I. V. Astashova 1,2 , V. A. Nikishov 1

¹Lomonosov Moscow State University, Moscow, Russia ²Plekhanov Russian University of Economics, Moscow, Russia E-mails: ast@diffiety.ac.ru; ast.diffiety@gmail.com; nikishov1999@yandex.ru

Consider the Riccati equation

$$y' = P(x) + Q(x)y + y^2,$$
(1)

where P(x) and Q(x) are continuous functions bounded on $(-\infty; \infty)$. Suppose the equation

$$y^2 + Q(x)y + P(x) = 0$$

has real bounded roots $\alpha_1(x) \in C^1(-\infty, +\infty)$ and $\alpha_2(x) \in C^1(-\infty, +\infty)$. So, equation (1) can be written as

$$y'(x) = (y(x) - \alpha_1(x))(y(x) - \alpha_2(x)).$$
(2)

Thus we have

$$Q^2(x) - 4P(x) \ge 0.$$

Suppose that either $\alpha_2(x) > \alpha_1(x)$, $x \in (-\infty, +\infty)$, or $\alpha_2(x) = \alpha_1(x)$, $x \in (-\infty, +\infty)$, that $\alpha_1(x)$ and $\alpha_2(x)$ are bounded C^1 functions on $(-\infty, +\infty)$.

We define a function $Y_0(x)$ by

$$Y_0(x) := \Big[\frac{(\alpha_1(x) - \alpha_2(x))^2}{4} + \frac{(\alpha_1(x) + \alpha_2(x))'}{2}\Big].$$

Lemma 1 ([4, Lemma 4.1]). Suppose $x_0 < \omega \leq +\infty$. Then there exist $S_* \in [x_0, \omega)$ and a solution $y_*(x)$ to equation (2) defined on (S_*, ω) such that any solution y(t) defined on (S, ω) satisfies $S \geq S_*$ and $y(x) \leq y_*(x)$ for all $x \in (S, \omega)$.

Hereafter the solution $y_*(x)$ from the last lemma is called a **principal solution**.

Definition 1 ([5]). The functions α_1 and α_2 in equation (2) are said to satisfy the **stabilization** conditions if there exist finite limits

$$\lim_{x \to \pm \infty} \alpha_j(x) =: \alpha_{j,\pm} \in \mathbb{R}, \quad j = 1, 2.$$
(3)

Definition 2 ([5]). The functions α_1 and α_2 are said to satisfy the monotone stabilization conditions if there exists A > 0 such that

$$\alpha_1'(x) \neq 0, \ \alpha_2'(x) \neq 0 \ \text{for all} \ x \notin [-A, A].$$
(4)

Definition 3 ([5]). A solution y(x) to equation (2) is called **stabilizing** if there exist finite limits

$$\lim_{x \to \pm \infty} y(x) =: y_{\pm} \in \mathbb{R}.$$

Theorem 1. Suppose

$$Q'(x) < \frac{Q^2(x)}{2} - 2P(x)$$
 for all $x \ge x_0$.

Then any solution y(x) to equation (2) with $y(x_0) \leq -\frac{Q(x_0)}{2}$ satisfies also the condition

$$y(x) < -\frac{Q(x)}{2}$$
 for all $x > x_0$.

Corollary 1. Suppose that $\alpha_1(x) = \alpha_2(x) = \alpha(x)$ for all $x \in (-\infty, +\infty)$ and $\alpha'(x) > 0$ for all $x \ge x_0$. Then any solution y(x) to equation (2) with $y(x_0) \le \alpha(x_0)$ satisfies also the condition $y(x) < \alpha(x)$ for all $x > x_0$.

Theorem 2. Any solution to equation (2) defined at some $x_0 \in \mathbb{R}$ is bounded below to the right of x_0 .

Theorem 3. Suppose there exists a constant M such that $\alpha_1(x) \leq \alpha_2(x) \leq M$ for all $x \geq x_0$. Then any solution y(x) to equation (2) with $y_0 = y(x_0) > M$ monotonically increases to the right of x_0 and

$$\lim_{x \to \overline{x}} y(x) = +\infty \text{ with } x_0 < \overline{x} < x_0 + \frac{1}{y_0 - M}.$$

Note that in the particular case $\alpha_2(x) = \alpha_1(x)$ on $(-\infty, +\infty)$, Theorem 3 yields the first statement of Theorem 5.5 from [2].

