of the theory of attractors from
the end of the 90s of the last century [9, 14, 15, 17, 21]. It turned out that for broad classes of
evolutionary objects, under fairly general conditions for the parameters, it is possible to establish
the existence in the phase space of a compact uniformly attracting set (be) the global attractor.
Its stability in relation to disturbances has been studied in works [1–4, 7, 8, 10, 12]. The theory of
input to state stability (ISS), which characterizes the deviation of solutions of a perturbed problem
from an asymptotically stable equilibrium position [6,16,19,20], was applied to infinite-dimensional
dissipative systems with a nontrivial attractor in works [5, 11, 18]. In particular, the property of
local input to state stability (local ISS) and the property of asymptotic gain (AG) for semi-linear
parabolic and wave equations, provided that the Cauchy problem is correct, have been established.

In this paper, for the first time, the AG property was obtained for the global attractor of a
dynamic system without uniqueness (m-semiflow), generated by the solutions of a nonlinear wave
equation with a non-smooth interaction function.

2 Setting of the problem and the main results
In a bounded domain Ω ⊂ Rn, we consider the problem{

ytt + αyt −4y + f(y) = 0, t > 0,

y
∣∣
∂Ω

= 0,
(2.1)

where α > 0, f ∈ C(R),

∃ c > 0 ∀ s ∈ R |f(s)| ≤ c
(
1 + |s|

n
n−2

)
, (2.2)

lim
s→∞

f(s)

s
> −λ1, (2.3)
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where λ1 > 0 is the first eigenvalue of the operator −4 in H1
0 (Ω). Then it is known [1] that in the

phase space
X = H1

0 (Ω)× L2(Ω)

problem (2.1) for every z0 =

(
y0
y1

)
∈ X has a (perhaps non-unique) solution z( · ) =

(
y( · )
yt( · )

)
∈

C([0,+∞);X), z(0) = z0, and all solutions (2.1) generate a multivalued semiflow (m-semiflow)
G : R+ ×X 7→ 2X ,

G(t, z0) =
{
z(t) : z( · ) is the solution of (2.1), z(0) = z0

}
,

for which there is a global attractor in X.

Definition 2.1 ([14]). Let G be a m-semiflow, i.e.,

∀x ∈ X, ∀ t, s ≥ 0 G(0, x) = x, G(t+ s, x) ⊂ G(t, G(s, t)).

A compact set Θ ⊂ X is called a global attractor G, if:

(1) Θ ⊂ G(t,Θ) ∀ t ≥ 0;

(2) for any bounded set B ⊂ X,

dist(G(t, B),Θ) → 0, t → ∞,

where here and in the future

G(t, B) =
⋃
z∈B

G(t, z),

dist(A,B) = sup
z1∈A

inf
z2∈B

‖z1 − z2‖X .

Now consider the disturbed problem{
ytt + αyt −4y + f(y) = h(x) · u(t), t > 0,

y
∣∣
∂Ω

= 0,
(2.4)

where h ∈ L2(Ω), u ∈ L∞(0,+∞) is the input (disturbing) signal.
Let’s mark

Su(t, 0, z0) =
{
z(t) : z( · ) is the solution of (2.4), z(0) = z0

}
.

The main result of the work is the establishment of the asymptotic gain (AG) property in
relation to the attractor Θ of the unperturbed (u ≡ 0) system [18]:

∃ γ ∈ K ∀ z0 ∈ X, ∀u ∈ U ⊆ L∞(0,+∞) : lim
t→∞

dist(Su(t, 0, z0),Θ) ≤ γ(‖u‖∞),

where U is some translationally invariant set of input signals, K is the class of continuous, mono-
tonically increasing functions with γ(0) = 0 [13],

‖u‖∞ = ess sup
t≥0

|u(t)|.
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3 Robust stability and attractors of multivalued semiflows
Let (X, ‖ · ‖X) be the Banach space, R≥ = {(t, τ) : t ≥ τ ≥ 0}, Σ be the arbitrary translation-
invariant set, i.e.,

∀σ ∈ Σ, ∀h ≥ 0 : σ( · + h) ∈ Σ.

Definition 3.1 ([2]). A family of multivalued mappings {Sσ : R≥×X 7→ 2X}σ∈Σ is called a family
of m-semi-processes if ∀σ ∈ Σ, ∀x ∈ X, ∀ t ≥ s ≥ τ ≥ 0, ∀h ≥ 0:

Sσ(τ, τ, x) = x,

Sσ(t, τ, x) ⊂ Sσ(t, s, Sσ(s, τ, x)),

Sσ(t+ h, τ + h, x) ⊂ Sσ( ·+h)(t, τ, x).

Let’s mark
SΣ =

⋃
σ∈Σ

Sσ.

Definition 3.2 ([2]). A compact set ΘΣ ⊂ X is called a uniform attractor {Sσ}σ∈Σ if for any
bounded set B ⊂ X,

dist
(
SΣ(t, 0, B),ΘΣ

)
→ 0, t → ∞

and ΘΣ is the minimal set in the class of such sets.

Remark 3.1. If Σ = {0}, then for G(t, x) := S0(t, 0, x) we have the properties:

G(0, x) = S0(0, 0, x) = x,

G(t+ s, x) = S0(t+ s, 0, x) ⊂ S0(t+ s, s, S0(s, 0, x)) ⊂ S0(t, 0, S0(s, 0, x)) = G(t, G(s, x)),

so G is the m-semiflow.

The following lemma guarantees the existence of a uniform attractor in {Sσ}σ∈Σ.

