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We consider the second order ordinary differential equation of the form:

F (t, y, y′, y′′) =
n∑

k=1

pk(t)y
αk |y′|βk |y′′|γk = 0, (1)

n ∈ N, n ≥ 2, αk, βk, γk ∈ R,
n∑

k=1

|γk| ̸= 0, pk ∈ C([a; +∞), a > 0;R) (k = 1, n), pi(t) ̸= 0 (i = 1, s

for some 2 ≤ s ≤ n).
We investigate the question of the existence and asymptotic behavior (as t → +∞) of unbo-

udedly continuable to the right solutions (R-solutions) y(t) of equation (1) and the derivatives y′(t),
y′′(t) of these solutions.

Earlier in [3] we have considered a similar question of the asymptotic behavior of solutions of
equation of the form (1) when

n∑
k=1

|γk| = 0, that is when equation (1) is a first order differential

equation.
The main result is obtained under the assumption that there exists a function v ∈ C2([t1; +∞),

t1 > a;R) which possesses the following properties:

(A) v(t) > 0, v′′(t) ̸= 0 on [t1; +∞),

lim
t→+∞

v(t) = 0 ∨+∞;

(B)

lim
t→+∞

v′′(t)v(t)

(v′(t))2
= µ (0 ̸= µ ∈ R);

(C)

lim
t→+∞

pi(t)v
αi(t)|v′(t)|βi |v′′(t)|γi

p1(t)vα1(t)|v′(t)|β1 |v′′(t)|γ1
= ci (0 ̸= ci ∈ R, i = 1, s),

s∑
i=1

γici ̸= 0,

lim
t→+∞

pj(t)v
αj (t)|v′(t)|βj |v′′(t)|γj

p1(t)vα1(t)|v′(t)|β1 |v′′(t)|γ1
= 0 (j = s+ 1, n).

The following lemma is valid.
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Lemma. Let in the relation
Φ(t, x1, x2, x3) = 0, (2)

(t, x1, x2, x3) ∈ H, H = [a; +∞)×
3∏

k=1

Hk, Hk = [−hk;hk], a ∈ R, hk > 0 (k = 1, 2, 3), the function

Φ : H → R satisfy the conditions:

1) Φ, ∂Φ
∂x1

, ∂Φ
∂x2

, ∂
2Φ

∂x2
3
∈ C(H;R);

2)
lim

t→+∞
sup

(x1;x2)∈H1×H2

|Φ(t, x1, x2, 0)| = 0;

3)
lim

t→+∞

∂Φ

∂x3
(t, 0, 0, 0) = A1 ̸= 0;

4)

sup
D

∣∣∣∂2Φ

∂x23
(t, x1, x2, x3)

∣∣∣ = A2 < +∞.

Then in some domain H∗ = H0×H∗
3 , H0 = [t0; +∞)×

2∏
k=1

H∗
k , H∗

k = [−h∗k;h
∗
k] (k = 1, 2, 3), where

t0 and h∗k satisfy the inequality t0 ≥ a, 0 < h∗k ≤ hk, 4A2h∗
3

|A1| < 1, relation (2) defines a unique
function x3 : H0 → R that satisfies the conditions:

x3,
∂x3
∂x1

,
∂x3
∂x2

∈ C(H0;R), Φ(t, x1, x2, x3(t, x1, x2)) ≡ 0, lim
t→+∞

x3(t, 0, 0) = 0

and
x3(t, x1, x2) ∼ − Φ(t, x1, x2, 0)

∂Φ
∂x3

(t, x1, x2, 0)
.

The following theorem was obtained using the above lemma and the results from [1,2, 4].

Theorem. Let there exist a function v ∈ C2([t1; +∞), t1 > a;R) which possesses the properties
(A)–(C). Then for the R-solution y(t) of the differential equation (1) with the asymptotic represen-
tation

y(k)(t) ∼ v(k)(t) (k = 0, 2) (3)

to exist it is necessary, and if the roots λ1, λ2 of the algebraic equation

λ2 +

(
1 +

m
s∑

i=1
(βi + γi)ci

s∑
i=1

γici

)
λ+

m
s∑

i=1
(αi + βi + γi)ci

s∑
i=1

γici

= 0

have the property Re λk ̸= 0 (k = 1, 2), then it is also sufficient that
s∑

i=1
ci = 0.

Moreover, if sign(Reλ1) ̸= sign(Reλ2), then there exists a one-parametric set of R-solutions
with the asymptotic representation (3); if in some suburb of +∞

sign(Reλ1) = sign(Reλ2) ̸= sign(v′(t)),

then there exists a two-parametric set of R-solutions with the asymptotic representation (3).
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