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Consider the higher order nonlinear equation

u(n) + q(t)u(n−2) + r(t)|u|λ sgnu = 0, n ≥ 3, (1)

where the functions r and q are continuous for t ≥ 1, q is positive and λ > 0.
We study equation (1) as a perturbation of the linear differential equation

y(n) + q(t)y(n−2) = 0, n ≥ 3. (2)

Some contributions on the proximity of solutions of two differential equations can be found in the
quoted monograph [9], in the papers [1–3,5] and references therein, in which this problem has been
studied in various directions for a large variety of equations. Here we present a survey on some
results concerning this topic, which are obtained by the authors and others in the last ten years,
see [2–5].

An important role on this problem is played by the second order linear equation

h′′ + q(t)h = 0. (3)

Prototypes of (3) are equations with q(t) ≡ 1 and q(t) ≡ 0. When q(t) ≡ 1, then (3) is
oscillatory and this case has been considered in [8]. More precisely, in [8] it was shown that, if r is
positive and sufficient large in some sense, then for n even every proper solution of

u(n) + u(n−2) + r(t)|u|λ sgnu = 0 (4)

is oscillatory, and for n odd every proper solution of (4) is oscillatory, or is vanishing at infinity
together with its derivatives, or admits the asymptotic representation

x(t) = c(1 + sin(t− φ)) + ε(t),

where c, φ are suitable constants and ε is a continuous function for t ≥ 0 which vanishes at infinity.
According to [8], such equation is said to have property A′, see also [9] for more details.

On the other hand, if q(t) ≡ 0, then (3) is nonoscillatory. This case has been studied in [7],
where it is proved that if −r(t) = ϱ(t) > 0 is sufficient small in some sense, then the equation

u(n) = ϱ(t)|u|λ sgnu, λ > 1, (5)
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has an (n− 1) parametric family of so-called rapidly increasing solutions, satisfying the condition

lim
t→∞

|u(n−1)(t)| = ∞,

see also [9] for more details.
When (3) is oscillatory, the asymptotic representation of solutions to (1) has been studied by

authors in [3,5] and the main results have been summarized in [6]. Here, we continue such a study
by considering the opposite case, that is the case in which (3) is nonoscillatory. Using some results
from [2, Theorem 1], we obtain the following

Theorem 1. Let the second order differential equation (3) be nonoscillatory and
∞∫
1

tq(t) dt = ∞. (6)

Assume that for some real number m ∈ [0, n− 1],
∞∫
1

tn+mλ |r(t)| dt < ∞. (7)

Then for any solution y to (2) such that y(t) = O(tm), there exists a solution u to (1) such that for
large t

u(i)(t) = y(i)(t) + εi(t), i = 0, 1, . . . , n− 1, (8)

where all εi are functions of bounded variation and lim
t→∞

εi(t) = 0.

The proof is based on the induction method, an iterative process and suitable estimates for
solutions to (2). A similar approach has been used in [3], but using completely different estimations
for solutions of (2).

Now consider the special case of (1), i.e. the equation

u(n)(t) +
σ

t2
u(n−2)(t) + r(t)|u|λ sgnu = 0, n ≥ 3, (9)

where σ ∈ (0, 1/4). Obviously, (6) is satisfied and the corresponding second order equation is the
Euler equation

h′′(t) +
σ

t2
h(t) = 0,

which is nonoscillatory and whose solutions are known, see, e.g. [10, p. 45]. Using suitable estima-
tions for solutions of (2), we have the following theorem see [2, Corollary 3].

Theorem 2. Let σ ∈ (0, 1/4) and assume that
∞∫
1

tn−1+γλ |r(t)| dt < ∞,

where
γ = n− 2−1

(
3 +

√
1− 4σ

)
.

Then for any polynomial Q with degQ ≤ n− 3, there exist solutions u of (9) such that for large t

u(i)(t) =
(
c1Γ1(t) + c2Γ2(t) +Q(t)

)(i)
+ εi(t), i = 0, . . . , n− 1,
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where

Γ1(t) =

t∫
1

(t− s)n−3sµ dsO(tβ), Γ2(t) =

t∫
1

(t− s)n−3sv dsO(t γ),

µ = 2−1
(
1−

√
1− 4σ

)
, ν = 2−1

(
1 +

√
1− 4σ

)
,

c1, c2 are constants and functions εi are of bounded variation for large t and lim
t→∞

εi(t) = 0.

