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1 Introduction
In the paper [1], we show how a rather abstract Fredholm-type result from [2] can be successfully
applied to study ω-periodic solutions to the following second order differential equation with a
(λ+ 1)-Laplacian and maxima:(

|u′(t)|λ sgnu′(t)
)′
= g(t)max

{
|u(s)|λ sgnu(s) : µ(t) ≤ s ≤ τ(t)

}
+ f0(t), (1.1)

where f0, g ∈ L([0, ω];R), λ > 0, and µ, τ : [0, ω] → [0, ω] are measurable functions satisfying
µ(t) ≤ τ(t) for almost all t belonging to the period segment [0, ω]. Two of our main results stated
in Section 2, Corollaries 2.3 and 2.4, present easily verifiable conditions for the existence of at
least one ω-periodic solution to the equation (1.1) for each perturbation f0(t). Importantly, the
leading coefficient g(t) in (1.1) can oscillate: in such a case, we will assume that either positive or
negative part of g(t) dominates the part of g(t) having the opposite sign, see Corollaries 2.3 and
2.4 for the precise formulations. Note that the uniqueness of periodic solutions is not analysed
in the present work. Nevertheless, it is known that even the first order periodic equation with
the right-hand side as in (1.1) and constant coefficient g(t) can have multiple (or even infinite
number of) subharmonic periodic solutions for a class of sine-like forcing terms f0(t). We leave the
aforementioned uniqueness problem for equation (1.1) as an interesting open question.

Now, our approach allows to consider more general objects in the form of two-dimensional
system of functional differential equations

u′1(t) = f1(u1, u2)(t), (1.2)
u′2(t) = f2(u1, u2)(t), t ∈ [0, ω], (1.3)

subjected to the periodic-type boundary value conditions

u1(ω)− u1(0) = h1(u1, u2), u2(ω)− u2(0) = h2(u1, u2). (1.4)
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Here fi : C([0, ω];R) × C([0, ω];R) → L([0, ω];R) (i = 1, 2) are continuous operators satisfying
Carathéodory conditions, i.e., for every r > 0 there exists qr ∈ L([0, ω];R+) such that

|f1(u1, u2)(t)|+ |f2(u1, u2)(t)| ≤ qr(t) for a.e. t ∈ [0, ω] whenever ‖u1‖C + ‖u2‖C ≤ r,

and hi : C([0, ω];R)×C([0, ω];R) → R (i = 1, 2) are continuous functionals bounded on every ball
by a constant, i.e., for every r > 0 there exists Mr > 0 such that

|h1(u1, u2)|+ |h2(u1, u2)| ≤ Mr whenever ‖u1‖C + ‖u2‖C ≤ r.

By a solution to the system (1.2), (1.3) we understand a vector-valued function (u1, u2) ∈
C([0, ω];R) × C([0, ω];R) with absolutely continuous components that satisfy the equalities (1.2)
and (1.3) almost everywhere in [0, ω]. By a solution to the problem (1.2)–(1.4) we understand a
solution to (1.2), (1.3) which satisfies (1.4).

Before presenting our main results in Section 2, let us introduce basic notation used in this
work:

R is a set of all real numbers;
C([0, ω];R) is a Banach space of continuous functions u : [0, ω] → R endowed with the norm

‖u‖C = max
{
|u(t)| : t ∈ [0, ω]

}
;

L([0, ω];R) is a Banach space of Lebesgue integrable functions u : [0, ω] → R endowed with the
norm

‖u‖L =

ω∫
0

|u(t)| dt;

if g ∈ L([0, ω];R) then [g]+, resp. [g]−, denotes the non-negative, resp. nonpositive, part of the
function g, i.e.,

[g]+(t)
def
=

|g(t)|+ g(t)

2
, [g]−(t)

def
=

|g(t)| − g(t)

2
for a.e. t ∈ [0, ω];

P(λ), where λ > 0, is a set of all continuous nondecreasing operators p : C([0, ω];R) →
L([0, ω];R) satisfying Carathéodory conditions which are positively homogeneous with a degree λ,
i.e., for every c > 0 and u ∈ C([0, ω];R) the following identity holds:

p(cu)(t) = cλp(u)(t) for a.e. t ∈ [0, ω].

Let µ, τ : [0, ω] → [0, ω] be measurable functions. Then, for every t ∈ [0, ω], we put I(µ(t), τ(t)) =
[µ(t), τ(t)] if µ(t) ≤ τ(t) and I(µ(t), τ(t)) = ∅ otherwise.

S is a set of all mappings S : [0, ω] → 2[0,ω] such that S(t) is a union of at most countable
number of intervals (µk(t), τk(t)), where µk, τk : [0, ω] → [0, ω] are measurable functions satisfying
µk(t) ≤ τk(t) for almost all t ∈ [0, ω].

