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In the rectangle Ω = [0, a]× [0, b] consider the nonlinear hyperbolic system

uxy = f(x, y, ux, uy, u), (1)
u(0, y) = φ(y), h(ux(x, · ))(x) = ψ′(x), (2)

where f : Ω × R3n → Rn is a continuous vector function that is continuously differentiable with
respect to the first 2n phase variables, φ ∈ C1([0, b];Rn), ψ ∈ C1([0, a];Rn), and h : C([0, b];Rn) →
C([0, a];Rn) is a bounded linear operator.

Let v = (v1, . . . , vn), w = (w1, . . . , wn) and z = (z1, . . . , zn). For a function f(x, y, v, w, u) that
is continuously differentiable with respect to v, w and u, set:

F1(x, y, v, w, z) =
∂f(x, y, v, w, z)

∂v
, F2(x, y, v, w, z) =

∂f(x, y, v, w, z)

∂w
,

F0(x, y, v, w, z) =
∂f(x, y, v, w, z)

∂z
,

Pj [u](x, y) = Fj

(
x, y, ux(x, y), uy(x, y), u(x, y)

)
(j = 0, 1, 2).

C1,1(Ω;Rn) is the Banach space of continuous vector functions u : Ω → Rn, having continuous
partial derivatives ux, uy, uxy, endowed with the norm

∥u∥C1,1 = ∥u∥C + ∥ux∥C + ∥uy∥C + ∥uxy∥C .

C1(Ω;Rn) is the Banach space of continuous vector functions u : Ω → Rn, having continuous
partial derivatives ux, uy, endowed with the norm

∥u∥C1,1 = ∥u∥C + ∥ux∥C + ∥uy∥C .

If u0 ∈ C(Ω : Rn) and r > 0, then

B(u0; r) =
{
u ∈ C(Ω : Rn) : ∥u− u0∥ ≤ r

}
.

If u0 ∈ C1(Ω : Rn) and r > 0, then

B1(u0; r) =
{
u ∈ C1(Ω : Rn) : ∥u− u0∥C1 ≤ r

}
.

Definition 1. Let u0 be a solution of problem (1), (2), and r > 0. Problem (1), (2) is said to be
(u0, r)-well-posed if:

(i) u0(x, y) is the unique solution of the problem in the ball B̃1(u0; r);
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(ii) There exists ε0 > 0 such that for an arbitrary ε > 0 and M > 0 there exists δ > 0 such
that for any f̃(x, y, v, w, z) that is continuously differentiable with respect to v and w, φ̃ ∈
C1([0, b];Rn), ψ̃ ∈ C1([0, a];Rn), satisfying the inequalities∥∥∥∂f̃(x, y, v, w, z)

∂v

∥∥∥ ≤ ε0 for (x, y, v, w, z) ∈ Ω× R3n

∥∥∥∂f̃(x, y, v, w, z)
∂w

∥∥∥ ≤M for (x, y, v, w, z) ∈ Ω× R3n,

(3)

∥f̃(x, y, v, w, z)∥ ≤ δ for (x, y, v, w, z) ∈ Ω× R3n, ∥φ̃∥C1([0,b]) + ∥ψ̃∥C1([0,a]) ≤ δ, (4)

the problem

uxy = f(x, y, ux, uy, u) + f̃(x, y, ux, uy, u), (1̃)
u(0, y) = φ(y) + φ̃(y), h

(
ux(x, · )

)
(x) = ψ′(x) + ψ̃′(x), (2̃)

has at least one solution in the ball B1(u0; r), and each such solution belongs to the ball
B1(u0; ε).

Definition 2. Let u0 be a solution of problem (1), (2), and r > 0. Problem (1), (2) is said to be
strongly (u0, r)-well-posed if:

(i) Problem (1), (2) is (u0, r)-well-posed;

(ii) There exist positive numbers M0 and δ0 such that for arbitrary δ ∈ (0, δ0), f̃(x, y, v, w, z) that
is continuously differentiable with respect to v and w, φ̃ ∈ C1([0, b];Rn) and ψ̃ ∈ C1([0, a];Rn),
satisfying the inequalities (3) and (4), problem (1̃), (2̃) has at least one solution in the ball
B1(u0; r), and each such solution belongs to the ball B1(u0;M0 δ).

Definition 3. Problem (1), (2) is called well-posed (strongly well-posed) if it has a unique solution
u0 and it is (u0, r)-well-posed (strongly (u0, r)-well-posed) for every r > 0.

