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Consider the Riccati equation

y′ = P (x) +Q(x)y + y2, (1)

where P (x) and Q(x) are continuous functions bounded on (−∞;∞). Suppose the equation

y2 +Q(x)y + P (x) = 0

has real bounded roots α1(x) ∈ C1(−∞,+∞) and α2(x) ∈ C1(−∞,+∞). So, equation (1) can be
written as

y′(x) = (y(x)− α1(x))(y(x)− α2(x)). (2)

Thus we have
Q2(x)− 4P (x) > 0.

Suppose that either α2(x) > α1(x), x ∈ (−∞,+∞), or α2(x) = α1(x), x ∈ (−∞,+∞), that
α1(x) and α2(x) are bounded C1 functions on (−∞,+∞).

We define a function Y0(x) by

Y0(x) :=
[(α1(x)− α2(x))

2

4
+

(α1(x) + α2(x))
′

2

]
.

Lemma 1 ([4, Lemma 4.1]). Suppose x0 < ω ≤ +∞. Then there exist S∗ ∈ [x0, ω) and a solution
y∗(x) to equation (2) defined on (S∗, ω) such that any solution y(t) defined on (S, ω) satisfies S ≥ S∗
and y(x) ≤ y∗(x) for all x ∈ (S, ω).

Hereafter the solution y∗(x) from the last lemma is called a principal solution.

Definition 1 ([5]). The functions α1 and α2 in equation (2) are said to satisfy the stabilization
conditions if there exist finite limits

lim
x→±∞

αj(x) =: αj,± ∈ R, j = 1, 2. (3)

Definition 2 ([5]). The functions α1 and α2 are said to satisfy the monotone stabilization con-
ditions if there exists A > 0 such that

α′
1(x) ̸= 0, α′

2(x) ̸= 0 for all x ̸∈ [−A,A]. (4)

Definition 3 ([5]). A solution y(x) to equation (2) is called stabilizing if there exist finite limits

lim
x→±∞

y(x) =: y± ∈ R.
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Theorem 1. Suppose

Q′(x) <
Q2(x)

2
− 2P (x) for all x ≥ x0.

Then any solution y(x) to equation (2) with y(x0) ≤ −Q(x0)
2 satisfies also the condition

y(x) < −Q(x)

2
for all x > x0.

Corollary 1. Suppose that α1(x) = α2(x) = α(x) for all x ∈ (−∞,+∞) and α′(x) > 0 for all
x ≥ x0. Then any solution y(x) to equation (2) with y(x0) ≤ α(x0) satisfies also the condition
y(x) < α(x) for all x > x0.

Theorem 2. Any solution to equation (2) defined at some x0 ∈ R is bounded below to the right
of x0.

Theorem 3. Suppose there exists a constant M such that α1(x) ≤ α2(x) ≤ M for all x ≥ x0.
Then any solution y(x) to equation (2) with y0 = y(x0) > M monotonically increases to the right
of x0 and

lim
x→x

y(x) = +∞ with x0 < x < x0 +
1

y0 −M
.

Note that in the particular case α2(x) = α1(x) on (−∞,+∞), Theorem 3 yields the first
statement of Theorem 5.5 from [2].

Now by using the substitutions x̂ = −x, ŷ(x̂) = −y(−x̂) we transform equation (2) to the form

d

dx̂
ŷ(x̂) =

(
ŷ(x̂)− α̂1(x̂)

)(
ŷ − α̂2(x̂)

)
,

where α̂1(x̂) = −α1(x), α̂2(x̂) = −α2(x). Thus, we can obtain analogues of Theorems 1–3 and their
corollaries for the case x ≤ x0. In particular, the following theorem is an analogue of Theorem 3.

Theorem 3′. If there exists a constant m such that α2(x) ≥ α1(x) ≥ m for all x ≤ x0, then every
solution y(x) to (2) with y0 = y(x0) < m is monotonic for x ≥ x0 and

lim
x→x

y(x) = −∞, where x0 > x > x0 −
1

m− y0
.

Obtained Theorems 1–3 and 3′ complement results of [2]. We used results of [4,5] and the proof
of Lemma 7.1 ([3, p. 365]) to obtain the following theorems.