Note that the function t 7→ sup{|u(s)|λ sgnu(s) : s ∈ S(t)} is measurable whenever u ∈
C([0, ω];R), S ∈ S , and λ > 0 (we put sup∅ = −∞).

For given p ∈ P(λ) and a number δ ∈ [0, 1] we define the operator p( · ; δ) : C([0, ω];R) →
L([0, ω];R) and a non-negative numbers P̂ (δ) and P (δ) in the following way:

p(u; δ)(t)
def
= (1− δ)p(u)(t)− δp(−u)(t) for a.e. t ∈ [0, ω], P̂ (δ)

def
=

ω∫
0

p(1; δ)(t) dt,

P (δ)
def
= max

{ y∫
x

p(1; δ)(t) dt+

x+ω∫
y

p(1; 1− δ)(t) dt : x ∈ [0, ω], y ∈ [x, x+ ω]

}
,
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where
p(1; ν)(t) = p(1; ν)(t− ω) for a.e. t ∈ (ω, 2ω], ν = δ, 1− δ.

Obviously, P̂ (δ) ≤ P (δ) and −p(−u; δ) ≡ p(u; 1− δ) for every u ∈ C([0, ω];R) and δ ∈ [0, 1]. It can
be also easily verified that

P (δ) = P (1− δ) for δ ∈ [0, 1]. (1.5)

Furthermore, for given p0 ∈ P(λ1) and p1, p2 ∈ P(λ2) we define the following functions:

q1(t, ρ)
def
= sup

{
|f1(u1, u2)(t)− p0(u2)(t)| : ‖u1‖C ≤ ρ, ‖u2‖C ≤ ρλ2

}
(1.6)

for a.e. t ∈ [0, ω],

q2(t, ρ)
def
= sup

{
|f2(u1, u2)(t)− p1(u1)(t) + p2(u1)(t)| : ‖u1‖C ≤ ρλ1 , ‖u2‖C ≤ ρ

}
(1.7)

for a.e. t ∈ [0, ω],

ηk(ρ)
def
= sup

{
|hk(u1, u2)| : ‖uk‖C ≤ ρ, ‖u3−k‖C ≤ ρλ3−k

}
(k = 1, 2). (1.8)

2 Main results
Now we can formulate our main results. The proofs of the results slightly differ depending on
the values of λi. Therefore it is convenient formulate assertions for two separate cases. Thus,
Theorem 2.1 deals with the case when λ2 ≥ 1, Theorem 2.2 can be applied in the case when λ2 < 1.

Theorem 2.1. Let λ1, λ2 > 0, λ1λ2 = 1, and let there exist p0 ∈ P(λ1) and p1, p2 ∈ P(λ2) such
that

lim
ρ→+∞

ω∫
0

qk(s, ρ)

ρ
ds = 0, lim

ρ→+∞

ηk(ρ)

ρ
= 0 (k = 1, 2), (2.1)

where qk and ηk are given by (1.6)–(1.8). Let, moreover, λ2 ≥ 1, p0(1) 6≡ 0, p0(−1) 6≡ 0, and let
there exist i ∈ {1, 2} such that, for every δ ∈ [0, 1], the following inequalities hold:

P0(δ)

21+λ1
P λ1
i (δ) < 1, P̂ λ1

i (δ) <
(
1− P0(δ)

21+λ1
P̂ λ1
i (δ)

)
P̂ λ1
3−i(δ), (2.2)

P λ2
0 (δ)

22+λ2
P3−i(δ) < 2λ2 − 1 +

√
1− P λ2

0 (δ)

21+λ2
Pi(δ) . (2.3)

Then the problem (1.2)–(1.4) has at least one solution.

Theorem 2.2. Let λ1, λ2 > 0, λ1λ2 = 1, and let there exist p0 ∈ P(λ1) and p1, p2 ∈ P(λ2) such
that (2.1) is fulfilled where qk and ηk are given by (1.6)–(1.8). Let, moreover, λ2 < 1, p0(1) 6≡ 0,
p0(−1) 6≡ 0, and let there exist i ∈ {1, 2} such that, for every δ ∈ [0, 1], the following inequalities
hold:

P0(δ)

4
P λ1
i (δ) < 1, P̂ λ1

i (δ) <
(
1− P0(δ)

21+λ1
P̂ λ1
i (δ)

)
P̂ λ1
3−i(δ), (2.4)

P λ2
0 (δ)

22λ2+1
P3−i(δ) < 1 +

√
1− P λ2

0 (δ)

4λ2
Pi(δ) . (2.5)

Then the problem (1.2)–(1.4) has at least one solution.
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In the case when the operator p ∈ P(λ) is homogeneous on the constant functions, i.e., if
p(−1) ≡ −p(1), then the numbers P̂ (δ), P (δ) take more simple form. More precisely, they do not
depend on δ anymore and

P̂ (δ) = P (δ) =

ω∫
0

p(1)(t) dt.

