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1 Introduction. Basic definitions
For a positive integer n, by Mn we denote the class of linear differential systems

ẋ = A(t)x, x ∈ Rn, t > 0, (1.1)

whose coefficient matrices A( · ) : [0,+∞) → EndRn are piecewise continuous and bounded on the
time half-line t > 0. By CMn we denote a subclass of the class Mn, consisting of systems with
continuous coefficients on the half-line. We identify system (1.1) with its coefficient matrix and
write A ∈ Mn or A ∈ CMn. The linear space of solutions of system (1.1) is denoted by X (A).

The following definition is well known.

Definition 1.1. A system in Mn is said to be exponentially dichotomous or called a system with
exponential dichotomy on the half-line if there exist positive constants c1, c2 and ν1, ν2 and a
decomposition of the space Rn of initial data (at t = 0) into a direct sum of subspaces L− and L+

(the case of zero dimension of the subspaces not being excluded) such that the solutions x( · ) of
the system satisfy the following two conditions:

(1) if x(0) ∈ L−, then ∥x(t)∥ 6 c1e
−ν1(t−s)∥x(s)∥ for all t > s > 0;

(2) if x(0) ∈ L+, then ∥x(t)∥ > c2e
ν2(t−s)∥x(s)∥ for all t > s > 0.

The study of this class of systems was initiated in Perron’s paper [13]. It was preceded by
fundamental works by Hadamard [10] and Bohl [8], who had developed the same key ideas that
later transformed to the concept of exponential dichotomy. The above definition was actually given
by Maisel’ [11], but it was Massera and Schäffer [12] who stated it explicitly for the first time.
Systems with exponential dichotomy, are one of the most comprehensively studied classes of linear
differential systems, with, in addition, has important application in related branches of the theory
of differential equations (see, e.g., [1]).

The efficiency of the notion of exponential dichotomy is in studying the asymptotics of solutions
of nonlinear systems that are exponentially dichotomous in the first approximation and in its
applications to dynamical systems has served as a reason for diverse generalizations of this notion
within the theory of linear differential systems itself and beyond, e.g. in the theory of evolution
operators and in the theory of linear extensions dynamical systems. We do not give any references
to papers dealing with such generalizations, because there are far too many of them. We only
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mention the papers [14] and [4,5], in which the generalizations of exponential dichotomy are closest
to the ones considered in the present paper.

We denote class of n-dimensional exponentially dichotomous system on the time half-line by
En and the subclass of systems whose coefficient matrices are continuous of the half-line by CEn.
In Definition 1.1, the positive constant factors c1 and c2 are the same for all solutions such that
x(0) ∈ L− and x(0) ∈ L+ respectively (or, in other words, estimates 1) ¨ 2) are uniform with
respect to the constants c1 and c2 on L− and L+ respectively). In exactly the same way, estimates
(1) and (2) are also uniform in the time variable; i.e., they hold for all t > s starting from zero for
all x(0) ∈ L− and x(0) ∈ L+.

The question considered in the present paper is as follows. Is the condition that estimates (1)
and (2) be uniform with respect to the constant factors or the time variable a necessary condition
for the exponential dichotomy of system (1.1)? If yes, how strongly may the known properties of
exponentially dichotomous systems change if these conditions are dropped?

In accordance with the preceding, let us introduce two more definitions.

Definition 1.2. A system in Mn is said to be weakly exponentially dichotomous on the half-line
if there exist positive constants ν1 and ν2 and a decomposition of the space Rn of initial data (at
t = 0) into a direct sum of subspaces L− and L+ (the case of zero dimension of the subspaces not
being excluded) such that the solutions x( · ) of the system satisfy the following two conditions:

(1′) if x(0) ∈ L−, then ∥x(t)∥ 6 c1(x)e
−ν1(t−s)∥x(s)∥ for all t > s > 0;

(2′) if x(0) ∈ L+, then ∥x(t)∥ > c2(x)e
ν2(t−s)∥x(s)∥ for all t > s > 0.

Here c1(x) and c2(x) are positive constants generally depending (as hinted in their notation)
on the choice of the solution x( · ).

Thus, the definition of weakly exponentially dichotomous systems differs from the definition of
exponentially dichotomous systems only in that the condition for the estimates to be uniform in
the respective constant factors is dropped.