The following example illustrates Theorem 1.

Example 1. Let λ > 0 and consider the nonlinear equation for t ≥ 1

u(4) +
1

t2 log et
u(2) =

e−t(t2 log et+ 1)

(1 + e−t)λt2 log et
|u|λ sgnu. (10)

A solution of (10) is
u(t) = t+ e−t. (11)

Setting

q(t) =
1

t2 log et
, r(t) =

e−t(t2 log et+ 1)

(1 + e−t)λt2 log et
,

we get that (3) is nonoscillatory and (6) is valid. Moreover, we have for any σ > 0

∞∫
1

tσr(t) dt < ∞.

Thus, all the assumptions of Theorem 1 are verified with m = 1 and so equation (10) has a solution
u such that for any large t

u(i)(t) = y(i)(t) + εi(t), i = 0, 1, 2, 3,

where εi are functions of bounded variation such that lim
t→∞

εi(t) = 0 and y(t) = t, as the solution
(11) illustrates.

Finally, consider the fourth-order differential equation with deviating argument

x(4)(t) + q(t)x′′(t) + r(t)|x(φ(t))|λ sgnx(φ(t)) = 0, λ > 0, (12)

where φ is a nonegative continuous function for t ≥ 1 and φ(1) = 1, lim
t→∞

φ(t) = ∞. From [3, Theo-
rem 1], if q is a continuously differentiable bounded away from zero function, i.e. q(t) ≥ q0 > 0 for
large t, such that

∞∫
1

|q′(t)| dt < ∞, (13)

and
∞∫
1

tλ+1|r(t)| dt < ∞, (14)

then (12) with φ(t) = t has a solution x such that

x(i)(t) = ti + εi(t), i = 0, 1, 2, 3,
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where functions εi are of bounded variation for large t and lim
t→∞

εi(t) = 0. In [4] this result has
been improved for a more general equation than (12), without the assumption φ(t) = t. More
precisely, by means of a topological method jointly with certain integral inequalities, the following
asymptotic representation of unbounded solutions of (12) has been given, see [4, Corollary 4.1].

Theorem 3. Let r(t) ̸= 0 for large t. If q is a continuously differentiable bounded away from zero
function satisfying (13), then (12) has an asymptotic linear solution x, i.e. a solution x satisfying

lim
t→∞

|x(t)| = ∞, lim
t→∞

x′(t) = cx ̸= 0, (15)

if and only if
∞∫

t0

|r(t)|φλ(t) dt < ∞. (16)

Theorem 3 illustrates the dependence of asymptotic linear solutions from the behavior of the
deviating argument φ as t → ∞. Moreover, in view of (14) and (16), when φ(t) = t, Theorem 2
improves the quoted result in [3, Theorem 1]. The following example illustrates this fact.

Example 2. Consider the equation

x(4)(t) + x′′(t) +
1

(t+ 1)2
|x(t1/2)|3/2 sgnx(t1/2) = 0, t ≥ 1. (17)

By Theorem 3 equation (17) has unbounded asymptotic linear solutions. On the other hand, the
corresponding equation

x(4)(t) + x′′(t) +
1

(t+ 1)2
|x(t)|3/2 sgnx(t) = 0, t ≥ 1, (18)

does not have solutions x satisfying (15). Indeed, by contradiction, let x be an eventually positive
solution x of (18) satisfying (15). Since we have for some T ≥ 1

∞∫
T

x3/2(t)

(t+ 1)2
dt = ∞,

from (18) we get
lim
t→∞

(x′′′(t) + x′(t)) = −∞,

which gives a contradiction with (15).

Since the function q considered in Theorem 3 is bounded away from zero, the corresponding
second order equation (3) is oscillatory. Thus, in view of the above mentioned result for equation
(5), it is natural to ask under which assumptions on deviating argument φ the above results continue
to hold for (12) or, more generally, for (1) when q is small so that (3) is nonoscillatory.
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