Theorem 4. Let y3(x) < y2(x) < y1(x) be different solutions to (2) defined at a point x0 and
y1 be extensible on [x0,+∞). Then y2 and y3 are also extensible on [x0,+∞) with the following
properties:

1) The ratio y1(x)−y3(x)
y1(x)−y2(x)

is monotonically decreasing on [x0,+∞);

2) There exists a finite limit lim
x→+∞

y1(x)−y3(x)
y1(x)−y2(x)

;

3) If y1(x) is a principal solution for the interval (x0,+∞), then the above limit equals 1.

Theorem 5. Let y1(x), y2(x) be two different solutions to (2) defined on [x0,+∞). Let both of
them have different finite limits as x → +∞. Then every solution to (2) defined on [x0,+∞) has
a finite limit as x → +∞.
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Theorem 6. Let y1(x) > y2(x) be two different solutions to (2) defined on [x0,+∞). Let both
of them have finite limits as x → +∞. Then every solution to (2) defined at the point x0 with
y(x0) ≤ y1(x0) is extensible on [x0,+∞) and has a finite limit as x → +∞.
Theorem 7. Let (2) have solutions defined on [x0,+∞). Let y1(x) = y∗(x) be the principal
solution for the interval (x0,+∞). Let y1(x) and another solution y2(x) < y1(x) have finite limits
as x → +∞. Then every solution to (2) defined on [x0,+∞) and different from y∗(x) has a finite
limit as x → +∞. This limit is equal to the limit of y2(x) as x → +∞.

Further we assume that the functions α1(x) and α2(x) are bounded and satisfy (3), (4), and
α2(x) > α1(x), x ∈ (−∞,+∞). As shown in [5], in this case all bounded solutions are stabilizing
(and vice versa), all stabilizing solutions are monotonically stabilizing and y− equals α1,− or α2,−,
while y+ equals α1,+ or α2,+.

According to [5], all stabilizing solutions to (2) are divided into four types:
type I : y− = α1,−, y+ = α1,+.

type II : y− = α2,−, y+ = α1,+.
type III : y− = α2,−, y+ = α2,+.
type IV : y− = α1,−, y+ = α2,+.
Theorem 8. Suppose α1,+ ̸= α2,+, α1,− ̸= α2,−, and Y0(x) ≤ 0 on R \ [a, b]. Then all solutions to
(2) are not stabilizing.

The last theorem complements Theorem 3.4 from [5].
Theorem 9. Suppose that α1,+ ̸= α2,+, α1,− ̸= α2,−, and equation (2) has a stabilizing solution of
type II. Then there exist a unique solution of type I and a unique solution of type III. Denote them
by yI and yIII , respectively. Let y(x) be a solution to (2). Then:

• if yI < y < yIII , then y(x) is a stabilizing solution of type II;

• if y > yIII , then there exists x∗ ∈ R such that y(x) is extensible on the interval (−∞, x∗) and
lim

x→−∞
y(x) = α2,−, lim

x→x∗−0
y(x) = +∞;

• if y < yI , then there exists x∗ ∈ R such that y(x) is extensible on the interval (x∗,+∞) and
lim

x→+∞
y(x) = α1,+, lim

x→x∗+0
y(x) = −∞.

Theorem 10. Suppose α1,+ ̸= α2,+, α1,− ̸= α2,−. Then the following conditions are equivalent.
1) There exist stabilizing solutions to (2) of type I and of type III.

2) There exist a unique stabilizing solution to (2) of type I and a unique stabilizing solution to
(2) of type III.

3) There exists a stabilizing solution to (2) of type II.
Theorem 11. Suppose α1,+ ̸= α2,+, α1,− ̸= α2,−. Then exactly one of the following statements is
true:

1) There exists a stabilizing solution to (2) of type II.

2) There exist a stabilizing solutions to (2) of type I and a unique stabilizing solution of type IV.

3) There exist a stabilizing solution to (2) of type III and a unique stabilizing solution of type IV.

4) All stabilizing solutions, if any, are stabilizing solutions of type IV.
Theorems 8–11 complement Theorems 2.1–2.4 from [5].
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