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For a given zero neighborhood G in the Euclidean space Rn, we consider a nonlinear, generally
speaking, differential system of the form

ẋ = f(t, x), f(t, 0) = 0, t ∈ R+ ≡ [0,+∞), x ∈ G, (1)

where the right-hand side satisfies the condition f, f ′
x ∈ C(R+×G) and the zero solution is allowed.

We associate with system (1) the linear homogeneous system of its first approximation

ẋ = A(t)x, A(t) ≡ f ′
x(t, 0), t ∈ R+, x ∈ Rn, (2)

for which we do not require here the uniformity in t ∈ R+ of the natural (pointwise) smallness of
the nonlinear addition

h(t, x) ≡ f(t, x)−A(t)x = o(x), x → 0.

Let xf ( · , x0) be a non-extendable solution of system (1) with the initial condition xf (0, x0) = x0.
By S∗(f) and SA we denote the set of all nonzero solutions to system (1) and, accordingly, the set
of all solutions to system (2).

Definition 1. Let us list three basic [1] functional K(t, u) defined on the pairs t ∈ R+ and u :
[0, t] → Rn (taking the value +∞ whenever the function is not defined on the entire segment [0, t]),
corresponding to indicators

κ = ν, θ, ρ, respectively, for K = N,Θ,P, (3)

and describing the following properties of solutions:

1) oscillation (κ = ν), if K(t, u) = N(t, u) is the number (multiplied by π) zeros of the function
P1u on the interval (0, t], where P1 is an orthogonal projector onto a fixed line, and if at least
one of these zeros is multiple (that is, it is also a zero and derivative (P1u)

·), then we assume
N(t, u) = +∞;

2) rotation (oriented, κ = θ), if K(t, u) = Θ(t, u) ≡ |φ(t, P2u)| is module of oriented angle
φ(t, P2u) (continuous in t, with initial condition φ(0, P2u) = 0) between the vector P2u(t) and
the initial vector P2u(0), where P2 is the orthogonal projector onto a fixed two-dimensional
plane, and if P2u(τ) = 0 for at least one τ ∈ [0, t], then we assume Θ(t, u) = +∞;

3) wandering (κ = ρ), if

K(t, u) = P(t, u) ≡
t∫

0

∣∣(u(τ)/|u(τ)|)·∣∣ dτ, u(τ) ̸= 0, τ ∈ [0, t].
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There are also known the other functionals that are responsible for the non-oriented or frequency
rotation [1], k-th rank rotation [2], and plane rotation [3].

Definition 2 ([4]). For each functional described in Definition 1, we define:

(a) weak and strong lower linear indicators (3) of the solution x ∈ S∗(f) defined on the whole
semiaxis R+ – by the formulas

κ̌◦(x) ≡ lim
t→+∞

inf
L∈AutRn

t−1K(t, Lx), κ̌•(x) ≡ inf
L∈AutRn

lim
t→+∞

t−1K(t, Lx); (4)

(b) weak and strong lower radial indicators (3) of the Cauchy problem for system (1) with the
initial value x0 ∈ G – by the formulas

κ̌◦
r (f, x0) ≡ lim

t→+∞
inf

L∈AutRn
t−1Ǩr(f, x0, t, L),

κ̌•
r (f, x0) ≡ inf

L∈AutRn
lim

t→+∞
t−1Ǩr(f, x0, t, L),

(5)

where
Ǩr(f, x0, t, L) = lim

µ→+0
K(t, Lxf ( · , µx0)); (6)

(c) weak and strong lower spherical indicators (3) of the Cauchy problem for system (1) with the
initial value x0 ∈ G – by the formulas

κ̌◦
s(f, x0) ≡ lim

t→+∞
inf

L∈AutRn
t−1Ǩs(f, x0, t, L),

κ̌•
s(f, x0) ≡ inf

L∈AutRn
lim

t→+∞
t−1Ǩs(f, x0, t, L),

(7)

where
Ks(f, x0, t, L) ≡ K(t, Lxfs( · , x0)), fs(t, x) ≡ P⊥

x f(t, x),

P⊥
x is a projector onto a hyperplane orthogonal to x, and the modified system

ẋ = fs(t, x), (t, x) ∈ R+ ×G, (8)

is also called spherical (with respect to system (1));

(d) weak and strong upper indicators – linear κ̂◦(x), κ̂•(x), radial κ̂◦
r (f, x0), κ̂•

r (f, x0) and spher-
ical κ̂◦

s(f, x0), κ̂•
s(f, x0) – by the same formulas (3), (5) and (7), respectively, but with the

replacement in formulas (3)–(7) of all lower limits for t → +∞ and for µ → +0 by upper
ones;

(e) exact or absolute varieties of the same indicators that arise when the corresponding values of
the lower and upper indicators or, respectively, weak and strong ones coincide: in the first
case, we will omit the checkmark and the cap in their designation, and in the second one –
an empty and full circle.