Definition 1.3. A system in Mn is called almost exponentially dichotomous on the half-line if
there exist positive constants c1, c2 and ν1, ν2 and a decomposition of the space Rn of initial data
(at t = 0) into a direct sum of subspaces L− and L+ (the case of zero dimension of the subspaces
not being excluded) such that the solutions x( · ) of the system satisfy the following two conditions:

(1′′) if x(0) ∈ L−, then ∥x(t)∥ 6 c1e
−ν1(t−s)∥x(s)∥ for all t > s > tx;

(2′′) if x(0) ∈ L+, then ∥x(t)∥ > c2e
ν2(t−s)∥x(s)∥ for all t > s > tx.

Here tx is a nonnegative number generally depending (as hinted in their notation) on the choice
of the solution x( · ).

Although conditions (1′′) and (2′′) imply the uniformity of the estimates in the constant factors
c1 and c2, this is true not for all t > s > 0 (as the case for exponentially dichotomous systems) but
only for t > s greater than some tx, which depends on the solution x( · ).

The subspaces L− and L+ from Definitions 1.1–1.3 are called, respectively, stable and unstable
subspaces, and the numbers −ν1 and ν2 from Definitions 1.1–1.3 are called dichotomy exponents.

We denote the class of n-dimensional weakly exponentially dichotomous systems by WEn and the
class of n-dimensional almost exponentially dichotomous systems by AEn, with CWEn and CAEn
being their respective subclasses consisting of systems whose coefficient matrices are continuous on
the half-line. We have the relations E1 = AE1 = WE1. The class WEn was introduced in paper [6],
in which the authors used the constructions in [3] to prove that, in particular, for n > 2 one has
the proper inclusion En ⊂ WEn. Inclusion AEn ⊂ WEn is obvious (that AEn ̸= WEn if n > 2 is
stated below).
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2 Main results
Lemma. If the system is weakly exponentially dichotomous, then its stable subspaces L− is uniquely
determined and coincides with subspace ZA of initial (at t = 0) vectors of solutions vanishing at
infinity, and the subspaces L+ can be selected to be any subspaces complementing the subspace L−
to Rn.

A linear subspace of the space X (A) is called lineal. If L is a linear subspace of Rn, then by
L(A; · ) we denote the lineal formed by solutions of the system A ∈ Mn with initial (at t = 0)
vectors from the subspace L; herewith L(A; t) is a linear subspace of Rn, formed by the vectors
x(t) of those solutions x( · ), for which x(0) ∈ L. The lineals L−(A; · ) and L+(A; · ) of the system
A ∈ WEn are called stable and unstable lineals, respectively. For each t > 0, the subspaces L−(A; t)
and L+(A; t) disjoint, i.e. L−(A; t) ∩ L+(A; t) = {0}.

By AEm
n and WEm

n we denote the subclasses of the classes AEn and WEn, respectively, consisting
of systems that have the dimension of their subspace L− equal to m (0 6 m 6 n), by CAEm

n and
CWEm

n we denote those subclasses of the classes AEm
n and WEm

n , respectively, whose coefficients
are continuous. By lemma, classes WEm

n , m = 0, n, are pairwise disjoint (WEm1
n ∩WEm2

n = ∅ if
m1 ̸= m2); i.e., WEn =

n⊔
m=0

WEm
n . Since AEm

n = WEm
n ∩ AEn, it follows that the classes AEm

n ,

m = 0, n, are disjoint as well. Moreover, we have the obvious inclusions Em
n ⊂ AEm

n ⊂ WEm
n and

CEm
n ⊂ CAEm

n ⊂ CWEm
n m = 0, n, where Em

n is the subclass of En consisting of systems that have
the dimension of their subspace L− equal to m (0 6 m 6 n), and CEm

n is a subclass of the class
Em
n , whose systems have continuous coefficients.

In [2] the following theorem was proved.
Theorem 2.1.

(1) For (n,m) = (1, 0), (n,m) = (1, 1) and (n,m) = (2, 1), we have the relations Em
n = AEm

n =
WEm

n .

(2) For the remaining pairs (n,m) of integer n ∈ N and 0 6 m 6 n, the proper inclusions Em
n ⊂

AEm
n ⊂ WEm

n hold and, moreover, there are the proper inclusions CEm
n ⊂ CAEm

n ⊂ CWEm
n .

Since the definitions of the classes of weakly and almost dichotomous systems are quite close
to the definition of the class of exponentially dichotomous systems, then, despite the result of
Theorem 2.1, it seems plausible that the main properties of weakly exponentially dichotomous
systems differ slightly from the properties of exponentially dichotomous systems. The report shows
that this natural assumption is generally wrong.

