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1 Introduction. Statement of the problem
For a given positive integer n, let Mn denote the class of linear differential systems

ẋ = A(t)x, x ∈ Rn, t ∈ R+
def
= [0,+∞), (1.1)

with piecewise continuous and bounded on the half-line R+ coefficient matrices A( · ) : R+ → Rn×n.
In what follows, we identify system (1.1) with its coefficient matrix and hence write A ∈ Mn. For
a system A ∈ Mn, let λ1(A) 6 · · · 6 λn(A) denote its Lyapunov exponents [7, p. 567], [5, p. 6],
es(A) its exponential stability index, i.e., the dimension of the linear subspace of solutions to system
(1.1) that have negative Lyapunov exponents, and σL(A) its Lyapunov irregularity coefficient [7,
p. 563], [5, p. 10], i.e., the quantity

σL(A)
def
=

n∑
i=1

λi(A)− lim
t→+∞

1

t

t∫
0

trA(τ) dτ,

tr being the trace of a matrix. By virtue of the Lyapunov inequality [7, p. 562], the quantity σL(A)
is nonnegative.

The Lyapunov irregularity coefficient is one of the most important asymptotic characteristics of
systems in the class Mn. The condition σL(A) = 0 singles out in Mn the subclass Rn of Lyapunov
regular systems, historically the first class of systems for which the problem of conditional stability
by the first approximation was solved in the affirmative [7, p. 578]. Moreover, this coefficient is used
to state sufficient conditions characterizing the response of a system A ∈ Mn to both exponentially
decaying linear perturbations and higher-order nonlinear perturbations. For example, the Lyapunov
exponents of a system A ∈ Mn are preserved under linear exponentially decaying perturbations
Q( · ), whenever the estimate ∥Q(t)∥ 6 C exp(−σt), t ∈ R+, holds with some constants C > 0
and σ > σL(A) [3]. If for a higher-order perturbation f(t, x) (∥f(t, x)∥ 6 const∥x∥m, t ∈ R+,
m = const > 1) of a system A ∈ Mn its order m > 1 satisfies the estimate (m−1)λn(A)+σL(A) < 0,
then the trivial solution of the perturbed system is stable (the Lyapunov–Massera theorem [7,
pp. 578–579], [8]).

It was a long-standing conjecture that the Lyapunov exponents of Lyapunov regular systems
are invariant under perturbations vanishing at infinity. The conjecture was based essentially on the
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fundamental result by Lyapunov which claims that if a nonlinear system (with natural restrictions
on the right-hand side) has a regular first approximation system and the latter is conditionally
exponentially stable, then so is the zero solution of the original system (with the same dimension
of the stable manifold and asymptotic exponent) [7, pp. 576–578]. Nevertheless, in the paper [10]
R. È. Vinograd provided an example of systems A,B ∈ R2 satisfying

λ1(A) = λ2(A) = 0, λ1(B) = −1, λ2(B) = 1, lim
t→+∞

∥A(t)−B(t)∥ = 0.

From this result it follows, in particular, that the exponential stability index es( · ) – a function
taking exactly n+ 1 values – is not upper semicontinuous even on the set Rn of Lyapunov regular
systems with the topology of uniform convergence of coefficients on the semiaxis.

Let M be a metric space. Consider a family

ẋ = A(t, µ)x, x ∈ Rn, t ∈ R+, (1.2)

of linear differential systems depending on a parameter µ ∈ M such that for each µ ∈ M the
matrix-valued function A( · , µ) : R+ → Rn×n is continuous and bounded (for every µ, generally, by
a different constant). Therefore, fixing a value of the parameter µ ∈ M in family (1.2) we obtain
a linear differential system with continuous coefficients bounded on the semiaxis. We denote by
es(µ;A) its exponential stability index and by σL(µ;A) its Lyapunov irregularity coefficient.

It is customary to consider a family of matrix-valued functions A( · , µ), µ ∈ M, under one of
the following two natural assumptions: that the family is continuous either a) in the compact-
open topology, or b) in the uniform topology. The condition a) is equivalent to the fact that
if a sequence (µk)k∈N of points from M converges to a point µ0, then the sequence of functions
A(t, µk) of the variable t ∈ R+ converges to the function A(t, µ0) as k → +∞ uniformly on each
segment [0, T ] ⊂ R+, while the condition b) is equivalent to the fact that this convergence is
uniform over the whole semiaxis R+. Denote the class of families (1.2) that are continuous in
the compact-open topology by Cn(M) and the class of those that are continuous in the uniform
topology by Un(M). It is clear that a proper inclusion Un(M) ⊂ Cn(M) holds. In the sequel, we
will identify families (1.2) with the matrix-valued functions A( · , · ) defining them and therefore
write A ∈ Cn(M) or A ∈ Un(M).