Consider the boundary value problem for the system of nonlinear ordinary differential equations

z′ = p(t, z), ℓ(z) = c, (5)

where p ∈ C([0, b]× Rn;Rn), c ∈ Rn and ℓ : C([0, b];Rn) → Rn is a bounded linear operator.

Definition 4. Let z0 be a solution of problem (5), and r > 0. Problem (5) is said to be (z0, r)-
well-posed if:

(i) z0(t) is the unique solution of the problem in the ball B(z0; r);

(ii) For an arbitrary ε > 0 there exists δ > 0 such that for any c̃, and p̃ ∈ C([0, b]×Rn) satisfying
the inequalities ∥∥c− c̃

∥∥ < δ, ∥p− p̃∥C < δ (6)

the problem
z′ = p̃(t, z), ℓ(z) = c̃, (5̃)

has at least one solution in the ball B(z0; r), and each such solution belongs to the ball
B(z0; ε).

Definition 4 is a slight modification of Definition 3.2 from [1]. Definition 1 is an adaptation of
the idea of Definition 4 to problem (1), (2).
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Definition 5. Let u0 be a solution of problem (5), and r > 0. Problem (5) is said to be strongly
(z0, r)-well-posed if:

(i) z0(t) is the unique solution of the problem in the ball B(z0; r);

(ii) There exist positive numbers M and δ0 such that for arbitrary δ ∈ (0, δ0), c̃k, and p̃ ∈
C([0, b] × Rn) satisfying inequalities (6), problem (5̃) has at least one solution in the ball
B(z0; r), and each such solution belongs to the ball B(z0;M δ).

Remark 1. It is obvious that strong well-posedness implies well-posedness. The converse, however,
is not true. As an example, consider the problem

z′ = z3, z(0) = z(ω), (7)

which is well-posed and has the unique solution z0(t) ≡ 0. The perturbed problem

z′ = z3 − δ, z(0) = z(b)

has the unique solution zδ(t) = δ
1
3 . It is clear that there exists no positive number M such that

δ
1
3 ≤Mδ as δ → 0. Consequently, problem (7) is not strongly well-posed.

Definition 6. A solution z0 of problem (5) is said to be strongly isolated, if problem (5) is strongly
(z0, r)-well-posed for some r > 0.

Remark 2. The concept of a strongly isolated solution of a nonlinear boundary value problem
was introduced in [1]. However, our definition of a strongly isolated solution is a modification of
Definition 3.1 from [1]. Also, Corollary 3.6 from [1] implies that if the vector function p(t, z) is
continuously differentiable with respect to the phase variables, then strong isolation of a solution
z0 is equivalent to the fact that the linear homogeneous problem

z′ = P (t)z, ℓ(z) = 0, (8)

has only the trivial solution, where P (t) = ∂p
∂z (t, z0(t)).

Theorem 1. Let f be a continuously differentiable function with respect to the phase variables v, w
and z, and let u0 be a solution of problem (1), (2). Then, problem (1), (2) is strongly (u0, r)-well-
posed for some r > 0, if and only if the linear homogeneous problem

uxy = P0(x, y)u+ P1(x, y)ux + P2(x, y)uy, (10)
u(0, y) = 0, h(ux(x, · ))(x) = 0, (20)

where Pj(x, y) = Pj [u0](x, y) (j = 0, 1, 2), is well-posed.

Theorem 2. Problem (10), (20) is well-posed if and only if the linear homogeneous problem

dz

dy
= P1(x, y)z, h(z)(x) = 0

has only the trivial solution for every x ∈ [0, a].

Remark 3. The sufficiency part of Theorem 2 was proved in [2] (see Theorems 4.1 and 4.1′).
Similar theorem for higher order linear hyperbolic equations for proved in [4] (see Theorem 1.1).

Theorem 3. Let f be a continuously differentiable with respect to the phase variables v, w and z,
and let there exist matrix functions Qi ∈ C(Ω;Rn×n) (i = 1, 2) and a positive constant ρ such that:
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(A1) ∥F0(x, y, v, w, z)∥+ ∥F2(x, y, v, w, z)∥ ≤ ρ for (x, y, v, w, z) ∈ Ω× R3n;

(A2) Q1(x, y) ≤ F1(x, y, v, w, z) ≤ Q2(x, y) for (x, y, v, w, z) ∈ Ω× R3n;

(A3) for every x ∈ [0, a] and arbitrary measurable matrix function P : [0, b] → Rn×n satisfying the
inequalities

Q1(x, y) ≤ P (y) ≤ Q2(x, y) for y ∈ [0, b],

problem (8) has only the trivial solution. Then problem (1), (2) is strongly well-posed.