Let us present the main properties of exponentially dichotomous systems.
(a) Recall that some property of points in a metric space is called rough in this space if the points

possessing it form an open set. It is well known (see, for example, [9, p. 260]) that in the
metric space (Mn, distu) with metric distu(A,B) = sup

t>0
∥A(t)−B(t)∥ of uniform convergence

on the half-line the property of a system to be exponentially dichotomous is rough, i.e. the
set En is open in the space (Mn,distu). We also recall that the edge of a set in the topological
space is called the set-theoretic difference between this set and its interior.

(b) If the system A is exponentially dichotomous, then the conjugate to it system −A� is also
exponentially dichotomous; moreover, if A ∈ Em

n and −ν1, ν2 are dichotomy exponents of the
system A, then −A� ∈ En−m

n and −ν2, ν1 are dichotomy exponents of the system −A�. The
above statement about systems, which are conjugate to exponentially dichotomous systems,
follows easily, for example, from [15, p. 14, Theorem 1.1]. In particular, the class En of
exponentially dichotomous systems is invariant under conjugation.
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(c) For a system A ∈ En, n > 2, let us consider its a stable lineal L−(A; · ) and an unstable
lineal L+(A; · ) (we assume that both of them are different from the zero lineal). As noted
above, for every t ∈ R+ the subspaces L−(A; t) and L+(A; t) are disjoint, so for every t > 0
the inequality ∠{L−(A; t), L+(A; t)} > 0 hold. It is well known (see, for example, [15, p. 10,
Lemma 1.1]) that

inf
t> 0

∠
{
L−(A; t), L+(A; t)

}
> 0, (2.1)

i.e. for stable and unstable lineals of exponentially dichotomous systems, the angles be-
tween their corresponding subspaces are separated from zero on a half-line. Note that some
strengthening of property (2.1) for exponentially dichotomous systems was established in [7].

Property (2.1) of finite-dimensional exponentially dichotomous systems is so important that
when generalizing [9, p. 233–234], [4, p. 131] the concept of exponential dichotomy on linear differ-
ential systems in a Banach space, in order to preserve the main features of the theory, this property
has to be included in the definition of exponentially dichotomous systems in Banach spaces as an
independent condition.

The listed above properties of the class of exponentially dichotomous systems: roughness, in-
variance under the conjugation operation, and separation of the angles between the stable and any
unstable lineals of solutions, do not hold for classes of weakly and almost exponentially dichotomous
systems, as the following theorems show.

Theorem 2.2. For any integer n > 2 in the metric space Mn with the topology of uniform
convergence on the half-line, the interior of the set of weakly (almost) exponentially dichotomous
systems coincides with the set of exponentially dichotomous systems, i.e., intWEn = En (respectively
intAEn = En) for any n > 2.

Theorem 2.2 and some simple considerations imply the following corollary.

Corollary. In a metric space Mn, n > 2, with the topology of uniform convergence on the half-
line, the set WEn (the set AEn) is neither open nor closed, all its points is limit points, and its
edge edWEn (edAEn) are exactly weakly (almost) exponentially dichotomous systems that are not
exponentially dichotomous.

This corollary, in particular, shows that the properties of a system to be weakly or almost
exponentially dichotomous are not rough.

Theorem 2.2 and the corollary remain valid if the space Mn in them is replaced by its subspace
CMn, and the subsets WEn, AEn, and En by the subsets CWEn, CAEn, and CEn, respectively.

The non-invariance of the classes WEn and AEn, if n > 2, under conjugation is stated by the
following theorem.

Theorem 2.3. For any n > 2 there exists a continuous n-dimensional a weakly (almost) expo-
nentially dichotomous system such that its conjugate system is not weakly (almost) exponentially
dichotomous.

In the general case, the non-separation from zero of the angle between the stable L−( · ) and
some unstable L+( · ) lineals of a weakly (almost) exponentially dichotomous system is established
by the following theorem.

Theorem 2.4. For any integer n > 3 and 1 6 m 6 n− 1 in the class CAEm
n there exists a system

such that the angle between its stable lineal L−( · ) and some unstable lineal L+( · ) is not separated
from zero, i.e. inf

t> 0
∠
(
L−(t), L+(t)

)
= 0.
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Note that the restrictions n > 3 and 1 6 m 6 n − 1 in the statement of Theorem 2.4 are
essential: if m is equal to 0 or n, then one of the lineals L−( · ) or L+( · ) is zero and the angle
∠
(
L−(t), L+(t)

)
is undefined; if n = 2, then for m = 1 the system is exponentially dichotomous,

which means that Theorem 2.4 is not true for it.
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