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Consider the Riccati equation
y = P(x) + Q(x)y + v, (1)

where P(x) and Q(z) are continuous functions bounded on (—oo;00). Suppose the equation

y>+ Q(x)y + P(x) =0

has real bounded roots a1 (x) € C!(—00, +00) and az(z) € C*(—o0, +00). So, equation (1) can be
written as

y'(@) = (y(z) — o (2))(y(x) — az(@)). (2)
Thus we have
Q*(z) — 4P(z) > 0.
Suppose that either as(z) > ai(z), x € (—o0,+00), or as(z) = a1(z), x € (—o0,+00), that

a1(z) and az(z) are bounded C* functions on (—oo, 4+00).
We define a function Yy(x) by

(a1(z) — ag(x))? N (a1 (@) +as(@))y

Yo(z) := 1 5

Lemma 1 ([4, Lemma 4.1]). Suppose z¢9 < w < +00. Then there ezist Sy € [xo,w) and a solution
y«(x) to equation (2) defined on (Sk,w) such that any solution y(t) defined on (S,w) satisfies S > S,
and y(z) < yu(z) for all x € (S,w).

Hereafter the solution y,(z) from the last lemma is called a principal solution.

Definition 1 ([5]). The functions a; and ag in equation (2) are said to satisfy the stabilization
conditions if there exist finite limits

lim oj(z)="0;+ €R, j=1,2. (3)

z—+o00

Definition 2 ([5]). The functions «; and ay are said to satisfy the monotone stabilization con-
ditions if there exists A > 0 such that

() #0, ahy(x) #0 forall x & [—A, A (4)
Definition 3 ([5]). A solution y(z) to equation (2) is called stabilizing if there exist finite limits

lim y(x)=:ys+ € R.

r—+oo
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Theorem 1. Suppose
Q*(z)

Q@) <%

—2P(x) for all x > x.

Q(x
S_ (20)

Then any solution y(x) to equation (2) with y(xo) satisfies also the condition

Q=)
2

y(x) < — for all x > xy.

Corollary 1. Suppose that aq(z) = as(x) = a(x) for all x € (—o0,+00) and o/ (x) > 0 for all
x > xy. Then any solution y(x) to equation (2) with y(zg) < a(xg) satisfies also the condition
y(x) < a(x) for all x > xg.

Theorem 2. Any solution to equation (2) defined at some xy € R is bounded below to the right
of zg.

Theorem 3. Suppose there exists a constant M such that ay(x) < as(z) < M for all x > x.
Then any solution y(x) to equation (2) with yo = y(xg) > M monotonically increases to the right
of xg and

li = th T .

xl_)H%y(l‘) +o0 wi x0<x<$o+y0_M

Note that in the particular case as(x) = aj(z) on (—oo,+00), Theorem 3 yields the first
statement of Theorem 5.5 from [2].

Now by using the substitutions ¥ = —z, () = —y(—) we transform equation (2) to the form

d ., . pmy NN (o~ o~ g

=@ = (@) - a(@) (7 - a:(2)),

where a1 (Z) = —ai(x), @2(Z) = —aza(x). Thus, we can obtain analogues of Theorems 1-3 and their
corollaries for the case z < xg. In particular, the following theorem is an analogue of Theorem 3.

Theorem 3'. If there exists a constant m such that as(z) > a1(x) > m for all x < xq, then every
solution y(x) to (2) with yo = y(xo) < m is monotonic for x > xg and

lim y(z) = —oco, where xy >7T > xp — :
T—T m— Yo

Obtained Theorems 1-3 and 3’ complement results of [2]. We used results of [4,5] and the proof
of Lemma 7.1 ([3, p. 365]) to obtain the following theorems.

Theorem 4. Let y3(x) < ya(z) < yi(x) be different solutions to (2) defined at a point xo and
y1 be extensible on [rg,+00). Then ya and ys are also extensible on [xo, +00) with the following
properties:

1) The ratio % is monotonically decreasing on [xg, +00);

2) There exists a finite limit lim M;
x~)+ooy1(x) yQ(I)

3) If yi(x) is a principal solution for the interval (zg,+00), then the above limit equals 1.

Theorem 5. Let y1(x), y2(x) be two different solutions to (2) defined on [xg,+00). Let both of
them have different finite limits as x — +o00. Then every solution to (2) defined on [xg,+00) has
a finite limit as © — +o00.
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Theorem 6. Let yi(x) > ya(x) be two different solutions to (2) defined on [xg,+00). Let both
of them have finite limits as x — +o0o. Then every solution to (2) defined at the point xog with
y(xo) < yi(xo) is extensible on [xg, +00) and has a finite limit as x — +o0.

Theorem 7. Let (2) have solutions defined on [xo,+00). Let yi(x) = y.«(x) be the principal
solution for the interval (xg, +00). Let y1(x) and another solution ya(x) < y1(x) have finite limits
as x — +o00. Then every solution to (2) defined on [xg,+00) and different from y.(x) has a finite
limit as x — +o00. This limit is equal to the limit of y2(x) as © — +oo.

Further we assume that the functions aj(z) and as(x) are bounded and satisfy (3), (4), and
ag(z) > ai(x), x € (—oo,+00). As shown in [5], in this case all bounded solutions are stabilizing
(and vice versa), all stabilizing solutions are monotonically stabilizing and y_ equals a;,— or ag —,
while y4 equals aq 4 or ag 4.

According to [5], all stabilizing solutions to (2) are divided into four types:

typel:  y_=o1—, yy = o 4.
type II:  y_ =ag—, y+ = a1 4.
type III:  y_ = _, y4 = g 4.
type IV y_ =1, yy =ag 4.

Theorem 8. Suppose o+ # as 4, a1, # az—, and Yp(x) < 0 on R\ [a,b]. Then all solutions to
(2) are not stabilizing.

The last theorem complements Theorem 3.4 from [5].

Theorem 9. Suppose that a1 + # ag 4+, aq,— # ag —, and equation (2) has a stabilizing solution of
type 11. Then there exist a unique solution of type I and a unique solution of type I11. Denote them
by yr and yyy1, respectively. Let y(x) be a solution to (2). Then:

e if yr <y <y, then y(z) is a stabilizing solution of type I1;
e if y > yrr1, then there exists x* € R such that y(x) is extensible on the interval (—oo, x*) and

li =g _ li = ;
x%ufnoo y(x) @2~ a:—)lagl—o y(:c) +oo;

e if y <yj, then there exists * € R such that y(x) is extensible on the interval (z*,+00) and

Jim y(z) = o, x—l>lqu+oy(x) = —00.

Theorem 10. Suppose oy 4 # a2 4, a1,— # o —. Then the following conditions are equivalent.

1) There exist stabilizing solutions to (2) of type I and of type III.

2) There exist a unique stabilizing solution to (2) of type I and a unique stabilizing solution to
(2) of type I11.
3) There exists a stabilizing solution to (2) of type 11.

Theorem 11. Suppose a1 4 # oo 4, a1 — # ao . Then exactly one of the following statements is
true:

1) There exists a stabilizing solution to (2) of type II.
2) There exist a stabilizing solutions to (2) of type 1 and a unique stabilizing solution of type IV.
3) There exist a stabilizing solution to (2) of type 111 and a unique stabilizing solution of type IV.

4) All stabilizing solutions, if any, are stabilizing solutions of type IV.
Theorems 8-11 complement Theorems 2.1-2.4 from [5].
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