The typical operator having the above-described property is an operator defined by means of
suprema of the function u over certain subsets of its domain:

p(u)(t)
def
= g(t) sup

{
|u(s)|λ sgnu(s) : s ∈ S(t)

}
,

where g ∈ L([0, ω];R) and S ∈ S . Therefore, considering the system

u′1(t) = g0(t) sup
{
|u2(s)|λ1 sgnu2(s) : s ∈ S0(t)

}
+ f̃1(u1, u2)(t), (2.6)

u′2(t) = g1(t) sup
{
|u1(s)|λ2 sgnu1(s) : s ∈ S1(t)

}
− g2(t) sup

{
|u1(s)|λ2 sgnu1(s) : s ∈ S2(t)

}
+ f̃2(u1, u2)(t), (2.7)

where gi ∈ L([0, ω];R+), Si ∈ S (i = 0, 1, 2), and f̃1, f̃2 : C([0, ω];R) × C([0, ω];R) → L([0, ω];R)
are continuous operators satisfying Carathéodory conditions, from Theorems 2.1 and 2.2 we derive
the following assertions:

Corollary 2.1. Let λ1, λ2 > 0, λ1λ2 = 1, and let (2.1) be fulfilled where

qk(t, ρ)
def
= sup

{
|f̃k(u1, u2)(t)| : ‖uk‖C ≤ ρ, ‖u3−k‖C ≤ ρλ3−k

}
for a.e. t ∈ [0, ω] (2.8)

and ηk are given by (1.8). Let, moreover, λ2 ≥ 1 and gi(t) ≥ 0 (i = 0, 1, 2) for almost every
t ∈ [0, ω], g0 6≡ 0, and let there exist i ∈ {1, 2} such that the following inequalities hold:

‖g0‖L
21+λ1

‖gi‖λ1
L < 1, ‖gi‖λ1

L <
(
1− ‖g0‖L

21+λ1
‖gi‖λ1

L

)
‖g3−i‖λ1

L ,

‖g0‖λ2
L

22+λ2
‖g3−i‖L < 2λ2 − 1 +

√
1−

‖g0‖λ2
L

21+λ2
‖gi‖L .

Then the problem (2.6), (2.7), (1.4) has at least one solution.

Corollary 2.2. Let λ1, λ2 > 0, λ1λ2 = 1, and let (2.1) be fulfilled where qk and ηk are given by
(2.8) and (1.8), respectively. Let, moreover, λ2 < 1 and gi(t) ≥ 0 (i = 0, 1, 2) for almost every
t ∈ [0, ω], g0 6≡ 0, and let there exist i ∈ {1, 2} such that the following inequalities hold:

‖g0‖L
4

‖gi‖λ1
L < 1, ‖gi‖λ1

L <
(
1− ‖g0‖L

21+λ1
‖gi‖λ1

L

)
‖g3−i‖λ1

L ,

‖g0‖λ2
L

22λ2+1
‖g3−i‖L < 1 +

√
1−

‖g0‖λ2
L

4λ2
‖gi‖L .

Then the problem (2.6), (2.7), (1.4) has at least one solution.

Now, consider the particular case of equation (1.1) where f0, g ∈ L([0, ω];R), λ > 0, and
µ, τ : [0, ω] → [0, ω] are measurable functions satisfying µ(t) ≤ τ(t) for almost all t ∈ [0, ω].
Obviously, in such a case, we can invoke our previous results setting g0 ≡ 1, g1 ≡ [g]+, g2 ≡ [g]−,
λ1 = 1/λ, λ2 = λ, and S0(t) = {t}, S1(t) = S2(t) = [µ(t), τ(t)] for almost all t ∈ [0, ω]. Thus,
Corollaries 2.1 and 2.2 yields the following assertions dealing with the equation (1.1).
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Corollary 2.3. Let λ ≥ 1 and let there exist σ ∈ {−1, 1} such that

∥∥[σg]+∥∥L <
21+λ

ωλ
,

‖[σg]+‖L
(1− ω21+1/λ‖[σg]+‖1/λL )λ

< ‖[σg]−‖L <
22+λ

ωλ

(
2λ − 1 +

√
1− ωλ

21+λ

∥∥[σg]+∥∥L)
.

Then the equation (1.1) has at least one solution u that satisfies u(0) = u(ω), u′(0) = u′(ω).

Corollary 2.4. Let 0 < λ < 1 and let there exist σ ∈ {−1, 1} such that∥∥[σg]+∥∥L <
( 4

ω

)λ
,

‖[σg]+‖L
(1− ω

21+1/λ ‖[σg]+‖
1/λ
L )λ

<
∥∥[σg]−∥∥L <

22λ+1

ωλ

(
1 +

√
1−

(ω
4

)λ∥∥[σg]+∥∥L)
.

Then the equation (1.1) has at least one solution u that satisfies u(0) = u(ω), u′(0) = u′(ω).
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