Theorem 4. Let f be a continuously differentiable function with respect to the phase variables v,
w and z, and let v0 be a strongly isolated solution of the problem

v′ = p(y, v), h(v)(0) = ψ′(0), (9)

where
p(y, v) = f

(
0, y, v, φ′(y), φ(y)

)
.

Then there exists α ∈ (0, a] such that in the rectangle Ωα = [0, α] × [0, b] problem (1), (2) has a
unique solution u satisfying the condition

ux(0, y) = v0(y) for y ∈ [0, b].

Remark 4. Conditions of Theorem 4 do not guarantee unique solvability of problem (1), (2).
Indeed, consider the problem

uxy =
m∏
k=1

(
ux − k

)
+ x f0(x, y, ux, uy, u), (10)

u(0, y) = 0, u(1,0)(x, 0) = u(1,0)(x, b), (11)

where f0 : Ω× R3 → R is a continuously differentiable function. For this case problem (9) has the
form

v′ =
m∏
k=1

(v − k), v(0) = v(b).

The latter problem has exactlym strongly isolated solutions vk = kπ (k = 1, . . . ,m). By Theorem 4,
for every integer k ∈ {1, . . . ,m} there exists αk > 0 such that in Ωαk

= [0, αk] × [0, b], problem
(10), (11) has a unique solution uk satisfying the condition

u
(1,0)
k (0, y) = k for y ∈ [0, b].

Consider the family of problems

z′ = pλ(t, z), ℓλ(z) = cλ, (12λ)

where λ ∈ Λ, pλ ∈ C([0, b] × Rn;Rn), ℓλ : C([0, b]) → Rn are bounded linear functionals, and
cλ ∈ Rn.

Let for λ ∈ Λ and r > 0, zλ be a solution of problem (12λ). The family of problems (12λ)
(λ ∈ Λ) is said to be uniformly strongly (zλ, r)-well-posed, if:

(i) zλ is unique in the ball B(zλ; r);
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(ii) There exist positive numbers M and δ0 independent of λ such that for arbitrary δ ∈ (0, δ0),
c̃ ∈ Rn, and p̃λ ∈ C([0, b]× Rn;Rn) satisfying the inequalities

∥c− c̃∥ < δ, ∥pλ − p̃λ∥C < δ,

the problem
z′ = p̃λ(t, z), ℓλ(z) = c̃λ, (1̃2λ)

has at least one solution in the ball B(zλ; r), and each such solution belongs to the ball
B(zλ;Mδ).

A family of solutions {zλ}λ∈Λ is said to be uniformly strongly isolated if the family of problems
(12λ) (λ ∈ Λ) is uniformly strongly (zλ, r)-well-posed for some r > 0.

Let J = [0, α), α ∈ (0, a], (J = [0, α], α ∈ (0, a)), and u be a solution of problem (1), (2) in the
rectangle J × [0, b]. u is called continuable, if there exists α1 ∈ [α, a] (α1 ∈ (α, a]) and a solution
u1 of problem (1), (2) in [0, α1]× [0, b] such that

u1(x, y) = u(x, y) for (x, y) ∈ [0, α)× [0, b].

Otherwise u is called non-continuable.

Theorem 5. Let u be a a non-continuable solution of problem (1), (2) defined on J × [0, b], and let
for every x0 ∈ J , v(y) = ux(x0, y) be a solution of the problem

v′ = p[u](x0, y, v), h(v)(x0) = ψ(x0). (13)

If the family of solutions v(y) = ux(x0, y) (x0 ∈ J) is uniformly strongly isolated, then either
J = [0, a], or J = [0, α) and

lim
x→α

(
∥ux(x, · )∥C([0,b]) + ∥u(x, · )∥C([0,b]) + ∥uy(x, · )∥C([0,b])

)
= +∞. (14)

Definition 7. Let u be a non-continuable solution of problem (1), (2) in J×[0, b] and let α = sup J .
We say that a measurable matrix function P : [0, b] → Rn×n belongs to the set Sα

f [u], if there exists
an increasing sequence xk ↑ α as k → ∞ such that

lim
k→∞

y∫
0

P1[u](xk, t) dt =

y∫
0

P (t) dt

uniformly on [0, b].

Corollary. Let u be a non-continuable solution of problem (1), (2) in J × [0, b], and let α = sup J .
If for an arbitrary P ∈ Sα

f [u] the homogeneous problem

z′ = P (t)z, h(z)(α) = 0

has only the trivial solution, then either J = [0, a], or J = [0, α) and (14) holds.
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