Lemma 3.1 ([2]). Let {Sσ}σ∈Σ be the family of m-semi-processes, Σ be the translation-invariant
subset of some metric space and the next conditions be fulfilled:

(1) there exists a bounded set B0 ⊂ X such that for any bounded set B ⊂ X exists T = T (B)
such that

∀ t ≥ T SΣ(t, 0, B) ⊂ B0;

(2) ∀ {σn} ⊂ Σ, ∀ tn ↗ ∞, ∀ limited sequence {xn} ⊂ X sequence {ξn ∈ Sσn(tn, 0, xn)}n≥1 is
precompact.

Then {Sσ}σ∈Σ has a uniform attractor ΘΣ.
If, in addition, the next condition is satisfied:

(3) the mapping Σ×X 3 (σ, x) 7→ Sσ(t, 0, x) ⊂ X has a closed graph, then

ΘΣ ⊂ SΣ(t, 0,ΘΣ).

Remark 3.2. In condition 1) it can be assumed that B0 = {x ∈ X| ‖x‖X ≤ R0}.

Remark 3.3. For the Σ = {0} conditions 1)-3) have the form:

∀ t ≥ T G(t, B) ⊂ B0,

every sequence ξn ∈ G(tn, B) is precompact, the mapping x 7→ G(t, x) has a closed graph; and
guarantee [14] that Θ := Θ{0} is a global attractor m-semiflow G.
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Theorem 3.1. Let for each u ∈ U ⊂ L∞(R+) there exist a translation-invariant set Σ(u) such
that the family m-semi-processes {Sσ}σ∈Σ(u) satisfies conditions (1)–(3) of Lemma 3.1,

Σ(0) = {0}, ∀u ∈ U u ∈ Σ(u),

∀ r0 > 0 there exists the set B0 such that condition (1) of Lemma 3.1 is fulfilled ∀ ‖u‖∞ ≤ r0, i.e.,

∃T = T (r0, B) ∀ t ≥ T
⋃

∥u∥∞≤r0

SΣ(u)(t, 0, B) ⊂ B0, (3.1)

and in addition, the next conditions are met

(1)
‖uk‖∞ → 0, tk → ∞ =⇒ ξk ∈ SΣ(uk)(tk, 0, B0)

is precompact,

(2)
‖uk‖∞ → 0, xk → x, ξk ∈ SΣ(uk)(t, 0, xk), ξk → ξ =⇒ ξ ∈ S0(t, 0, x).

Then
∃ γ ∈ K ∀x ∈ X, ∀u ∈ U lim

t→∞
dist(Su(t, 0, x),Θ) ≤ γ(‖u‖∞).

4 Application for the disturbed wave equation
We consider a perturbed problem (2.4). Let’s strengthen condition (2.3) to the following:

∃ c1, c2, c3 > 0 such that for F (s) :=
s∫
0

f(p) dp for all s ∈ R next inequalities are fulfilled

F (s) ≥ −ms2 − c1, f(s) · s− c2F (s) +ms2 ≥ c3, (4.1)

where m ∈ (0, λ1) is small enough.

Under conditions (2.2), (4.1) it is known [2] that ∀ τ ≥ 0, ∀ zτ ∈ X, ∀u ∈ L2
loc(R+) problem

(2.4) has at least one solution z ∈ C([τ,+∞);X) : z(τ) = zτ . Moreover, the family of mappings
{Su : R≥ ×X 7→ 2X} such that

Su(t, τ, zτ ) =
{
z(t) : z( · ) is the solution of (2.4) and z(τ) = zτ

}
(4.2)

generates a family of m-semiprocesses for any translation-invariant U ⊂ L2
loc(R+). In addition, for

every solution (2.4) z =

(
y
yt

)
the next evaluation is fair:

‖yt(t)‖2L2 + ‖y(t)‖2H1
0
≤ c4

((
‖yt(τ)‖2L2 + ‖y(τ)‖

2n−2
n−2

H1
0

)
· e−δ(t−τ) + 1 +

t∫
τ

|u(p)|2e−δ(t−p) dp

)
∀ t ≥ τ ≥ 0,

where c4 > 0, δ > 0 do not depend on z.
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In particular, if sup
t≥0

t+1∫
t

|u(p)|2 dp < ∞, then ∀ t ≥ τ ≥ 0,

‖z(t)‖2X ≤ c5

(
‖z(τ)‖

2n−2
n−2

X · e−δ(t−τ) + 1 + sup
t≥0

t+1∫
t

|u(p)|2 dp
)
. (4.3)

As U , we choose all functions from L∞(R+) for which

sup
t≥0

t+1∫
t

|u(s+ l)− u(s)|2 ds ≤ κ(|l|), (4.4)

where κ may depend on u and κ(p) → 0, p → 0+.
It is known [2] that ∀u ∈ U the set

Σ(u) := clL2
loc

{
u( · + h)|, h ≥ 0

}
is translation invariant and compact in L2

loc(R+), u ∈ Σ(u), Σ(0) = {0} and, in addition,

sup
t≥0

t+1∫
t

|v(s)|2 ds ≤ sup
t≥0

t+1∫
t

|u(s)|2 ds ≤ ‖u‖2∞ ∀ v ∈ Σ(u). (4.5)

If condition (4.4) is fulfilled, the family of m-semi-processes {Sv}v∈Σ(u), defined in (4.2), satisfies
conditions (1)–(3) of Lemma 3.1, and therefore has a uniform attractor ΘΣ(u). At the same time,
due to (4.3) and (4.5), condition (3.1) is fulfilled.

Theorem 4.1. Let the parameters of the disturbed problem (2.4) satisfy conditions (2.2), (4.1),
and (4.4). Then

∃ γ ∈ K ∀ z0 ∈ X, ∀u ∈ U lim
t→∞

dist(Su(t, 0, z0),Θ) ≤ γ(‖u‖∞),

where Θ is the global attractor of the undisturbed problem (2.1).
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