Along with the class Un(M) we consider its subclass UZn
R(M), which is defined as follows. For

a number n ∈ N and a metric space M , denote by Zn(M) the class of jointly continuous matrix-
valued functions Q( · , · ) : R+ ×M → Rn×n that vanish at infinity uniformly over µ ∈ M (the last
means that sup

µ∈M
∥Q(t, µ)∥ → 0 as t → +∞). The class UZn

R(M) comprises families

ẋ = (B(t) +Q(t, µ))x, x ∈ Rn, t ∈ R+, (1.3)

where B ∈ Rn and Q ∈ Zn(M). Denoting the coefficient matrix of family (1.3) by A(t, µ) and, as
above, identifying it with the family itself, we will write A ∈ UZn

R(M).

Problem. For any n ∈ N and metric space M obtain a complete function-theoretic description for each
of the function classes:

T
[
Cn(M)

] def
=

{(
σL( · ;A), es( · ;A)

)
: A ∈ Cn(M)

}
,

T
[
Un(M)

] def
=

{(
σL( · ;A), es( · ;A)

)
: A ∈ Un(M)

}
,

T
[
UZn

R(M)
] def
=

{(
σL( · ;A), es( · ;A)

)
: A ∈ UZn

R(M)
}
.
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2 Preceding results
Let us recall that a function f : M → R is said [4, pp. 266–267] to be of the class ( ∗, Gδ) if for
each r ∈ R, the preimage f−1([r,+∞)) of the half-interval [r,+∞) is a Gδ-set of the metric space
M . In particular, the class ( ∗, Gδ) is a proper subclass of the second Baire class [4, p. 294]. Recall
also that a function m : M → R is called a majorant of a function f : M → R if f(x) ≤ m(x) for
all x ∈ M .

A complete description of the classes

S[Un(M)]
def
=

{
σL( · ;A) : A ∈ Un(M)

}
and S[UZn

R(M)]
def
=

{
σL( · ;A) : A ∈ UZn

R(M)
}
,

i.e., the classes made up of the first elements of pairs in the classes T[Un(M)] and T[UZn
R(M)],

respectively, is obtained in the paper [2] and is as follows: the classes S[Un(M)] and S[UZn
R(M)]

coincide with one another and consist of functions M → R+ of the class ( ∗, Gδ) that have a
continuous majorant.

A description of the class S[Cn(M)]
def
= {σL( · ;A) : A ∈ Cn(M)} follows from the result of the

paper [8]: for any n ∈ N and metric space M the class S[Cn(M)] consists of all functions M → R+

of the class ( ∗, Gδ). This description can also be immediately drawn from a more general result
obtained in the paper [11], which is a complete description of the class {(σL( · ;A), σP( · ;A)) : A ∈
Cn(M)} of vector functions composed of the Lyapunov irregularity coefficient σL and the Perron
one σP [2, p. 10] for families in Cn(M): for any n ≥ 2 and metric space M a vector function
(σ1, σ2) : M → R2

+ belongs to the above mentioned class if and only if the functions σ1 and σ2 are
( ∗, Gδ) and for all µ ∈ M , the inequalities 0 6 σ2(µ) 6 σ1(µ) 6 nσ2(µ) hold. (Recall that the
Perron irregularity coefficient σP(A) of a system A ∈ Mn is defined by the equality

σP(A)
def
= max

1≤i≤n

{
λi(A) + λn−i+1(−AT )

}
;

σP( · ;A) stands for the Perron irregularity coefficient of family (1.2).)
A description of the classes {es( · ;A) : A ∈ Cn(M)} and {es( · ;A) : A ∈ Un(M)} is obtained

in the paper [1]: both classes consist of functions f : M → {0, . . . , n} such that the function (−f)
is of the class ( ∗, Gδ).

3 The main result
Theorem 3.1. For any n ≥ 1 and metric space M a pair of functions (σ, s), where σ : M → R+

and s : M → {0, . . . , n}, belongs to the class T[Cn(M)] if and only if the functions σ and (−s) are
of the class ( ∗, Gδ).

Unfortunately, the authors of the report failed to completely solve the above stated problem on
description of the classes T[Un(M)] and T[UZn

R(M)]. Below we consider a simplified version of the
problem.

Following the report [9], which treats an analogous quantity, we call the indicator of total
exponential instability of system (1.1) the quantity ti(A) defined by

ti (A) =

{
1, if λ1(A) ≥ 0,

0, otherwise.

The next theorem completely describes the classes of pairs of functions

U
[
Un(M)

] def
=

{(
σL( · ;A), ti( · ;A)

)
: A ∈ Un(M)

}
,

U
[
UZn

R(M)
] def
=

{(
σL( · ;A), ti( · ;A)

)
: A ∈ UZn

R(M)
}
.
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Theorem 3.2. For any n ≥ 2 and metric space M the equality U[Un(M)] = U[UZn
R(M)] is valid.

A pair of functions (σ, t), where σ : M → R+ and t : M → {0, 1}, belongs to the above defined
classes if and only if the functions σ and t are of the class ( ∗, Gδ) and the function σ has a
continuous majorant.
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