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There are many papers devoted to the solvability of the Cauchy problem in the non-Volterra
case [1–15]. If the functional operators in the equation don’t satisfy the delay conditions, the
solvability of the Cauchy problem requires some smallness of these functional operators.

We consider the Cauchy problem for functional differential equations with an alternating coef-
ficient {

ẍ(t) = a(t− t0)x(h(t)) + f(t), t ∈ [0, 1],

x(0) = c0, ẋ(0) = c1,
(1)

where a ∈ R, t0 ∈ [0, 1], h : [0, 1] → [0, 1] is a measurable function, f ∈ L[0, 1], c0, c1 ∈ R. We say
that a function x : [0, 1] → R is a solution of problem (1) if x and the derivative ẋ are absolutely
continuous on the interval [0, 1] and x satisfies the functional differential equation of the problem
almost everywhere on [0, 1] and satisfies the initial conditions x(0) = c0 and ẋ(0) = c1.

Using ideas of [8, 9], we obtain necessary and sufficient conditions for the Cauchy problem{
ẍ(t) = (T+x)(t)− (T−x)(t) + f(t), t ∈ [0, 1],

x(0) = c0, ẋ(0) = c1
(2)

to be uniquely solvable for all linear positive operators T+, T− : C[0, 1] → L[0, 1] such that

(T+1 )(t) =

{
a(t− t0) if a(t− t0) ≥ 0,
0, otherwise,

(T−1 )(t) =

{
−a(t− t0) if a(t− t0) < 0,
0, otherwise.

(3)

Here 1 : [0, 1] → R, 1 (t) = 1, is the unit function, C[0, 1] and L[0, 1] are the spaces of all continuous
and integrable functions with the standard norms respectively, an operator is called positive if it
maps each non-negative function into almost everywhere non-negative one.

We also need the following notation.
Let t0∗ ≈ 0, 47 be a solution of the equation

6

t20(3− t0)
=

6

2− 3t0
,

t∗0 ≈ 0, 54 be a solution of the equation

24

(3t0 − 1)2
=

6

(1− t0)3
.
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Denote

q1 = q1(t0, t1, t3) = (t0 − t1)
3 − 3(1− t1)(t0 − t3)

2 + 3t0 − 1,

q2 = q2(t0, t1, t3) = t21(3− t0 − 2t3)(t0 − t3)
2(3t0 − t1)− (3t0 − 1)(t1 − t3)

2(3t0 − t1 − 2t3),

r1 = r1(t0, t1, t3) =
t21(3t0 − t1) + 3(t0 − t3)

2(t1 − 1)

6
,

r2 = r2(t0, t1, t3) =
(t1(t0 + 2t3)(3t0 − t1) + (3t1 − t0 − 2t3)(1 + t1 − 3t0))(t0 − t3)

2(t1 − 1)

36
,

A+(t0) =


6

(1− t0)3
if t0 ∈ [0, t∗0],

min
0<t3≤t1<t0

3(q1 +
√

q21 + 4 q2)

q2
if t0 ∈ (t∗0, 1],

A−(t0) =


min

0<t3≤t1<t0

{
3(r1 −

√
r21 − 4 r2)

r2
,

6

t20(3− t0)

}
if t0 ∈ [0, t0∗),

6

t20(3− t0)
if t0 ∈ [t0∗, 1].

Theorem. Problem (2) is uniquely solvable for all linear positive operator T+, T− : C[0, 1] →
L[0, 1] satisfied conditions (3) if and only if

−A−(t0) < a < A+(t0). (4)

Corollary. Problem (1) is uniquely solvable for every measurable function h : [0, 1] → [0, 1] if and
only if condition (4) holds.

Example. For t0 ∈ [1/5, t∗0], we have

A−(t0) =
6

t20(3− t0)
, A+(t0) =

6

(1− t0)3
.

In particular, the problemẍ(t) = a
(
t− 1

2

)
x(h(t)) + f(t), t ∈ [0, 1],

x(0) = c0, ẋ(0) = c1

is uniquely solvable for every measurable function h : [0, 1] → [0, 1] if and only if

−48

5
< a < 48.
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