Now by using the substitutions $\hat{x} = -x$, $\hat{y}(\hat{x}) = -y(-\hat{x})$ we transform equation (2) to the form

$$\frac{d}{d\widehat{x}}\widehat{y}(\widehat{x}) = \left(\widehat{y}(\widehat{x}) - \widehat{\alpha}_1(\widehat{x})\right) \left(\widehat{y} - \widehat{\alpha}_2(\widehat{x})\right),$$

where $\hat{\alpha}_1(\hat{x}) = -\alpha_1(x)$, $\hat{\alpha}_2(\hat{x}) = -\alpha_2(x)$. Thus, we can obtain analogues of Theorems 1–3 and their corollaries for the case $x \leq x_0$. In particular, the following theorem is an analogue of Theorem 3.

Theorem 3'. If there exists a constant m such that $\alpha_2(x) \ge \alpha_1(x) \ge m$ for all $x \le x_0$, then every solution y(x) to (2) with $y_0 = y(x_0) < m$ is monotonic for $x \ge x_0$ and

$$\lim_{x \to \overline{x}} y(x) = -\infty, \quad where \quad x_0 > \overline{x} > x_0 - \frac{1}{m - y_0}$$

Obtained Theorems 1–3 and 3' complement results of [2]. We used results of [4,5] and the proof of Lemma 7.1 ([3, p. 365]) to obtain the following theorems.

Theorem 4. Let $y_3(x) < y_2(x) < y_1(x)$ be different solutions to (2) defined at a point x_0 and y_1 be extensible on $[x_0, +\infty)$. Then y_2 and y_3 are also extensible on $[x_0, +\infty)$ with the following properties:

- 1) The ratio $\frac{y_1(x)-y_3(x)}{y_1(x)-y_2(x)}$ is monotonically decreasing on $[x_0, +\infty)$;
- 2) There exists a finite limit $\lim_{x \to +\infty} \frac{y_1(x) y_3(x)}{y_1(x) y_2(x)};$
- 3) If $y_1(x)$ is a principal solution for the interval $(x_0, +\infty)$, then the above limit equals 1.

Theorem 5. Let $y_1(x)$, $y_2(x)$ be two different solutions to (2) defined on $[x_0, +\infty)$. Let both of them have different finite limits as $x \to +\infty$. Then every solution to (2) defined on $[x_0, +\infty)$ has a finite limit as $x \to +\infty$.

Theorem 6. Let $y_1(x) > y_2(x)$ be two different solutions to (2) defined on $[x_0, +\infty)$. Let both of them have finite limits as $x \to +\infty$. Then every solution to (2) defined at the point x_0 with $y(x_0) \le y_1(x_0)$ is extensible on $[x_0, +\infty)$ and has a finite limit as $x \to +\infty$.

Theorem 7. Let (2) have solutions defined on $[x_0, +\infty)$. Let $y_1(x) = y_*(x)$ be the principal solution for the interval $(x_0, +\infty)$. Let $y_1(x)$ and another solution $y_2(x) < y_1(x)$ have finite limits as $x \to +\infty$. Then every solution to (2) defined on $[x_0, +\infty)$ and different from $y_*(x)$ has a finite limit as $x \to +\infty$. This limit is equal to the limit of $y_2(x)$ as $x \to +\infty$.

Further we assume that the functions $\alpha_1(x)$ and $\alpha_2(x)$ are bounded and satisfy (3), (4), and $\alpha_2(x) > \alpha_1(x), x \in (-\infty, +\infty)$. As shown in [5], in this case all bounded solutions are stabilizing (and vice versa), all stabilizing solutions are monotonically stabilizing and y_- equals $\alpha_{1,-}$ or $\alpha_{2,-}$, while y_+ equals $\alpha_{1,+}$ or $\alpha_{2,+}$.