Everywhere below, the letters κ or K mean any (corresponding) of the indicators or functionals
(3), and the top icons˜ or ∗ are any of the icons ,̌ˆ or ◦, •, respectively.

The introduction of radial and spherical indicators (as well as ball ones [4]) is due to the fact
that some solutions of the nonlinear system (1) may be defined not on the entire time semiaxis.

On the one hand, for linear systems, the linear and nonlinear (radial and spherical) indicators
are indistinguishable.
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Theorem 1. If system (1) is linear homogeneous and G = Rn, then for any solution x ∈ S∗(f)
the equalities hold

K̃r(f, x(0), t, L) = Ks(f, x(0), t, L) = K(f, Lx), t ∈ R+, AutRn,

κ̃ ∗
r (f, x(0)) = κ̃ ∗

s (f, x(0)) = κ̃ ∗(x).

On the other hand, in the nonlinear (even if autonomous) case, that coincidence is no longer
observed.

Theorem 2. If n = 2 and G = R2, then for each of the following four lines of relations separately

0 = κr(f, x(0)) < κs(f, x(0)) < κ(x) = +∞,

0 = κr(f, x(0)) = κ(x) < κs(f, x(0)) < +∞,

1 = κr(f, x(0)) > κs(f, x(0)) > κ(x) = 0,

1 = κr(f, x(0)) = κ(x) > κs(f, x(0)) > 0,

there exists an autonomous system (1) such that any solution x ∈ S∗(f) is defined on R+, and all
linear, radial and spherical indicators are exact, absolute and satisfy the relations of that particular
line.

The radial wandering indicators completely coincide with the corresponding linear ones of the
first approximation system.

Theorem 3. For any system (1) and any nonzero solution x ∈ SA to the system of its first
approximation (2), the equalities hold

P̌r(f, x(0), t, L) = P̂r(f, x(0), t, L) = P(Lx, t), t ∈ R+, L ∈ AutRn,

ρ̃ ∗
r (f, x(0)) = ρ̃ ∗(x).

In the two-dimensional case, a similar coincidence is observed also for the rotation indicators.

Theorem 4. If n = 2, then for any system (1) and any nonzero solution x ∈ SA to the system of
its first approximation (2), the equalities hold

Θ̌r(f, x(0), t, L) = Θ̂r(f, x(0), t, L) = Θ(Lx, t), t ∈ R+, L ∈ AutRn,

θ̃ ∗
r (f, x(0)) = θ̃ ∗(x).

However, already in the three-dimensional (and even autonomous) case, the rotational radial
indicators, as well as the oscillation ones, generally speaking, do not match the linear ones.

Theorem 5. For n = 3 and G = R3 there exists an autonomous system (1) such that for any
nonzero solution x ∈ SA of the system of its first approximation (2) the solution xf ( · , x(0)) is also
defined on R+, and all the rotational and oscillation indicators are exact, absolute and for some
two-dimensional subspace S ⊂ SA satisfy the relations

0 = θr(f, x(0)) = νr(f, x(0)) 6 θ(x) = ν(x) =

{
1, x ∈ S \ {0};
0, x ̸∈ S.

For the linear and nonlinear radial indicators of oscillation, a similar mismatch is observed
already in the two-dimensional (albeit only in a non-autonomous) case.
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Theorem 6. For n = 2 and G = R2 there exists a system (1) such that for any solution x ∈ SA

of the system of its first approximation (2) the solution xf ( · , x(0)) is also defined on R+, and all
the linear and radial oscillation indicators are exact, absolute and satisfy the relations

0 = νr(f, x(0)) < ν(x) = 1.

For the spherical indicators, however, no analogs of Theorems 3 and 4 above are valid (that
follows from Theorems 2 and 3).

Theorem 7. If n = 2 and G = R2, then for each of the following two lines of relations separately

0 = κ(x) < κs(f, x(0)) < +∞,

1 = κ(x) > κs(f, x(0)) > 0,

there exists an autonomous system (1) such that for any nonzero solution x ∈ SA of the system
of its first approximation (2) the solution xf ( · , x(0)) is also defined on R+, and all the linear and
spherical indicators are exact, absolute and satisfy the relations of that particular line.
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