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In the space C[a, b], −∞ < a < b < +∞, we consider a linear boundary-value problem for the
system of fractional differential equations

CDα
a+x(t) = A(t)x(t) + f(t), (1)
lx( · ) = q, (2)

where CDα
a+ is the left Caputo fractional derivative of order α (0 < α < 1) [6, 7, 14]

CDα
a+x(t) =

1

Γ(m− α)

t∫
a

x(m)(s)

(t− s)α−m+1
ds,

A(t) is an (n× n)-matrix and f(t) is an n-vector, whose components are real functions continuous
on [a, b], l = col(l1, l2, . . . , lp) : C[a, b] → Rp is bounded linear vector functional, lν : C[a, b] → R,
ν = 1, p, q = col(q1, q2, . . . , qp) ∈ Rp.

Using the results [1,2,5,15], obtained as a generalization of the classical methods of the theory
of periodic boundary-value problems in the theory of oscillations (see [10–13]), we consider the
questions of finding necessary and sufficient conditions of solvability and determine a general form
of solutions of the boundary-value problem for the systems of fractional differential equations (1),
(2). Let us first consider the general solution of system (1) of the form

x(t) = X(t)c+ x(t) ∀ c ∈ Rn, (3)

where X(t) is the fundamental solution (n × n)-matrix of the homogeneous system (1) (f = 0),
whose column vectors constitute a fundamental system of solutions to the homogeneous system (1)
and x(t) is an arbitrary special solution of the inhomogeneous system (1). The required special
solution x(t) can be chosen as a solution of the system of linear Volterra integral equation of the
second kind

x(t) = g(t) +

t∫
a

K(t, s)x(s) ds, (4)

g(t) =
1

Γ(α)

t∫
a

f(s)

(t− s)γ
ds, K(t, s) =

A(s)

Γ(α)(t− s)γ
, (5)

0 < γ = 1− α < 1.
The solution of the system of equations (4) can be found by different methods. We apply the

approach described in [3,4]. In the Hilbert space L2[a, b], we show that system (4) with unbounded
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kernel K(t, s) (5) can be reduced to an equivalent system with square summable kernel. To do this,
we consider iterated kernels Km(t, s), m ∈ N, given by the recurrence relations

Km+1(t, s) =

t∫
s

K(t, ξ)Km(ξ, s) dξ, K1(t, s) = K(t, s).

The iterated kernels Km(t, s) have the same structure as weakly singular kernel K(t, s) (5) but
the number γ is replaced with the number 1−m(1− γ) which is negative for sufficiently large m.
Therefore (see [9, p. 34]), for all m by which the condition

m >
1

2(1− γ)
(6)

is satisfied, the kernels Km(t, s) are square summable.
System (4) can be reduced to a similar system with the kernel Km(t, s)

x(t) = gm(t) +

t∫
a

Km(t, s)x(s) ds, (7)

gm(t) = g(t) +

m−1∑
l=1

t∫
a

Kl(t, s)g(s) ds.

We apply the approach described in [3, 4] to the study of system (7) and show that it can be
reduced to the system

Λz = g, (8)

where the vectors z, g and the block matrix Λ have the form

z = col(x1, x2, . . . , xi, . . . ), g = col(g1, g2, . . . , gi, . . . ),

Λ =


Λ11 Λ12 · · · Λ1i · · ·
Λ21 Λ22 · · · Λ2i · · ·

...
... . . . ...

...
Λi1 Λi2 · · · Λii · · ·
...

... · · ·
... . . .

 , Λij =

{
In −Aij , if i = j;

−Aij , if i ̸= j,

xi =

b∫
a

x(t)φi(t) dt, gi =

b∫
a

gm(t)φi(t) dt, (9)

Aij =

b∫
a

t∫
a

Km(t, s)φi(t)φj(s) dt ds, (10)

{φi(t)}∞i=1 is a complete orthonormal system of functions in L2[a, b].
Here, In is the identity matrix of dimensions n, the operator Λ : ℓ2 → ℓ2 appearing on the

left-hand side of the operator equation (8) has the form Λ = I−A, where I : ℓ2 → ℓ2 is the identity
operator and A : ℓ2 → ℓ2 is a compact Volterra operator (see [8]). Hence, PΛ = P ∗

Λ = O, Λ+ = Λ−1.
According to [5], the homogeneous equation (8) (g = 0) possesses a unique solution z = 0 and the
inhomogeneous equation (8) possesses a unique solution of the form z = Λ−1g.
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According to the Riesz–Fischer theorem, one can find an element x ∈ L2[a, b] such that the
quantities xi, i = 1,∞ are the Fourier coefficients of this element. Thus, the following representation
is true:

x(t) =
∞∑
i=1

xiφi(t) = Φ(t)z = Φ(t)Λ−1g, (11)

where
Φ(t) = (φ1(t), φ2(t), . . . φi(t), . . . ).

The element x(t) given by relations (11) is the required solution of system (7).
We now return to the problem on the existence of a solution of the boundary-value problem

(1), (2) and determine a structure of this solution. Substituting (3) in condition (2), we obtain the
following algebraic system for vector c:

Qc = b, (12)

where a (p× n)-matrix Q and a p-vector b having the forms

Q = (lX)( · ), b = q − (l x)( · ). (13)

According to the criterion for solvability of system (12) (see [5, p. 65]), the following assertion
is true.

Theorem. The homogeneous boundary-value problem (1), (2) (f(t) = 0, q = 0) possesses a d2-pa-
rameter family of solutions

x(t) = X(t)PQd2
cd2 ∀ cd2 ∈ Rd2 .

The inhomogeneous boundary-value problem (1), (2) is solvable if and only if d1 linearly independent
conditions

PQ∗
d1
b = 0, d1 = p− rankQ

are satisfied and possesses a d2-parameter family of solutions x ∈ C[a, b] of the form

x(t) = X(t)PQd2
cd2 +X(t)Q+b+ x(t) ∀ cd2 ∈ Rd2 .

Here, PQd2
is an (r×d2)-matrix formed by a complete system of d2 linearly independent columns

of the matrix projector PQ, where PQ is the projector onto the kernel of the matrix Q, Q+ is the
pseudoinverse Moore–Penrose (n×p)-matrix for the matrix Q, and PQ∗

d1
is a (d1×p)-matrix formed

by the complete system of d1 linearly independent rows of the matrix projector PQ∗ , where PQ∗ is
the projector onto the cokernel of the matrix Q.
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