According to [5], all stabilizing solutions to (2) are divided into four types:

 $\begin{aligned} type \ I: & y_{-} = \alpha_{1,-}, \ y_{+} = \alpha_{1,+}, \\ type \ II: & y_{-} = \alpha_{2,-}, \ y_{+} = \alpha_{1,+}, \\ type \ III: & y_{-} = \alpha_{2,-}, \ y_{+} = \alpha_{2,+}, \\ type \ IV: & y_{-} = \alpha_{1,-}, \ y_{+} = \alpha_{2,+}. \end{aligned}$

Theorem 8. Suppose $\alpha_{1,+} \neq \alpha_{2,+}$, $\alpha_{1,-} \neq \alpha_{2,-}$, and $Y_0(x) \leq 0$ on $\mathbb{R} \setminus [a, b]$. Then all solutions to (2) are not stabilizing.

The last theorem complements Theorem 3.4 from [5].

Theorem 9. Suppose that $\alpha_{1,+} \neq \alpha_{2,+}$, $\alpha_{1,-} \neq \alpha_{2,-}$, and equation (2) has a stabilizing solution of type II. Then there exist a unique solution of type I and a unique solution of type III. Denote them by y_I and y_{III} , respectively. Let y(x) be a solution to (2). Then:

- if $y_I < y < y_{III}$, then y(x) is a stabilizing solution of type II;
- if $y > y_{III}$, then there exists $x^* \in \mathbb{R}$ such that y(x) is extensible on the interval $(-\infty, x^*)$ and

$$\lim_{x \to -\infty} y(x) = \alpha_{2,-}, \quad \lim_{x \to x^* = 0} y(x) = +\infty$$

• if $y < y_I$, then there exists $x^* \in \mathbb{R}$ such that y(x) is extensible on the interval $(x^*, +\infty)$ and

$$\lim_{x \to +\infty} y(x) = \alpha_{1,+}, \quad \lim_{x \to x^* + 0} y(x) = -\infty$$

Theorem 10. Suppose $\alpha_{1,+} \neq \alpha_{2,+}, \alpha_{1,-} \neq \alpha_{2,-}$. Then the following conditions are equivalent.

1) There exist stabilizing solutions to (2) of type I and of type III.

2

- There exist a unique stabilizing solution to (2) of type I and a unique stabilizing solution to (2) of type III.
- 3) There exists a stabilizing solution to (2) of type II.

Theorem 11. Suppose $\alpha_{1,+} \neq \alpha_{2,+}$, $\alpha_{1,-} \neq \alpha_{2,-}$. Then exactly one of the following statements is true:

- 1) There exists a stabilizing solution to (2) of type II.
- 2) There exist a stabilizing solutions to (2) of type I and a unique stabilizing solution of type IV.
- 3) There exist a stabilizing solution to (2) of type III and a unique stabilizing solution of type IV.
- 4) All stabilizing solutions, if any, are stabilizing solutions of type IV.

Theorems 8–11 complement Theorems 2.1–2.4 from [5].

Acknowledgements

The work of the first author was supported by RSF (project # 20-11-20272).

References

- I. V. Astashova, Remark on continuous dependence of solutions to the riccati equation on its righthand side. Abstracts of the International Workshop on the Qualitative Theory of Differential Equations - QUALITDE-2021, Tbilisi, Georgia, December 18-20, pp. 14-17; http://www.rmi.ge/eng/QUALITDE-2021/Astashova_workshop_2021.pdf.
- [2] A. I. Egorov, Riccati Equation. (Russian) FIZMATLIT, Moscow, 2001.
- [3] Ph. Hartman, Ordinary Differential Equations. John Wiley & Sons, Inc., New York-London-Sydney, 1964.
- [4] Ph. Hartman, On an ordinary differential equation involving a convex function. Trans. Amer. Math. Soc. 146 (1969), 179–202.
- [5] V. V. Palin and E. V. Radkevich, Behavior of stabilizing solutions of the Riccati equation. (Russian) Tr. Semin. im. I. G. Petrovskogo no. 31 (2016), 110–133; translation in J. Math. Sci. (N.Y.) 234 (2018), no. 4, 455–469.